

Professional ASP.NET Web Services

Russ Basiura

Mike Batongbacal

Brandon Bohling

Mike Clark

Andreas Eide

Robert Eisenberg

Kevin Hoffman

Brian Loesgen

Chris Miller

Matthew Reynolds

Bill Sempf

Srinivasa Sivakumar

Wrox Press Ltd.

TE
AM
FL
Y

Team-Fly®

Professional .NET Framework

© 2001 Wrox Press

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case of

brief quotations embodied in critical articles or reviews.

The author and publisher have made every effort in the preparation of this book to ensure the accuracy
of the information. However, the information contained in this book is sold without warranty, either

express or implied. Neither the authors, Wrox Press, nor its dealers or distributors will be held liable for
any damages caused or alleged to be caused either directly or indirectly by this book.

Trademark Acknowledgements
Wrox has endeavored to provide trademark information about all the companies and products

mentioned in this book by the appropriate use of capitals. However, Wrox cannot guarantee the
accuracy of this information.

Published by Wrox Press Ltd,
Arden House, 1102 Warwick Road, Acocks Green,

Birmingham, B27 6BH, UK
Printed in the United States

ISBN 1-861005-45-8

Credits
Authors Technical Reviewers
Russ Basiura Kenneth Avellino
Mike Batongbacal Maxime Bombardier
Brandon Bohling Andreas Christiansen
Mike Clark Robert Eisenberg
Andreas Eide Jeannine Gailey
Robert Eisenberg John Godfrey
Kevin Hoffman Mark R Harrison
Brian Loesgen Erik Hougaard
Chris Miller Tom Kern
Matt Reynolds Don Lee
Bill Sempf Dianna Leech
Srinivasa Sivakumar Craig McQueen

Frank Miller
Technical Architect Arun Nair
Daniel Kent Christophe Nasarre

Johan Normén
Lead Technical Editor Matthew Rabinowitz
Matthew Cumberlidge Larry Schoeneman

David Schultz
Technical Editors Trevor Scott
David Barnes Bill Sempf
Claire Brittle Keyur Shah
Jake Manning Marc H. Simkin
Caroline Robeson John Timney

Konstantinos Vlassis
Category Manager
Steve Farncombe Project Administrator

Cathy Succamore
Author Agent
Laura Jones Production Manager

Liz Toy
Index
John Collin Production Project Coordinator
Fiona Murray Pip Wonson

ASPToday Sample Article Layout and Figures
Steven Livingstone Matt Clark

Emma Eato
ASPToday Technical Editors Abbie Forletta
Vickie Pring Natalie O'Donnell
Adam Dutton

Cover
Dawn Chellingworth

About the Authors
Russ Basiura

Russ is an independent consultant and founder of RJB Technical Consulting, Inc.
(http://www.rjbtech.com), a web security firm and a Microsoft Certified Solution Provider and Security
Partner located in the U.S. Russ specializes in the design and development of integration solutions that
enable business partners to exchange confidential information and conduct business securely and
efficiently across the Internet. Many of his solutions have used Microsoft technologies to integrate
authentication and authorization processes between heterogeneous applications seamlessly. Russ can be
contacted at russ@rjbtech.com.

Russ would like to say thank you to his wife Darlene and their beautiful children, Rachel, Lauren and Joseph for all
their love and support.

Mike Batongbacal
Mike Batongbacal caught the technology bug in the early 1980's when he started developing software
for the original IBM PC. Since then, he's forged a successful career as a technology consultant
developing n-tiered systems using Microsoft technologies such as Visual Basic, ASP, COM+, SQL
Server and, most recently, the .NET platform. He has presented at various events and conferences
including Microsoft Tech Ed and MSDN Technical Briefings. Mike is currently the E-Business Practice
Lead for Magenic Technologies, one of the nation's premiere Microsoft Gold Certified Partners
dedicated to solving today's business problems using Microsoft tools and technologies.

I wish to thank God for giving me this opportunity to share my passion for technology with others through this book.
Much gratitude goes out to my wife, Norma, as well. I couldn't have accomplished this without her love and
encouragement. You've put up with a lot, baby. This book is for you!

To my family and friends, I apologize for my self-imposed exile while I wrote this book. Yes, I'm alive! And I intend
to spend time with you all again.

Brandon Bohling
Brandon Bohling is a software engineer for Intel Corporation in Phoenix, Arizona. He has been
developing ASP-based Web sites since its creation. Which is quite different from teaching middle school
kids in Ackley, Iowa, which he did in a previous life. Now he has fully embraced the .NET technologies
and is devoted to spreading his knowledge. When no one wants to listen to his .NET ramblings, he
escapes to the outdoors with his wife and two dogs.

Mike Clark
Mike is currently working in the UK for Lucin as Senior Analyst. Having been responsible for the
design and implementation of www.salcentral.com (web services brokerage) and www.webservicewatch
he has been involved in grass roots web service development for over 2 years. Having been
predominantly involved in Microsoft windows development over the last 8 years his main expertise lies
in his ability to quickly adapt his technique to current project requirements and his still enthusiastic
approach to all development.

Andreas Eide
Andreas Eide has a Master of Science degree from the Norwegian Institute of Technology in
Trondheim. He has been working as a developer and software architect for the past eight years. Andreas
is an MCSD, MCT, and is also MSDN Regional Director and a regular speaker at
seminars and conferences.

When not writing books and speaking about software, Andreas makes his living as a principal consultant
for Objectware. Objectware is a Norwegian consulting company focusing on component based
development using .NETand Java based technologies.

Andreas thanks Maria, Kristine, and Grete for their patience during the time he worked on this book.

You can contact Andreas at andreas.eide@objectware.no

Robert Eisenberg
Robert Eisenberg is currently an independent consultant specializing in Web Services. In 1999 he was
the CEO and cofounder of an eCommerce consulting firm that was acquired by Framfab Inc., the
largest Internet Professional Services firm in Europe. Prior to that, as a consultant he was in charge of
many production systems for Ocular Science Inc., one of the largest manufacturers of contact lenses in
the world. Prior to that he ran a computer consulting firm working with many companies including
Pacific Bell, the Federal Reserve Bank, and Cushman & Wakefield. He has written for DevX and
spoken on .NET at Microsoft and at local user groups.

Kevin Hoffman
Kevin Hoffman is a software technology junkie who is currently eating and breathing anything and
everything that has to do with the .NET Framework. He started programming in BASIC on a
Commodore VIC-20 that his grandfather had repaired after being found in the trash, and has been a
tech addict ever since, working at everything from nationwide UNIX mainframe support to a Software
Engineer for one of the most popular e-Commerce websites on the Internet. Recently he has found that
he loves to write and teach about programming as much as he loves doing it himself.

I would like to dedicate my work for this book to my mother Marie, who has always been a treasured source of
infinite love and support. Also I would like to dedicate my work to my brother Kurt and sister-in-law Nina who
have both always been encouraging and supportive.

Brian Loesgen
Brian Loesgen is a Chief Software Architect at Stellcom Inc., a San Diego-based leader in advanced
enterprise and mobile solutions. Brian utilizes his XML expertise to translate new, leading-edge
technologies into real-world value. He is a co-author of the "Professional XML", "Professional
ASP/XML", "Professional Windows DNA" and “Professional ASP.NET Web Services” books from
Wrox. In addition, Brian has written technical white papers for Intel, Microsoft, and others. Brian is a
frequent speaker at major technical conferences worldwide.

In his spare moments, Brian enjoys outdoor activities such as cycling, hiking in the mountains, kayaking,
camping in the desert, or going to the beach with his wife Miriam and children Steven and Melissa.

Brian can be reached at bloesgen@msn.com.

Chris Miller
Christopher L. Miller is a consultant with Crossoft Inc (www.crossoft.com), where he specializes in
intranet development. His current projects include financial and document management intranet
applications, as well as an extensible intranet package called Quicktranet (www.quicktranet.com).
Serving as the .NET User Group president in Pittsburgh, PA, Christopher is working to bring the
awareness and understanding of this revolutionary new platform to light (www.pghdotnet.org).

He began developing with Visual Basic with version 1.0 (the DOS version) in 1991, making the tough
conversion from QuickBASIC. Since 1992, VB has been his primary development language (although
admittedly, C# is gaining quickly). An ASP developer since 1997, Christopher began making the switch
to ASP.NET in early 2000.

With the support of his wife, Stacy, and his cat, Jones (who never cares to visit with him until he's
working on a book), Christopher has spent countless hours working toward Microsoft certifications and
other technical accomplishments. After several months of seemingly around-the-clock work, he vows to
spend more time with his family this autumn...with the usual allowances for enjoying some (American)
football and hockey.

Matt Reynolds
After working with Wrox Press on a number of projects since 1999, Matthew Reynolds is now an in-
house author for Wrox Press writing about and working with virtually all aspects of Microsoft .NET.
He's also a regular contributor to Wrox's ASPToday and C#Today, and Web Services Architect. He
lives and works in North London and can be reached on matthewr@wrox.com.

Bill Sempf
Bill Sempf is co-author of Professional VB .Net by Wrox Press. He is an experienced Internet strategist
with a ten-year track record of using technology to help organizations accomplish specific business
objectives. A Microsoft Certified Professional, Certified Internet Business Strategist, and member of the
International Webmaster's Association, Bill has built nearly one hundred dynamic webs for startups and
Fortune 50 companies alike.

Currently, Bill is a Senior Consultant at Paros Business Partners, and owner of Products Of Innovative
New Technology. He has written several articles on COM, COM+ and .Net technologies for
TechRepublic, Internet.com and Inside Web Development Journal. Web services are rapidly becoming
a passion of Bill's and he is quite certain they are going to be the Next Big Thing. Bill can be reached at
bill@sempf.net.

Thanks to Wrox for keeping these quality books on the shelf, and keeping these quality authors in work. Thanks to
all my friends, family and fellow programmers for their support.

To my wife Gabrielle for helping with four projects and a book going on all at once: your love, support and strength
go a long way toward keeping me sane. Thank you.

Srinivasa Sivakumar
Srinivasa Sivakumar is a software consultant, developer, and writer. He specializes in Web and Mobile
technologies using Microsoft solutions. He currently works in Chicago for TransTech, Inc. He also
writes technical articles for ASPToday.com, CSharpToday.com, .NET Developer, etc. In his free time
he likes to watch Tamil movies and listen to Tamil sound tracks
(Specially one's sung by Mr. S.P Balasubramaniyam).

I'd like to dedicate my section of the book to my beloved mother Mrs. Rajam Sathyanarayanan. Mother, thanks a lot
for everything that you've done for me and I've no way of paying back the wonderful things that you've given me.
And also I'd like to thank my wife Annapoorna, my daughter Sruthi and (-3) month old junior.

Introduction

Web Services are being hailed as a leap forward in distributed computing. Web Services evangelists
foresee a future where functionality can be programmatically discovered and accessed over the Internet,
as and when it is required. Of course, some commentators disagree, seeing Web Services as nothing
more than a standardized iteration of older distributed computing systems.

Whether or not we see Web Services as a big step or a small evolution, we must all agree that they are
generating a lot of interest. The technologies and standards behind Web Services are being adopted by
a wide range of companies in the computing industry. At the forefront of the drive for acceptance of
these standards are IBM, Sun Microsystems, and Microsoft.

IBM and Sun have chosen Java as their preferred development platform for Web Services, providing
tools and support to Java Web Services developers. Microsoft initially provided tools to allow Visual
Basic and Active Server Pages developers to begin creating Web Services. With the latest incarnation of
Active Server Pages, ASP.NET, Microsoft has fully embraced Web Services, building Web Service
functionality into the system itself.

ASP.NET makes exposing functionality through a Web Service very straightforward. That is not to say,
however, that there is little to learn about developing Web Services in ASP.NET. Although Web
Services can be seen as an evolution of previous distributed computing standards, they do have new
considerations which must be taken into account if we are to harness their full potential.

Introduction

2

What Does This Book Cover?
In this book, we aim to give a solid grounding in the technologies that underpin Web Services and the
specifics of developing Web Services with ASP.NET.

Introducing Web Services

We start by introducing Web Services. We look at what Web Services are in Chapter 1 and show how
to implement and consume a basic Web Service with ASP.NET in Chapters 2 and 3.

Web Services Standards

We then take a closer look at the standards that Web Services rely on to operate. Chapter 4 examines WSDL
(Web Service Description Language), the language that allows Web Services to be accurately described.

Chapter 5 investigates SOAP (Simple Object Access Protocol), which allows clients to communicate
with the Web Services they consume. Then, in Chapter 6, we look at how we can harness the
Extensibility of SOAP to augment its functionality.

Chapter 7 looks at the important Web Services concept of discovery and shows how we can harness the
power of UDDI (Universal Description, Discovery and Integration).

Web Services Techniques

The bulk of the book is taken up with detailed discussions of the various techniques and considerations
that will be important in developing Web Services. We open this section with Chapter 8, an overview of
the design considerations that Web Services introduce.

In Chapter 9, we compare synchronous and asynchronous Web Services and show the additional
coding required to build asynchronous services.

The concept of a 'stateful' Web Service is considered in Chapter 10, along with the architectural
questions that this idea raises.

Chapter 11 looks at Transactions and how we can use them in our Web Services.

In Chapter 12, we show how caching can increase the performance and scalability of Web Services.

Chapters 13 and 14 consider the topic of security, demonstrating how to build Web Services that
authenticate their users, and explaining how SOAP allows secure communications with Web Services.

In Chapter 15, we look at some practical uses of Web Services – exposing data from a variety of
data sources.

Chapter 16 rounds off the techniques and design considerations section with an analysis of what Web
Services could mean for your business.

Introduction

3

Case Studies

Chapter 17 is a case study in which Web Services are Orchestrated with BizTalk

We present another case study in Chapter 18, this time seeing how we can use Web Services to create a
reusable authentication framework.

Our final case study, in Chapter 19, examines a system in which processing of a demanding task is
distributed to a number of machines, coordinated by a Web Service.

Appendices

In Appendix A, we take a peek at one of the biggest current Web Services projects – .NET My Services
(Previously codenamed Hailstorm), in which Microsoft plans to offer a wide range of functionality
through Web Services.

Appendix B looks at the Web Service behavior for Internet Explorer 5.5 +, which allows recent versions
of Internet Explorer to access Web Services.

Who Is This Book For?
This book is aimed at ASP.NET programmers who want solid information about building Web Services.
It does not cover the basics of ASP.NET – we assume readers have read Professional ASP.NET or have a
similar level of knowledge before they read this book. This allows us to concentrate on providing as
much valuable information specific to creating Web Services as possible.

Why C#?

The code samples in this book are all in C#. Full VB.NET versions of the code samples are available,
along with C# downloads, at http://www.wrox.com.

We have included some VB.NET code, in the early chapters that deal with the syntax for defining Web
Services, in order to highlight the differences between VB.NET and C#.

We decided that including a single language in the book would increase clarity and allow us to fit more
material in. We then thought long and hard about which of the two main .NET languages we would
include in the book. It was eventually decided that C#, as a brand new language, was appropriate for
the presentation of a cutting edge subject such as Web Services.

We have done our best to ensure that VB.NET programmers will be able to follow the examples and
that the download will enable them to use the code.

What You Need to Use this Book
To run the samples in this book you need to have the following:

❑ Windows 2000 or Windows XP

❑ ASP.NET. This can be either the redistributable (which is included in the .NET SDK) or the
premium edition. Beta versions of ASP.NET may have some incompatibilities.

TE
AM
FL
Y

Team-Fly®

Introduction

4

❑ Some examples illustrate the use of Visual Studio .NET for some tasks – the ASP.NET code
presented does not require Visual Studio .NET.

❑ Some examples use SQL Server for their database storage.

This book will be published to coincide with the first full release of the .NET Framework. Every attempt
has been made to ensure that the code in the book is compatible with this release. The code in this book
may not be compatible with older beta versions of the .NET Framework.

The complete source code for the samples is available for download from our web site at
http://www.wrox.com/Books/Book_Details.asp?isbn=1861005458.

Conventions
We've used a number of different styles of text and layout in this book to help differentiate between
different kinds of information. Following are examples of the styles we used and an explanation of what
they mean.

Code has several fonts. If it's a word that we're talking about in the text – for example, when discussing
a For...Next loop, it's in this font.

If it's a block of code that can be typed as a program and run, then it is placed in a gray box:

<?xml version 1.0?>

Sometimes we'll see code in a mixture of styles, like this:

<?xml version 1.0?>
<Invoice>
 <part>
 <name>Widget</name>
 <price>$10.00</price>
 </part>
</invoice>

In cases like this, the code with a white background is code we are already familiar with; the line
highlighted in gray is a new addition to the code since we last looked at it.

There are occasions in this book that you will type code at a command line; in many cases you can just
copy what you see. However, sometimes the line of code may carry onto the next line, due to the width
of the page: in this case, we have included a continuation character, '�', at the end of the line showing
that the line should be entered continuously and unbroken, as follows:

csc /out:SimpleLibrary1.dll /t:library SimpleClass1.cs �
 /r:System.Runtime.Remoting.dll
csc /out:SimpleClient.exe /t:exe Class1.cs /r:System.Runtime.Remoting.dll �
 /r:SimpleLibrary1.dll

Introduction

5

Advice, hints, and background information comes in this type of font.

Important pieces of information come in boxes like this.

Bullets appear indented, with each new bullet marked as follows:

❑ Important Words are in a bold type font.

❑ Words that appear on the screen, or in menus like File or Window, are in this similar font to
the one you would see on a Windows desktop.

❑ Keys that you press on the keyboard like Ctrl and Enter, are in italics.

Customer Support
We always value hearing from our readers, and we want to know what you think about this book: what
you liked, what you didn't like, and what you think we can do better next time. You can send us your
comments, either by returning the reply card in the back of the book, or by e-mail to
feedback@wrox.com. Please be sure to mention the book title in your message.

How to Download the Sample Code for the Book
When you visit the Wrox site, http://www.wrox.com/, simply locate the title through our Search facility,
or by using one of the title lists. Click on Download in the Code column, or on Download Code on the
book's detail page.

The files that are available for download from our site have been archived using WinZip. When you
have saved the attachments to a folder on your hard-drive, you need to extract the files using a de-
compression program such as WinZip or PKUnzip. When you extract the files, the code is usually
extracted into chapter folders. When you start the extraction process, ensure your software (WinZip,
PKUnzip, etc.) is set to use folder names.

Errata
We've made every effort to make sure that there are no errors in the text or in the code. However, no
one is perfect and mistakes do occur. If you find an error in one of our books, such as a spelling mistake
or a faulty piece of code, we would be very grateful for feedback. By sending in errata you may save
another reader hours of frustration, and of course, you will be helping us provide even higher quality
information. Simply e-mail the information to support@wrox.com, your information will be checked
and if correct, posted to the errata page for that title, or used in subsequent editions of the book.

To find errata on the web site, go to http://www.wrox.com/, and simply locate the title through our
Advanced Search or title list. Click on the Book Errata link, which is below the cover graphic on the
book's detail page.

Introduction

6

E-mail Support
If you wish to directly query a problem in the book with an expert who knows the book in detail then
e-mail support@wrox.com, with the title of the book and the last four numbers of the ISBN in the
subject field of the e-mail. A typical e-mail should include the following things:

❑ The title of the book, last four digits of the ISBN, and page number of the problem in the
Subject field.

❑ Your name, contact information, and the problem in the body of the message.

We won't send you junk mail. We need the details to save your time and ours. When you send an e-mail
message, it will go through the following chain of support:

❑ Customer Support – Your message is delivered to our customer support staff, who are the first
people to read it. They have files on most frequently asked questions and will answer anything
general about the book or the web site immediately.

❑ Editorial – Deeper queries are forwarded to the technical editor responsible for that book.
They have experience with the programming language or particular product, and are able to
answer detailed technical questions on the subject.

❑ The Authors – Finally, in the unlikely event that the editor cannot answer your problem, he or
she will forward the request to the author. We do try to protect the author from any
distractions to their writing; however, we are quite happy to forward specific requests to them.
All Wrox authors help with the support on their books. They will e-mail the customer and the
editor with their response, and again all readers should benefit.

The Wrox Support process can only offer support to issues that are directly pertinent to the content of
our published title. Support for questions that fall outside the scope of normal book support, is provided
via the community lists of our http://p2p.wrox.com/ forum.

p2p.wrox.com
For author and peer discussion join the P2P mailing lists. Our unique system provides programmer to
programmer™ contact on mailing lists, forums, and newsgroups, all in addition to our one-to-one e-mail
support system. If you post a query to P2P, you can be confident that it is being examined by the many Wrox
authors and other industry experts who are present on our mailing lists. At p2p.wrox.com you will find a
number of different lists that will help you, not only while you read this book, but also as you develop your
own applications. Particularly appropriate to this book are the aspx and aspx_professional lists.

To subscribe to a mailing list just follow these steps:

1. Go to http://p2p.wrox.com/.

2. Choose the appropriate category from the left menu bar.

3. Click on the mailing list you wish to join.

4. Follow the instructions to subscribe and fill in your e-mail address and password.

Introduction

7

5. Reply to the confirmation e-mail you receive.

6. Use the subscription manager to join more lists and set your e-mail preferences.

Why this System Offers the Best Support
You can choose to join the mailing lists or you can receive them as a weekly digest. If you don't have
the time, or facility, to receive the mailing list, then you can search our online archives. Junk and spam
mails are deleted, and your own e-mail address is protected by the unique Lyris system. Queries about
joining or leaving lists, and any other general queries about lists, should be sent to
listsupport@p2p.wrox.com.

Introduction

8

Web Services

Have you ever wondered what you could accomplish as a programmer if every business function ever
written became available to your new application by simply adding a reference to it? What if all these
functions could be discovered and used at run-time? What if you could be part of a new multi-billion
dollar market? The marketers of the latest ‘revolutionary’ technology claim that Web Services make all
this possible.

Every time there is a shift in the way we build software, there is a lot of hype and confusion. We are
already seeing the term “Web Service” being misused by marketing people and put on many products
having little or nothing to do with Web Service technologies and protocols.

In this chapter, we will try to cut through the hype and describe exactly what Web Services are and why
we need them. We’ll also explain how ASP.NET makes it easy for us to build and use Web Services and
when it is best to use them.

When going through a shift, it is always useful to look back and learn from history. Two of the major
shifts in software development over the last couple of decades have been the development of object-
oriented programming and component technology.

Object-oriented programming joined the mainstream in the early 80s. Many saw object-oriented
programming as the solution to the software crisis that resulted from the increasing complexity and size
of the software being built. Most projects were late and over budget, and the end-result was often
unreliable. The promise of object-orientation was that by structuring your code into objects that map to
other objects in the solution domain, you would get code that was reusable and maintainable. Object-
oriented programming has improved software quality, but software projects are still often over budget
and late.

1

Chapter 1

2

The 1990s saw the birth of component technology. Visual Basic is now ten years old, but it was
revolutionary in many ways. It allows developers to build Windows applications by dragging controls
on to a form. During 1995 people were talking about how component technology would make it
possible to build applications by assembling components. Component reuse has turned out to be most
successful in building user interfaces. Component evangelists also talked about a market for reusable
business components, but third-party business components as a market has not lived up to its promise.
Sites such as www.ComponentSource.com list thousands of GUI and general purpose components but
finding business components is hard.

Alongside the evolution of programming models, the Internet grew from a playground for universities
and academics to a network reaching out to most corners of the world. The Internet has clearly had a
big impact on society and our industry in particular.

In many ways, Web Services can be seen as an extension of the component model to the Internet, as
essentially, a Web Service is application logic accessible over the Internet. Many of the promises of
Web Services are the same as those of component technology. Web Services will allow us to assemble
applications from pre-built application logic available somewhere on the Internet. Similarly, Web
Services will solve many problems we encounter when trying to build reusable application logic and
building applications that span the Internet.

Once again, many promote Web Services as the new silver bullet that will revolutionize the way we
build software. But looking back at history, we know that there is no such thing as a silver bullet.

In this chapter we will look with objective eyes at the “why”, “what”, and “how” of Web Services with
ASP.NET. Specifically, we will look at:

❑ Why we need Web Services. What problems do Web Services solve?

❑ What a Web Service is. What are the standards and technologies behind Web Services?

❑ How ASP.NET can help you implement Web Services.

This chapter will give you a high-level perspective on the standards and ASP.NET. Later chapters in
this book will go into this in much greater detail.

Component Based Distributed Computing and Web
Services

To fully understand the impact of Web Services, you need an understanding of distributed computing.
So before we go into the details of Web Services, let’s see some background on component-based
distributed computing.

Distributed computing is the partitioning of application logic into units that are physically distributed
among two or more computers in a network. The idea of distributed computing has been around a long
time and numerous communication technologies have been developed to allow the distribution and
reuse of application logic.

There are many reasons for distributing application logic:

Web Services

3

❑ Distributed computing makes it possible to link different organizations and organizational
units.

❑ Often the data accessed by the application is on a different machine. The application logic
should be close to the data.

❑ Distributed application logic may be reused in several applications. Pieces of a distributed
application may be upgraded without upgrading the whole application.

❑ By distributing the application logic, the load is spread out to different machines, giving
potentially better performance.

❑ As new needs arise, application logic may be redistributed or reconnected.

❑ It is easier to scale one layer than a whole application. If for example the data layer isn’t fast
enough, more resources can be added to this layer without affecting the entire application.

The Internet has increased the importance and applicability of distributed computing. The simplicity
and ubiquity of the Internet makes it a logical choice as the backbone for distributed applications.

The dominant protocols in component-based distributed computing are CORBA (Common Object
Request Broker Architecture) from the Object Management Group and Microsoft’s DCOM (Distributed
Component Object Model). Although CORBA and DCOM have a lot in common, they differ in the
details, making it hard to get the protocols to interoperate.

The following table summarizes some similarities and differences between CORBA, DCOM, and Web
Services and introduces a slew of acronyms.

Characteristic CORBA DCOM Web Services

Remote
Procedure Call
(RPC)
mechanism

Internet Inter-
ORB Protocol
(IIOP)

Distributed Computing
Environment Remote
Procedure Call
(DCE-RPC)

Hyper Text Transfer
Protocol
(HTTP)

Encoding Common Data
Representation
(CDR)

Network Data
Representation
(NDR)

Extensible Markup
Language
(XML)

Interface
description

Interface
Definition
Language
(IDL)

Interface Definition
Language
(IDL)

Web Service
Description Language
(WSDL)

Discovery Naming service
and trading
service

Registry Universal Discovery
Description and
Integration
(UDDI)

Firewall friendly No No Yes

Complexity of
protocols

High High Low

Cross-platform Partly No Yes

Chapter 1

4

Both CORBA and DCOM allow the invocation of remote objects. CORBA uses a protocol called
Internet Inter-ORB Protocol (IIOP); DCOM uses a variation on OSF’s (Open Software Foundation)
DCE-RPC. The encoding of data in CORBA is based on a format named Common Data Representation
(CDR). In DCOM, the encoding of data is based on a similar but incompatible format named Network
Data Representation (NDR).

DCOM is often described as ‘COM with a longer wire’. In the code, a developer does not need to do
anything special to invoke a remote object. The code to call a remote object is the same as the code to
invoke a local object. This is known as location transparency. This is accomplished by using surrogate
objects on both the client and on the server. On the client side the surrogate is called a proxy. The
proxy has the same interface as the real object. On the server side, there is a surrogate for the client
called a stub. The stub invokes the real object. CORBA uses the same concept, but the terminology is
different. The proxy in CORBA is confusingly called a stub and the stub is called a skeleton.

The figure below shows a high-level view of what happens when a DCOM client calls a method on a
DCOM server (the figure is similar in the case of CORBA):

Do Something()

DCE-RPC

Client

DCOM client

Proxy

COM runtime

Network protocol
(TCP/UDP)

R
eg

si
tr

y

Server

DCOM client

COM runtime

Network protocol
(TCP/UDP)

R
eg

si
tr

y

Stub

The DCOM client calls the DoSomething() method on the remote object. The method is actually a
call to the proxy. The proxy encodes the data into the data representation of DCOM and sends the
message to the server using a network protocol. On the server side, the stub decodes the data and calls
the actual method on the DCOM server. The same happens in reverse when returning the result from
the server to the client.

Every object has one or more interfaces and is only callable on an interface. To use an interface a
description of it is needed. As shown in the table, both COM and CORBA use an Interface Definition
Language (IDL) to describe the interface. COM and CORBA use different IDLs but they are very
similar. The IDL serves as a contract between the server and its clients. IDL is independent of the
programming languages used to implement the client and the server.

One thing to note about DCOM is that it is connection-oriented. The DCOM client holds on to a
connection to the DCOM server. While holding the connection the client may make multiple calls to

Web Services

5

the DCOM server. The connection-oriented nature of DCOM gives a lot of flexibility; the server may
hold state on behalf of the client; it may call back to the client, raise events to notify the client and so
on. However, there are technical issues with this. The client may hold on to the reference and only
make calls when, for example, the user hits a button. For large periods of time, the server is idle waiting
for requests from the client. What happens if the client crashes and will never use the server again?
Alternatively, imagine an Internet scenario where the DCOM or CORBA server is used by thousands of
clients. Since each client has a connection to the server, valuable server resources may be reserved for a
client that seldom uses the server or even no longer exists.

Although DCOM has ways to deal with these problems, it all adds up to a great deal of complexity,
which is one of the problems Web Services attempts to solve. Let’s now look closer at some of the
benefits of Web Services.

Why Web Services?
Web Services are interesting from several perspectives.

From a technological perspective, Web Services try to solve some problems faced when using tightly-
coupled technologies such as CORBA and DCOM. These are problems such as getting through
firewalls, the complexities of the protocols, and integrating heterogeneous platforms.

Web Services are also interesting from an organizational and economic perspective, as they open up
doors for new ways of doing business and dealing with organization issues.

Web Services as a Better Distributed Component
Technology

DCOM and CORBA are fine for building enterprise applications with software running on the same
platform and in the same closely administered local network. They are not fine, however, for building
applications that span platforms, span the Internet and need to achieve Internet scalability; they were
simply not designed for this purpose.

This is where Web Services come in. Web Services represent the next logical step in the evolution of
component-based distributed technologies. Some key features are that:

❑ Web Services are loosely coupled to the clients. A client makes a request to a Web Service,
the Web Service returns the result and the connection is closed. There is no permanent
connection, and none of the complexity mentioned above. The Web Service may extend its
interface; add new methods and parameters without affecting the clients, as long as it still
services the old methods and parameters.

❑ Web Services are stateless: they do not hold on to state on behalf of the client. This makes it
easy to scale up and out to many clients and use a server farm to serve the Web Services. The
underlying HTTP protocol used by Web Services is also stateless. It is possible to achieve
some state handling with Web Services the same way it is possible on the web today using
techniques such as cookies.

TE
AM
FL
Y

Team-Fly®

Chapter 1

6

Many of the concepts from DCOM and CORBA have their offspring in Web Services. That is not
surprising since they try to solve the same problem: how to make calls to remote objects.

❑ The foundation of Web Services is SOAP, the Simple Object Access Protocol. SOAP is much
simpler to implement than DCOM and CORBA. DCOM is Microsoft-specific, CORBA is
used by many other vendors. SOAP is based on open Internet protocols such as HTTP and
bridges the gap between Microsoft and the rest.

❑ For serialization, DCOM and CORBA are based on complex formats. The serialization format
for Web Services is based on XML and the XML schema specification. XML is simple,
extensible, and readable, and XML has already reached wide acceptance and adoption.

❑ Where DCOM and CORBA use IDL to describe interfaces, Web Services use the Web
Service Description Language, WSDL. WSDL is more flexible and is richer than IDL.

The figure below shows a Web Service being consumed by a client. The client may be a web
application, another Web Service, an application such as Microsoft Word, and so on.

Do Something()

SOAP

Client

Web service
consumer

Proxy

.NET runtime

Network protocol
(HTTP)

Server

Web service

IIS

Network protocol
(HTTP)

ASP .NET

The Web Service consumer calls a method called DoSomething() on the Web Service. This is illustrated
by the dotted lines. The actual call travels down the layers, over the network as a SOAP message and up
the layers to the Web Service. The Web Service executes, and the response (if any) travels back.

The figure above shows the ASP.NET way of doing Web Services. Web Services are implemented
differently on different platforms. The crucial point is that what goes on the wire accords to standards.

The figure above looks similar to the DCOM figure we saw earlier. In both cases the client uses a proxy as a
surrogate for the real object. Also note that the DCOM figure is more symmetrical than the Web Service figure.

There is a provider/consumer relationship between the client and the server in the case of Web
Services. The server cannot call back to the client. The client does not host a web server. The client may
in some cases be another Web Service where there is a web server. Nevertheless, the service being
called does not have a reference to the client, and so cannot raise events back to the client. In this
respect, tightly coupled protocols such as DCOM/CORBA are more powerful than Web Services.

Web Services

7

It is possible to implement two-way notifications from the Web Service back to the client or
publish/subscribe functionality, but it must be done manually. The client can implement its own Web
Service and pass a reference to this Web Service in the call to the server. The server may store this
reference, and then it can call back to the client.

Firewalls – Beating the System Administrator?
Firewalls are put into place for good reasons: to stop intruders from getting into your network and to
stop unwanted traffic out from the local network. Such tight security comes at a cost: it can block
legitimate traffic. Getting firewalls configured properly to get DCOM and IIOP traffic through can be
difficult because of both political and technical reasons.

The problem with accessing objects through firewalls is not just a problem when using the Internet. It
can also bite you when you are working within the boundaries of an organization.

The only thing that almost always gets through firewalls is HTTP traffic on ports 80 and 443. The
designers of the SOAP protocol learned the lessons of DCOM and IIOP and decided to standardize the
use of HTTP for object invocation.

SOAP uses HTTP as its communication protocol so method calls will be able to pass
through firewalls.

It is still possible to use the firewall to block SOAP traffic. This is possible since the HTTP header of a
SOAP message identifies the message as a SOAP message, and an administrator may configure the
firewall to stop SOAP traffic. For business-to-business scenarios, the firewall may only allow SOAP
traffic from selected ranges of IP addresses.

The ‘S’ in SOAP means Simple
Even though DCOM has location transparency and the programs need not contain any special DCOM
code, getting a DCOM system up and running and keeping it running is not trivial. Getting through the
firewalls is one issue. There are other issues as well. The DCOM servers must be registered on the
client. When the server is modified, the clients’ code must be updated with new proxies. Getting the
security settings correct to get all this to work requires a Masters degree in distributed computing.

When implementing DCOM and CORBA you need to rely on existing implementations of the DCOM
and CORBA infrastructure. It is not practically feasible to implement the protocols yourself. SOAP,
however, is much more lightweight, it is simple and relatively low tech. A SOAP server can be
implemented using generally available XML parsers and HTTP servers in a matter of days.

A Multi-Everything World
The reality for most businesses is that they have a multitude of platforms from different vendors. They may have
a system running on IBM AS/400 for their back-office applications, the CRM system may run on UNIX servers,
and the new e-commerce application may run on Windows 2000. As new systems are acquired, the old systems
are not replaced. Instead the new systems need to integrate with the old systems, and if you need to integrate
with business partners, it is very likely that their system is different from yours.

Chapter 1

8

The problem with DCOM and CORBA is that you are basically stuck with a single vendor. If you are
using DCOM you have to use Microsoft Windows to run your servers and clients. Although there are
implementations of DCOM on other platforms, they are not widely adopted. Despite the fact that
CORBA is a specification implemented by several vendors, interoperability is only achieved in simple
cases. Not to speak of integrating DCOM and CORBA…

Web Services, however, are based on open standards and can be used on any platform.
They have the potential to be an integration technology that will work across platforms
and vendors. It is still too early to say if this will be the reality, though.

If you are running your components in a tightly controlled environment where the platform is the same
and the servers are directly connected, CORBA and DCOM are perfectly fine technologies to use. If
your web server needs to use components on an application server, using DCOM will be more efficient
than using Web Service technologies. The .NET Framework also has a new technology, .NET
Remoting, which is to be used in such controlled environments. Remoting is the successor to DCOM on
the .NET platform. If you want to know more about Remoting, you can read Professional C# Web Services
ISBN 1861004990 also by Wrox which covers Web Services with .NET Remoting.

Centralization of Information
When using the Internet you enter personal information, such as address information, in a large number
of different places. Information is scattered all over the web in different applications and different
databases. This information is always out of sync. What happens if you move to a new house? The
address information is outdated in a large number of places. A related problem is all the different user
names and passwords you need to keep track of.

Another scenario: how many places do you need to enter the telephone numbers of your colleagues and
friends? I have some information in my cell phone, some in Microsoft Outlook, and some on my Pocket
PC. They store different information, have different formats and are always out-of-sync.

Web Services facilitate the centralization of data.Imagine a central registry where you can update your
personal information and then all you need to do is allow the e-commerce site access to your central data.

Microsoft has set out to create this central registry in its HailStorm initiative. HailStorm, or .NET My
Services, is built around the already established Passport service. Passport is a single sign-on
authentication service. Passport already has a large number of users, primarily because the popular
Hotmail and MSN services use Passport for all its users.

Based around the Passport user identity, Microsoft has announced a series of personal services. These
services are general-purpose services that you can take advantage of in your applications. They include:

❑ myCalendar – central calendar and tasks

❑ myAddress – central address information

❑ myDocuments – central document storage

❑ myNotifications – central management of notification subscriptions and routing

Web Services

9

❑ myContacts – central address book

❑ myInbox – central inbox for e-mail, voice mail etc.

Appendix A covers HailStorm in detail.

Imagine a travel site where you can book business travel. When you access the site, if you are already
logged on to the Passport single-sign on service, then you are automatically recognized by the travel
site. Say you book a flight, and since the travel site also knows your preferences like window seat and
first class, this is suggested. You accept the flight and the schedule is automatically stored in your
calendar if you allow the travel site access to write to your calendar. Two hours before departure you
receive a notification that the flight is delayed for two hours through the HailStorm notification service.

When people hear about HailStorm, some questions are often asked:

❑ Can we trust that Microsoft will not misuse our personal information?

❑ How secure is the information? Can intruders get access to my credit card number?

❑ If we build our applications around theses services, can we trust that they will always be
available?

❑ Will the services be free and if not, how much will it cost to use them?

Microsoft is busy addressing these issues. Even if the technical issues are addressed, there are still many
political and sociological factors at play that must be resolved before HailStorm will be a success.

Making Money with Web Services
A new technology is doomed if it does not give new opportunities for the people concerned with
making money. From a business person’s perspective, Web Services open up new possibilities:

❑ By centralizing information and services, new payment structures may be used. The user of a
Web Service can pay a subscription fee for using the service. One example may be the news
feed from Associated Press. Another possibility is ‘pay per view’. A provider of a credit
verification service, for instance, may charge per request.

❑ Web Services enable real-time interaction and collaboration. Today, data is typically
replicated and used locally. Web Services enable real-time queries to remote data. An
example is an e-commerce site selling computer games. The e-commerce site may hook up to
a warehouse to get the number of items in stock in real time. This enables the e-commerce site
to provide a better service. Nothing is more frustrating than buying something over the
Internet just to learn the next day that the product you wanted is out of stock.

❑ There is a potential for aggregated services. An aggregated service may aggregate different
types of services including other Web Services, screen scraped web sites, access services
exposed using proprietary protocols, and so on. A typical example of an aggregated service is
a comparative service giving you the best deal on products. Another type of service is one that
groups related services. Above we mentioned moving to a new house. Someone could provide
us with a service that can update our address at the post office, find the transportation
company to move all our stuff, etc.

Chapter 1

10

In this section, we touched on some of the possibilities exposed by Web Services. Web Services are by
no means the only technology that can provide these solutions. Many similar solutions are available
today using existing technology. However Web Services have the momentum and standards to make
these kinds of services generally available.

Web Services have the potential to fulfill the promise of component technology by vitalizing the market
for reusable business components or services. Since Web Services will be run by the provider of the
service, they can do many things that locally installed components cannot do.

What are Web Services?
The term ‘Web Service’ opens the door to confusion. Is a hosted solution provided through the Internet a Web
Service? What about software that is downloaded from the Internet when needed, is that a Web Service?

In this book, we will use the following definition of the term Web Service:

A Web Service is application logic accessible to programs via standard web protocols
in a platform independent way.

Let’s break up this definition:

❑ Application logic – a Web Service exposes some application logic or code. This code can do
calculations, it can do database look-ups, anything a computer program can do.

❑ Accessible to programs – whereas most web sites today are accessed by humans using a web
browser, Web Services will be accessed by computer programs.

❑ Standard web protocols – the whole concept of Web Services is based on a set of standard
web protocols such as HTTP, XML, SOAP, WSDL and UDDI. These will be discussed later
in this chapter.

❑ Platform independent – Web Services can be implemented on any platform. The standard
protocols are not proprietary to a single vendor, and are supported by all major vendors.

A Web Service is accessed by a program. The program may be a web application, a windows
application, or any type of application as indicated in the figure below:

Web Application

Windows Application

Internal Web
Service

External Web
Service

External Web
Service

External Web
Service

Web Browser

SOAP

SOAP
SOAP

SOAP

SOAPHTML

Web Services

11

The application may use internal Web Services within the organization or external Web Services
provided by partners or as general building block services. A Web Service may also be used by other
Web Services.

Leverage Existing Technologies
A key factor to the success of Web Services is that to implement Web Services and Web Service
infrastructure one can leverage a lot of what is already in place and working on the Internet. One of the
design principles behind SOAP has been to avoid inventing a new technology.

Here is a list of some key infrastructure and technologies that can be reused when implementing Web
Services.

❑ Web servers – web servers are not required to implement a Web Service but a Web Service
can be implemented entirely using existing web servers. For instance, without the .NET
Framework, you can implement a Web Service using an XML parser and an ASP script
running on IIS. The omnipresence of web servers means that Web Services can be installed
everywhere.

❑ Authentication – a Web Service may need to authenticate the client before using the Web
Service. The same mechanisms used for web pages may also be used here, including client
certificates, basic authentication, digest authentication and NTLM authentication. See Chapter
13 for further details.

❑ Encryption – Web Services will often send and receive sensitive business data. Sensitive data
exchanged with a Web Service requires encryption. Encryption can be done the same way as
for regular web traffic. The Secure Sockets Layer protocol (SSL) may also be used with Web
Services. See Chapter 13 for further details on encryption.

❑ Load balancing techniques – since Web Services are stateless, the same load balancing
techniques used to load balance web pages may be used to load balance Web Services. Web
Services make load balancing a lot easier than using for instance the Component Load
Balancing features of Application Center 2000.

❑ Application servers – Web Services need many of the same services as traditional components
behind the scenes: transactional services, object pooling, connection pooling etc. By hosting
the Web Services in a component container (COM+/EJB) you can leverage these services
from the application server.

If the Web Services standards had tried to implement new technology to handle all these things, they
would have ended up on the graveyard alongside large efforts such as the Open System Interconnect
(OSI) model and CORBA.

The Web Service Stack
The key to the success of Web Services is that they are based on open standards and that major vendors
such as Microsoft, IBM, and Sun are behind these standards.

Still, open standards do not automatically lead to interoperability. First of all, the standards must be
implemented by the vendors. Furthermore they must implement the standards in a compatible way.

Chapter 1

12

Telecommunications depend heavily on standards and interoperability. The way this is handled in the
telecom industry is by cooperation and interoperability testing. Interoperability events where
developers come together are commonplace in the telecom industry.

We are seeing cooperation also in the Web Services space. There seems to be a lot of commitment in
the industry to get Web Services to interoperate. There is a group for implementers of SOAP at
http://groups.yahoo.com/group/soapbuilders. They have established test suites and interoperability
events. Without this commitment to interoperability, Web Services will end up as another technology
that failed.

There are several specifications that are used when building Web Services. The figure below shows the
‘Web Service stack’ as it exists today:

Finding web services
Universal Discover Description and Integration (UDDI)

Describing web services
Web Service Desciption Language (WSDL)

Calling web services
Simple Object Access Protocol (SOAP)

Data encoding
XML, XML Schema

Transport
HTTP, SMTP

Each layer in the stack will be explained below.

It should be noted that the figure shows a conceptual layering, not a physical layering; WSDL for
instance is not built on top of SOAP. WSDL is used to describe what the SOAP interface of a Web
Service looks like.

Although there is agreement on several of these specifications, most of them are not all
standardized yet. We will see changes in the specifications as they move forward
within the standardization process.

With the pace at which our industry is moving it is impossible to wait for specifications to be blessed as
official standards before using them. It is most important to standardize the lower-level connectivity
protocols as the stack is being built bottom-up:

❑ Web Services leverage existing standardized transport protocols. The SOAP 1.1 specification
opens the door to different transport protocols such as the Simple Mail Transfer Protocol
(SMTP) and queues, but only specifies a binding to the HTTP 1.1 protocol.

Web Services

13

❑ Web Services leverage several W3C recommendations including the XML specification and the
XML Schema specification. SOAP uses XML as the encoding format. WSDL is built on XML
Schema. The XML Schema specification became a W3C recommendation as of May 2001.

❑ The Simple Object Access Protocol (SOAP) is the heart of the Web Service stack. It is a
lightweight protocol for the exchange of information. SOAP is submitted to the W3C and is a
W3C note as of May 2000. It is not yet an official standard. There is, however, broad
consensus on the specification.

❑ The Web Service Description Language (WSDL) is used to describe the interface of a Web
Service. It serves the same role to Web Services that IDL serves to components. WSDL is
submitted to the W3C and is a W3C note as of March 2001.

❑ In the context of Web Services, UDDI (Universal Description, Discovery and Integration) is a
repository. UDDI is a cross-industry effort driven by the major platform and software
providers. UDDI is maintained by the UDDI organization and is not yet submitted to a
standardization organization but there are already implementations from Microsoft and IBM.

These specifications are used at different times within the Web Service lifecycle, as illustrated by the
figure below:

UDDI
Registry

Web
Service
Provider

Web
Service

Consumer

4. Get web service description (WDSL)

6. Call web service (SOAP)

3. Locate web service
2. Advertise web service

5. Build proxy and client

1. Build web service

A Web Service provider builds a Web Service using a tool such as ASP.NET. When the service is built,
tested and deployed, the service can be published in the UDDI directory where others can find it. A
Web Service consumer may consult the UDDI directory to find a Web Service.

The developer of the Web Service consumer needs a description of the interface of the Web Service,
similar to the IDL of COM/CORBA. WSDL fills this role for Web Services. The developer of the client
application downloads the WSDL description. If .NET is used, a proxy for the Web Service can be built
using Visual Studio .NET or a command line tool.

As the client application is executing, the SOAP protocol is used when calling the Web Service.

Chapter 1

14

There are several things to note about this:

❑ The only ‘required’ piece in this figure is the call to the Web Service using SOAP. This is Step
6 in the above diagram.

❑ Publishing your Web Service in UDDI is not a requirement. It is likely that most Web
Services will not be published in UDDI.

❑ You may build a Web Service consumer without the WSDL. All you need is a description of
the format of the parameters expected by the Web Service. WSDL makes your life much
easier, however. And as you will see, ASP.NET gives WSDL to you for free.

The figure above shows UDDI and WSDL used at design and build time. It is also possible to use these
at run-time. An application may, at run-time, find an appropriate Web Service, get the WSDL
description and invoke methods on the Web Service.

The Building Blocks
Web Services use several protocols and standards in going about their business. Descriptions of
these follow.

HTTP

The tremendous success of the Internet is based on the Hypertext Transfer Protocol (HTTP) in
combination with HTML. HTTP is a request/response protocol typically layered on top of TCP/IP.
An HTTP client establishes a TCP connection to a server and sends an HTTP request. The request
contains the HTTP method, which may be a GET or a POST. GET is used to retrieve a file such as an
HTML page from the server. To submit data in the request a POST is used. The response contains
the data returned.

The HTTP protocol is simple and uses plain text for the request and response. Much of the success of
the Internet is based on the simplicity of the HTTP protocol.

XML and XML Schema

Extensible Markup Language (XML) is the key technology for Web Services. XML has gained a lot of
momentum over the last year and so most readers won’t need another primer on it. If you want to know
more about XML there are many good books to choose from. A good one is Professional XML 2nd Edition,
ISBN 1861005059 also from Wrox Press.

XML is actually a series of specifications. For our purpose the most important are:

❑ The XML specification, including namespaces.

❑ The XML Schema specification. This specification adds data types to XML.

SOAP, WSDL, and UDDI are all based on XML. SOAP uses XML as the data-encoding format. WSDL
uses an XML schema to describe the structure of a Web Service. UDDI uses an XML schema to define
the structure of the registry and uses SOAP to specify the communication with the registry.

Web Services

15

Calling Web Services
ASP.NET supports three protocols for calling Web Services.

❑ HTTP-GET

❑ HTTP-POST

❑ SOAP

In all cases, HTTP is used and data is submitted in the HTTP request, and returned in the HTTP
response as illustrated below:

Web Service
Consumer

Web Service
HTTP Response

HTTP Response

With HTTP-GET and HTTP-POST parameters are passed as name/value pairs. HTTP-GET passes the
parameters in the URL. HTTP-POST passes the parameters in an HTTP request message. In both cases,
the response is encoded as XML. SOAP uses XML in both the request and the response.

Since the parameters to the Web Service can only be name/value pairs, HTTP-GET and HTTP-POST
are more limited than SOAP with regards to the data types that can be passed. They are not as widely
supported as SOAP. However, HTTP-GET and HTTP-POST are useful for integrating with existing
systems already built using HTTP-GET and HTTP-POST. If the client platform does not have any
support for SOAP, it is very easy to create a client that consumes a Web Service based on HTTP-GET
and HTTP-POST. HTTP-GET is also used for testing ASP.NET Web Services.

When using ASP.NET, we do not have to choose the protocol. An ASP.NET Web Service can support
all protocols at the same time. Chapter 5 will describe these protocols in detail. Here we will look
briefly at SOAP, but let us start with a predecessor to SOAP, XML-RPC.

XML-RPC

Dave Winer, one of the authors of the SOAP specification, created XML-RPC. The XML-RPC
specification is very simple and is only six printed pages long. The following is from the specification
available from UserLand Software, Inc. at http://www.xmlrpc.com:

“XML-RPC is a Remote Procedure Calling protocol that works over the Internet. An
XML-RPC message is an HTTP-POST request. The body of the request is in XML. A
procedure executes on the server and the value it returns is also formatted in XML.”

The XML-RPC specification describes:

❑ How to encode scalar data types such as integers, strings, Booleans and floating-point
numbers.

❑ How to encode arrays and structs.

❑ How to handle errors.A binding to HTTP.

TE
AM
FL
Y

Team-Fly®

Chapter 1

16

XML-RPC has the advantage of being simpler than SOAP and there are many implementations of
XML-RPC available. However, all the major vendors have committed to SOAP and as SOAP support
becomes available out-of-the-box in tools and platforms, SOAP will be the dominant protocol.

SOAP

SOAP, or the Simple Object Access Protocol, is the essential part of the Web Service protocol stack.
The first sentence of the specification available from the W3C site at http://www.w3.org/TR/SOAP/
defines what SOAP is:

“SOAP is a lightweight protocol for exchange of information in a decentralized,
distributed environment.”

The beauty of SOAP is its simplicity; it does not try to build a complete new infrastructure. As an
example, consider the security of Web Services. Security is obviously an important issue, but SOAP
does not address it. Instead, it specifies a binding to HTTP and leverages the security mechanisms
available with HTTP.

The SOAP specification is 33 pages including references and appendixes. It is significantly larger than
the XML-RPC protocol, but it is still fairly short and simple.

SOAP is similar to XML-RPC, but note the following differences:

❑ SOAP can be used as an RPC mechanism but can also be used to exchange XML documents.

❑ SOAP uses XML namespaces.

❑ SOAP references the XML Schema specification and allows for encoding of more complex
data types and structures than XML-RPC.

❑ A SOAP message consists of an envelope. The envelope contains the actual message in the
body and may optionally contain additional headers. SOAP headers are an extensibility
mechanism and are discussed further in Chapter 5.

The SOAP 1.1 specification does not mandate the use of HTTP as the transport
protocol. Other transports such as mail and message queues can be used. The only
binding that is specified in the specification is HTTP. Throughout this book we will
assume HTTP when discussing Web Services.

Describing Web Services
To call Web Services you invoke methods on the service. To do this you need to know what methods it
supports, what parameters the Web Service takes, and what it returns.

When building applications, you typically read help files. Lately, I have also become addicted to
Intellisense, in the same way that I can no longer live without a spell checker. Intellisense relies on the
ability to resolve method calls at code time.

Web Services

17

To use a Web Service, you need a description of that service. You could read a Word document or a
help file documenting the interface and implement according to this document. If you use late-binding
techniques you can call the Web Service without any programmatic description or Intellisense.

To be able to use early binding and Intellisense, the Web Service description must be read by a tool. A
Word document or a help file is not very useful to tools. A structured standardized description format is
needed. Structured descriptions can be consumed by tools and used to generate proxy code. When you
have a proxy, you can use early binding to the proxy and get full support for Intellisense.

DCOM and CORBA use IDL to describe the interfaces of components. IDL is not suited for Web
Services because Web Services need an XML-based description. Enter WSDL.

WSDL

Ariba, IBM, and Microsoft have submitted the Web Service Description Language (WSDL) to the W3C.
WSDL replaces earlier specifications such as NASSL from IBM and SCL/SDL from Microsoft. From the
specification (http://www.w3.org/TR/wsdl/):

 “WSDL (...) defines an XML grammar for describing network services as collections
of communication endpoints capable of exchanging messages.”

The WSDL document is a schema describing a Web Service:

❑ The WSDL document describes the methods the Web Service understands, including the
parameters and the response. The data types of the parameters are defined. This makes it
possible for tools such as Visual Studio .NET to generate a strongly typed proxy.

❑ The WSDL document describes the protocols supported by the Web Service (SOAP, HTTP-
GET, and HTTP-POST).

❑ The WSDL document specifies the address of the Web Service.

As developers using ASP.NET, we normally do not need to concern ourselves with WSDL. When we
develop a Web Service, ASP.NET automatically generates WSDL for us. To do this, ASP.NET uses a
feature of the .NET Framework called Reflection. Reflection is a mechanism by which metadata about
code can be examined at run-time. The WSDL file for an ASP.NET Web Service is generated on the fly
by the ASP.NET runtime.
It is possible to build Web Service applications without WSDL. However, WSDL makes it much easier
to consume a Web Service.

WSDL is described in detail in Chapter 4.

Finding and Publishing Web Services
We have seen that SOAP is used to call Web Services and that WSDL can be used to describe the
interfaces of Web Services. The next question is: how do we find Web Services to use in our application?

In many cases someone will tell us or we will find it manually. If we want to use the shipping service of the
MagicShippingCompany we may call them or go to their web site and find a reference to their Web Service.

Chapter 1

18

This is similar to the early days of the web. To find a web site you needed to know its address. Then
some bright guys set out to create a directory of web sites. They called it Yahoo! and made a lot of
money.

We are now seeing Web Service directories emerging. Two such directories are XMethods,
http://www.xmethods.com and Salcentral, http://www.salcentral.com. We can browse their directory,
search for a Web Service, or add our own Web Service to their directory.

UDDI

Universal Description, Discovery, and Integration (UDDI) is a cross-industry initiative to create a global
registry of Web Services. UDDI is actually (at least) three things:

❑ A central registry of Web Services.

❑ Specifications of the structure of the registry, and specifications of the APIs to access the
registry.

❑ An organization, http://www.uddi.org.

The specifications are maintained by the UDDI organization. They have not yet been submitted to a
standardization organization, but that is the said intention.

As a Web Service developer, you can publish your Web Services to the UDDI registry and search for
other Web Services in it. The central registry is operated by several companies. Currently Microsoft and
IBM host UDDI registries. These registries are synchronized, so if you publish your Web Service in the
IBM directory it will also be available in Microsoft’s directory.

To publish or find information in UDDI you can use a web browser and browse to one of the
directories. You can also publish and find information programmatically using SOAP. The UDDI API
specification describes the SOAP messages to be used when accessing a UDDI registry. By exposing the
UDDI directory through SOAP you can find Web Services at run-time in your application.

UDDI is covered in more detail in Chapter 7.

How to Implement Web Services with ASP.NET
We have discussed why you need Web Services and what they are, so how do you implement them?

As we know, Web Services are based on SOAP and SOAP is independent of how the services are
implemented. To the Web Service provider, however, how the Web Service is implemented does
matter.

There are many ways to implement Web Services. All vendors of developer tools are or will be
providing Web Service tools. IBM has a Web Services Toolkit, the Apache SOAP project has a toolkit,
and there are many others.

Even if you are committed to a Microsoft platform there are several ways to implement SOAP-based
Web Services, including:

Web Services

19

❑ Hand code (yuck!) your Web Service by formatting the SOAP XML yourself.

❑ Use the SOAP Toolkit, downloadable from http://msdn.microsoft.com. The SOAP Toolkit
allows existing COM components to be exposed as Web Services. If you must deploy your
Web Service on a server where the .NET Framework is not installed, the SOAP Toolkit is a
good choice.

❑ Use ATL Server. ATL Server is part of Visual Studio .NET. An ATL Server implementation is
similar to an ISAPI extension. It is implemented in C++ and provides the best performance.
You do not need the .NET Framework to deploy a Web Service developed with ATL Server.

❑ Use .NET Remoting. .NET Remoting allows classes inheriting from a base class called
MarshalByRefObject to be exposed as Web Services using SOAP. .NET Remoting in
addition allows you to configure your code to be exposed using other more efficient formats
and protocols than XML and HTTP. You may for instance use binary encoding of data over a
raw TCP channel.

❑ Use ASP.NET.

So just from Microsoft there are at least four implementations of SOAP, and two from the .NET
Framework! If you want to know more about ATL Server and .NET Remoting, read the book
Professional C# Web Services ISBN 1861004990 also from Wrox Press.

It is my opinion that the .NET Framework is the superior platform for building, deploying and
consuming Web Services. Other platforms and tools have Web Services bolted on top of them. The
.NET Framework is built from the ground up to support XML and Web Services.

In this book, we are focusing on ASP.NET and the use of ASP.NET to implement Web Services. The
figure below shows where ASP.NET fits within the .NET Framework architecture:

WinformsASP .NET

Web Services WebForms

Common Language Runtime

Base Classes

So why should you use ASP.NET to implement Web Services? Well, partly because ASP.NET is the
easiest way to write a Web Service. The next chapter will show you how you can create a Web Service
with ASP.NET, by using Notepad or by using Visual Studio .NET.

Basically all you do is create an .asmx file, add a directive to the top of the file, and add an attribute to the
methods you want to expose as a Web Service. To deploy the Web Service, simply copy the file to a web
directory on a server with IIS and ASP.NET installed. If you do things this way, ASP.NET gives you:

Chapter 1

20

❑ A Web Service accessible to SOAP, HTTP-POST and HTTP-GET. ASP.NET handles all the
details of the protocols.

❑ A WSDL description of your Web Service. Writing the WSDL yourself is not trivial.

❑ Test pages we can use to test our service.

By using ASP.NET to build our Web Service we can also take advantage of the ASP.NET infrastructure,
for instance:

❑ ASP.NET has extensive support for caching data at the server side. Web Services can use
ASP.NET caching to cache the result of a Web Service call. This is covered in Chapter 12.

❑ You can leverage the security support in ASP.NET to secure your Web Services. This is
covered in Chapters 13 and 14.

❑ You can build HTTP modules to do things such as billing, custom authentication etc.

The ASP.NET Web Service infrastructure also has some extensibility points of its own:

❑ You can manipulate the SOAP messages at a low level using the SOAP Extension. This is
covered in Chapter 6.

❑ ASP.NET has support for using custom SOAP headers. This is covered in Chapter 5.

The rest of this book will focus on telling you how you can use ASP.NET to create efficient Web
Services that take advantage of the .NET Framework and how you can use Web Services efficiently in
your applications.

Summary
This chapter introduced you to Web Services. We looked at:

❑ Why you need them

❑ What they are

❑ How you can implement them using ASP.NET

Web Services are a natural extension to distributed component technology. They bring the idea of
reusable components to the Internet and allow you to assemble applications from reusable Web Services.

Web Services are built on a foundation of standardized web specifications namely XML, SOAP, WSDL
and UDDI. Some of these specifications are not yet standardized, but there seems to be broad consensus
within the industry on these initiatives.

In the next chapter we will start developing some of the theory behind Web Services we looked at here,
by actually building a Web Service of our own.

Web Services

21

Chapter 1

22

Building ASP.NET Web Services

The first chapter explained what Web Services are and why you need them. In this chapter we will look
at how you can build Web Services with ASP.NET.

We will discuss the various options we have when building Web Services. Examples will be shown
primarily in C#, but we will also look at some VB.NET syntax for building Web Services. We will use
the built-in test support in ASP.NET to test these services. The next chapter will show you how you can
use the Web Services from ASP.NET.

As this is an introductory chapter, the examples will be kept simple.

More specifically, we will look at:

❑ The minimum requirements needed for building a Web Service with ASP.NET.

❑ How to build a Web Service using a text editor such as Notepad.

❑ How to use Visual Studio .NET to build Web Services.

❑ The attributes and properties we can use to control the Web Service behavior.

Building a Web Service using Notepad
Visual Studio .NET has excellent support for building Web Services. Nevertheless, it is very easy to
build Web Services without the support of VS.NET. In fact, to build Web Services we really only need:

❑ A text editor.

❑ A .NET compiler, such as the C# or VB.NET compilers.

2

Chapter 2

2

There are many reasons why you may want to build a Web Service without VS.NET. It may be too
expensive or you may prefer a different text editor or development environment. Many developers,
even within Microsoft, like the Emacs editor. Many large-scale projects also use makefiles to control the
build process.

In the upcoming section we will use Notepad, the world's most available text editor to build a Web
Service. In Windows XP, Notepad also has an option to enable line numbers, so there is one less reason
to use a different text editor. But before we dig into the details of Web Services let's look at the example
that we will use in this chapter and the next to illustrate the main concepts of ASP.NET Web Services.

The Application Settings Example
In this and the next chapter we will use an example that exposes the application settings of a web
application as a Web Service. In ASP.NET, application settings may be stored in two places, in the
Application object and in the web.config file.

If you have used classic ASP, you probably know the Application object already. It is a dictionary
where you can store key/value pairs. It is typically used to store application-wide settings. One common
use of the Application object is to cache application data that changes infrequently. In classic ASP,
many people also use the Application object to store configuration settings such as a database
connection string.

In ASP.NET we will typically store application configuration settings in the web.config file. This file
is placed in the web application's root directory and can be used to configure many aspects of the web
application. The web.config file contains several sections, including sections for authentication,
security, error handling, and Web Services. We'll see several examples of configuration settings
affecting Web Services later in this chapter.

For the purposes of this opening explanation, we'll look at one of the Web.config setting sections now;
a section in which you can define your own application settings, the appSettings section. Here is a
database connection string in the appSettings section:

<configuration>
 <appSettings>
 <add key="ConnectString" value="user id=sa; password=;database=pubs;
 server=localhost" />
 </appSettings>
</configuration>

The name of the key, ConnectString, is an arbitrary name we are using for the purposes of this
example. We could use whatever name we want.

Here is a simple C# class that allows us to write strings to the Application object, retrieve strings
from the Application object, and retrieve strings from the appSettings section of the web.config
file. The class is available with the download package for this book as
Chapter2/wwwroot/AppServiceCS/AppService.cs:

using System.Configuration;
using System.Web;

Building ASP.NET Web Services

3

public class AppService
{
 public void SetAppState(string key, string value)
 {
 HttpApplicationState Application;
 Application = HttpContext.Current.Application;

 Application.Lock();
 Application[key] = value;
 Application.UnLock();
 }

 public string GetAppState(string key)
 {
 HttpApplicationState Application;
 Application = HttpContext.Current.Application;

 if (Application[key] == null)
 return null;
 else if (Application[key] is System.String)
 return Application[key].ToString();
 else
 return null;
 }

 public string GetAppSettings(string key)
 {
 return ConfigurationSettings.AppSettings[key];
 }
}

The SetAppState() function writes a string value to the Application object and associates it with
the given key:

public void SetAppState(string key, string value)
{
 HttpApplicationState Application;
 Application = HttpContext.Current.Application;

 Application.Lock();
 Application[key] = value;
 Application.UnLock();
}

It uses the Application property of the HttpContext class. The context is always available from
ASP.NET code. Later in this chapter we will see another way of getting at the Application object.

To be on the safe side, the function synchronizes access to the Application object by calling Lock()
before writing to the Application object and UnLock() after writing. This is necessary since many
threads may access the function at the same time.

The GetAppState() function retrieves the value of a key:

TE
AM
FL
Y

Team-Fly®

Chapter 2

4

public string GetAppState(string key)
{
 HttpApplicationState Application;
 Application = HttpContext.Current.Application;

 if (Application[key] == null)
 return null;
 else if (Application[key] is System.String)
 return Application[key].ToString();
 else
 return null;
}

It checks if the value stored is really a string before returning it, since we are only dealing with strings in
this service, not other objects that may be stored in the Application object.

The last function in the class, GetAppSettings(), retrieves an application setting from the
web.config file.

public string GetAppSettings(string key)
{
 return ConfigurationSettings.AppSettings[key];
}

The function uses the AppSettings property of the ConfigurationSettings class in the .NET
Framework to get this value. This property is a dictionary of all key/value pairs in the web.config file.
Note that the AppSettings property is read-only. To modify the application settings we have to edit
the web.config file.

The class in question is a regular class, and is not yet exposed as a Web Service. As it stands it can be
used from .aspx or code-behind files within an ASP.NET web application. The next section will look
at how we can expose this class to the world outside the ASP.NET web application: we are of course
going to expose it as a Web Service.

Why would we want to expose this class as a Web Service? One reason might be to integrate classic
ASP pages and ASP.NET pages. If you have an ASP application you may want to develop new pages in
ASP.NET to take advantage of all the new features of ASP.NET. ASP and ASP.NET pages can co-exist
in the same web application. However, the Application object of ASP.NET is separate from the
Application object of ASP. The "Application Settings" Web Service can be used from ASP to get at
the ASP.NET application state and configuration. This allows us to modify application settings such as
database connection strings in one place. We will see an example of an ASP page accessing the Web
Service later in this chapter.

The Application Settings service can also be used if you want to expose the application settings to other
applications such as other web applications, Windows applications etc.

If you want to expose application settings as a Web Service, you should secure your Web Service so that
only authorized clients can access it. Chapters 13 and 14 describes security with Web Services in detail.

For this kind of service, we can use the IP Address and Domain Name Restrictions settings of IIS to
only allow access to this service from the same machine. To get at these settings, right-click on the Web
Service file in IIS, select Properties, and then select File Security.

Building ASP.NET Web Services

5

Exposing Application Settings as a Web Service
To expose our class as a Web Service with ASP.NET we have to do the following:

❑ Place our class in a file with an .asmx extension.

❑ Add a WebService directive to the top of the page.

❑ Add a WebMethod attribute to the methods we want to expose to the world.

We have other options as well when we want to expose a class as an ASP.NET Web Service, but these
are the minimum requirements. The other options will be shown later.

The .asmx file is the entry point into the Web Service. The code for the Web Service can either be in
the .asmx file or in a code-behind file as we'll see later.

The .asmx extension is used for ASP.NET Web Services in the same way that the .aspx extension is
used for web pages. The code in the .asmx file can be any .NET language. Let us first look at how we
can expose our class as a Web Service with all the code in a single file.

C#

Here is the C# code for exposing the code as a Web Service. The changes to the original code are
highlighted:

<%@ WebService Language="C#" class="AppService" %>

using System.Configuration;
using System.Web;
using System.Web.Services;

public class AppService
{
 [WebMethod]
 public void SetAppState(string key, string value)
 {
 HttpApplicationState Application;
 Application = HttpContext.Current.Application;

 Application.Lock();
 Application[key] = value;
 Application.UnLock();
 }

 [WebMethod]
 public string GetAppState(string key)
 {
 HttpApplicationState Application;
 Application = HttpContext.Current.Application;

 if (Application[key] == null)
 return null;
 else if (Application[key] is System.String)
 return Application[key].ToString();
 else
 return null;
 }

Chapter 2

6

 [WebMethod]
 public string GetAppSettings(string key)
 {
 return ConfigurationSettings.AppSettings[key];
 }
}

As you can see, we don't have to write any program logic ourselves to expose a Web Service. We
simply add the WebService directive and decorate all our methods with a WebMethod attribute.

The WebService directive names the class as one to be exposed as a Web Service. We also specify that
the language used in the .asmx file is C# so that ASP.NET knows which compiler to invoke when
compiling the file.

The .asmx file may contain several classes, but only one class can be exposed as a
Web Service.

The WebMethod attribute is part of the System.Web.Services namespace. The namespace is
referenced at the beginning of the file. In C# this is done by a using statement. It is not really
necessary to reference the namespace, as we could also have fully qualified the attribute:

[System.Web.Services.WebMethod]
public void SetAppState(string key, string value)

Referencing the namespace is a good idea, however. It makes the code more readable.

The Web Service class and all methods you want to expose in the Web Service must be
declared as public.

If we add the WebMethod attribute to a private function, we won't get an error. The function will simply
be missing from the Web Service and we won't be able to call it.

VB.NET

The VB.NET code is almost identical (except, of course, some syntactical differences):

<%@ WebService class="AppService" %>

Imports System.Configuration
Imports System.Web
Imports System.Web.Services

Public Class AppService

 <WebMethod> Public Sub SetAppState(ByVal key As String, ByVal value As String)
 Dim Application As HttpApplicationState

Building ASP.NET Web Services

7

 Application = HttpContext.Current.Application

 Application.Lock()
 Application(key) = value
 Application.UnLock()
 End Sub

 <WebMethod> Public Function GetAppState(ByVal key As String) As String
 Dim Application As HttpApplicationState
 Application = HttpContext.Current.Application

 If Application(key) Is Nothing Then
 Return Nothing
 ElseIf TypeOf Application(key) Is String Then
 Return Application(key)
 Else
 Return Nothing
 End If
 End Function

 <WebMethod> Public Function GetAppSettings(ByVal key As String) As String
 Return ConfigurationSettings.AppSettings(key)
 End Function

End Class

The only real difference here is that we don't have to specify what the language is since VB.NET is the
default language. The default compiler for ASP.NET is specified in the machine-wide configuration file.
The location of this file is:

%SystemRoot%\Microsoft.NET\Framework\<version>\CONFIG\machine.config

You can override the default language in the local web.config file:

<configuration>
 <system.web>
 <compilation defaultLanguage="C#" />
 </system.web>
</configuration>

This sets the default language to C# for all ASP.NET files in the application. Other applications will still
use the compiler specified in the machine-wide configuration file.

Deploying the Web Service
Deploying a Web Service is very simple. ASP.NET Web Services have the same easy deployment
model as ASP and ASP.NET web pages. All we have to do is place the .asmx file in the directory of a
web application.

Changing the Web Service is just as easy; we just change the source file and hit save, as in classic ASP.

If we do not have a web application, we can create one using the Internet Information Services (IIS)
administration tool. We simply create a virtual directory and point this virtual directory to the folder in
which we put our .asmx file.

Chapter 2

8

For the Application Settings example, we will assume that we have created a virtual directory on our
machine at the location http://localhost/ProWebServices/ch2.

Testing the Web Service
So just by creating an .asmx file and adding a few attributes, we have created a Web Service. But wait;
there's more! In addition to exposing the method as a Web Service with SOAP serialization, ASP.NET
also gives us:

❑ Test pages we can use to test our Web Service.

❑ A structured description of the Web Service in the form a of Web Service Description
Language (WSDL) file.

We don't have to write a test client just to test that our Web Service is functioning. We simply point our
browser at the .asmx file:

There is note at the bottom saying that the namespace is http://tempuri.org and that this should be
changed. To change the namespace you simply add a WebService directive to the Web Service class:

<%@ WebService class="AppService" %>

using System.Configuration;
using System.Web;
using System.Web.Services;

[WebService(Namespace="http://www.wrox.com/services")]
public class AppService
{
 ... code removed.
}

Building ASP.NET Web Services

9

The WebService directive is described later in this chapter.

The generated page
has a link to the
service description.
Here is a screen shot of
the WSDL:

WSDL is described in Chapter 4 .

The generated
page also allows
us to test the
individual
methods of the
Web Service. If
we click on the
GetAppSettings
link, a test page
where we can test
this method
appears. This test
page has input
fields for the
input parameters
of the Web
Service:

Chapter 2

10

We can now enter values for the field and click Invoke. This invokes the Web Service method and
returns the XML result:

As was mentioned in Chapter 1, ASP.NET supports three protocols for calling Web Services: SOAP,
HTTP-GET, and HTTP-POST. The test page uses HTTP-GET. With HTTP-GET, parameters are
passed in the URL, as can be seen in the screen shot above. HTTP-GET returns the response as XML:
in this case a single string.

The test pages make it easy for us to test our Web Services. We don't have to write a test client just to
see if our methods are functioning.

With HTTP-GET and HTTP-POST, parameters are passed as name/value pairs. HTTP-GET passes the
parameters in the URL; HTTP-POST passes the parameters in the HTTP request message. With SOAP,
parameters are passed in an XML string. SOAP thus allows complex structures to be passed in to the
Web Service.

If our Web Service takes complex parameters, we cannot use HTTP-GET or HTTP-
POST and ASP.NET will not be able to render test pages. We can only test methods
that take simple name/value parameters.

The test pages are rendered by ASP.NET on the fly, and as such they never exist as a file on your disk.
The file that does the rendering is

%SystemRoot%\Microsoft.NET\Framework\<version>\CONFIG\DefaultWsdlHelpGenerat
or.aspx

It may be that we want to modify the look or behavior of this page. If so, we simply copy the
DefaultWsdlHelpGenerator.aspx file to our Web Service directory, modify and rename it, and
then change the web.config file to point to our new rendering page (for your convenience we have
already added a customized rendering page to the code download package,
MyWsdlHelpGenerator.aspx):

<configuration>
 <system.web>
 <webServices>
 <wsdlHelpGenerator href="MyWsdlHelpGenerator.aspx"/>
 </webServices>
 </system.web>
</configuration>

Building ASP.NET Web Services

11

The help file generator uses HTTP-GET to test the Web Service. You can modify the generator to use
HTTP-POST instead. The first lines of the help generator .aspx file look like this:

<html>
 <script language="C#" runat="server">

 // set this to true if you want to see a POST test form
 //instead of a GET test form
 //bool showPost = true; // false is default

The showPost variable is, by default, set to false. If you set this variable to true, the test pages will
use HTTP-POST instead of HTTP-GET.

Using the Web Service from classic ASP
One motivation for this Web Service is to synchronize application values between ASP and ASP.NET
applications. Here is an example that uses the Web Service from the global.asa file of an ASP
application to get the connect string from an ASP.NET web.config file:

<SCRIPT LANGUAGE="VBScript" RUNAT="Server">
Option Explicit

Sub Application_OnStart()
 Application("ConnectString") = GetAppSettings("ConnectString")
End Sub

The Application_OnStart() event is fired when the ASP application starts. It calls the
GetAppSettings method and stores the result in the ASP Application object.

Function GetAppSettings(key)

 Dim url, xmlhttp, dom, node

 'Call Web Service using HTTP-GET
 url = "http://localhost/ProWebServices/AppService.asmx/"
 url = url & "GetAppSettings?key=" & key

 Set xmlhttp = Server.CreateObject("Microsoft.XMLHTTP")
 Call xmlhttp.Open("GET", url, False)
 Call xmlhttp.send

 'Parse result
 Set dom = Server.CreateObject("Microsoft.XMLDOM")
 dom.Load(xmlhttp.responseBody)
 Set node = dom.SelectSingleNode("//string")

 If Not node Is Nothing Then
 GetAppSettings = node.text
 End If

End Function

</SCRIPT>

Chapter 2

12

The GetAppSettings() method uses the XMLHTTP object to issue a HTTP-GET to the Web Service.
The XMLDOM object is used to search the result for the return value.

If you want to run this code you may need to change the URL in the GetAppSettings()
function to match where you have installed the AppService Web Service.

In the download for this chapter there is a file that allows you to test the Web Service from classic ASP.
The file is Chapter2\wwwroot\TestAppService.asp. This test file writes out the value of
Application("ConnectString") as set in global.asa. The test file also allows you to exercise the
AppService Web Service. The below screen shot shows the test page in the browser:

This example illustrates one of the advantages of the HTTP-GET and HTTP-POST protocols. If you
don't have any special SOAP tool support, it is much easier to format a request using these protocols
than to obey by the rules of SOAP. To use SOAP you must format a valid SOAP XML string and set
the appropriate HTTP headers.

Note that if the connection string is changed in the web.config file, the ASP application must be
restarted for the changes to be updated in the ASP Application object.

Using a Separate Assembly
In our first example we placed the code for the Web Service in the .asmx file. The .asmx file is
compiled to Intermediate Language (IL) code the first time anyone makes a request to the service.

We can also place the Web Service class in a separate code-behind file and have it compiled to a
separate assembly. You then need two files:

❑ One .asmx file with the WebService directive

❑ One file with the Web Service class.

Building ASP.NET Web Services

13

The .asmx file contains a single line, the WebService directive:

<%@ WebService class="AppService,AppServiceAssembly%>

The class property names the class and, optionally, the assembly.

To create the assembly, you must compile the Web Service class. If you use C#, move the class in to a
separate file and name it, for example AppService.cs. To compile the C# class, use the following
command line:

csc /out:bin/AppServiceAssembly.dll /t:library�
/r:System.dll,System.web.services.dll,System.web.dll AppService.cs

We must reference the assembly files used in our Web Service class, in this case System.dll,
System.web.dll, and System.web.services.dll. The compiled assembly,
AppServiceAssembly.dll, contains the IL code. It must be placed in the bin directory of the
web application.

In the WebService directive above we named the assembly. We could have also just named the class,
like this:

<%@ WebService class="AppService" %>

If we don't name the assembly in the directive, ASP.NET searches all assemblies in the bin directory
for the class.

Why Use a Separate Assembly?

What are the advantages and disadvantages of using a separate assembly? The answer is: it depends.

If you have your code in a separate assembly it may also be used as a normal assembly from within the
web application and from other applications:

❑ We can use the class directly within our web application without incurring the overhead of
SOAP and HTTP calls. Thus the same class may be used both internally within the
application and externally as a Web Service.

❑ We can also use all the other features of an assembly such as versioning.

If we do use a separate assembly, we must manually invoke the compiler when we modify the class file.
This makes deployment a bit harder, as we can't simply edit and hit save. On the other hand, it can be
better to detect programming errors at compile time instead of having the first user hitting the service
detect the error. The user of a Web Service is typically another program. If the calling program does not
report errors properly, it may be hard to figure out what has caused the error.

If we have the source code in the .asmx file we also deploy the source code. We may not want to
expose the source code to everyone who has access to the server where our Web Service is hosted. The
compiled IL code is harder to read, modify and tamper with than un-compiled C# or VB.NET code.

TE
AM
FL
Y

Team-Fly®

Chapter 2

14

Building a Web Service with Visual Studio .NET
The previous section showed how we can create a Web Service with ASP.NET simply by using a text
editor and the compilers that ship with the .NET Framework.

We can also use the support of Visual Studio .NET to create Web Services.

Building and Running a HelloWorld Example
To demonstrate how to build a Web Service with Visual Studio .NET, we are going to use the simplest
example of all, the HelloWorld example. In fact, when we create a Web Service project with Visual
Studio .NET, it automatically creates a HelloWorld example as a starting point.

To follow this example, start up Visual Studio .NET and create a new C# ASP.NET Web Service Project.

In the dialog that appears, you can name the project. Let's name it VSDemo. You also specify the location of
the project. VS.NET automatically creates a virtual directory in IIS named VSDemo at this location.

When we click OK, VS.NET gives us a number of files. The
screenshot below shows the Solution Explorer with the files
created by VS.NET.

Building ASP.NET Web Services

15

One of the files is named Service1.asmx and contains the actual Web Service code. The name of the
Web Service class is also Service1. In the real world, we wouldn't want all our services to be named
'Service1', so the first thing we need to do is come up with a better name. Since we are building a
HelloWorld example, let's name the Web Service Hello.

The service is deliberately not named HelloWorld. The Web Service class will contain
a method named HelloWorld, and a C# class cannot have a method with the same
name as the class. In C#, a method with the same name as the class is a constructor.

When we rename the .asmx file, VS.NET does not propagate the changes to the code. Instead of
manually going through the code and changing the name, it is often easier to just delete the
Service1.asmx file and add a new Web Service file with a more meaningful name. We can add a new
Web Service file by selecting File | Add New Item.

Let us take a look at the code generated by VS.NET for the HelloWorld example:

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Diagnostics;

using System.Web;

using System.Web.Services;

namespace VSDemo

{

Chapter 2

16

 /// <summary>

 /// Summary description for Hello.

 /// </summary>

 public class Hello : System.Web.Services.WebService

 {

 public Hello()

 {

 //CODEGEN: This call is required by the ASP.NET Web Services Designer

InitializeComponent();

 }

 #region Component Designer generated code

 /// <summary>

 /// Required method for Designer support - do not modify

 /// the contents of this method with the code editor.

 /// </summary>

 private void InitializeComponent()

 {

 }

 #endregion

 /// <summary>

 /// Clean up any resources being used.

 /// </summary>

 protected override void Dispose(bool disposing)

 {

 }

 // WEB SERVICE EXAMPLE

 // The HelloWorld() example service returns the string Hello World

 // To build, uncomment the following lines then save and build the project

 // To test this Web Service, press F5

// [WebMethod]

// public string HelloWorld()

// {

// return "Hello World";

// }

 }

}

The code contains a HelloWorld example. You can see that the code is similar to the code we
created earlier.

Visual Studio .NET also adds some code so that you can work with the visual designer. Using the
designer you can drag components from the toolbox into your Web Service. These may be components
such as timer components, event log components, and so on.

Building ASP.NET Web Services

17

To run the Web Service, simply uncomment the HelloWorld example and set the Hello.asmx file as
the start page for the project by right-clicking on it in the Solution Explorer and selecting Set As Start
Page. Then hit Start in the Debug drop down menu. VS.NET will compile your code and run it:
ASP.NET renders the test page as we saw before:

Selecting HelloWorld will bring up a test page where you can invoke the HelloWorld function.

The code generated for a new Web Service is copied from a template. You can modify
the template for new Web Services.

The C# template is stored in the file:

\Program Files\Microsoft Visual Studio
.NET\VC#\DesignerTemplates\1033\NewWebServiceCode.cs

The VB.NET template is stored in the file:

\Program Files\Microsoft Visual Studio
.NET\Vb7\VBWizards\DesignerTemplates\1033\NewWebServiceCode.vb

Generating the skeleton for the Web Service is easy. Now the hard work starts, making the Web Service
do something useful. This is up to you!

The Anatomy of a VS.NET Generated Web Service
When we create a new Web Service project with VS.NET, quite a number of files are generated. There
are actually more files than meet the eye at first. If we select Show All Files in the Solution Explorer we
will see some additional files:

Chapter 2

18

File/Folder Description

References The references are not files, but references to assemblies used by the
Web Service. They are stored in the VS.NET project file.

Bin The bin folder contains the assemblies for our Web Service. You can
view the VSDemo.dll using the IL disassembler.

AssemblyInfo.cs The AssemblyInfo.cs file contains information such as title,
description, and version that is added to the assembly.

Global.asax

Global.asax.cs

Global.asax.resx

The Global.asax file can be used for Web Services the same way it
is used for web applications. You can add code to the events available
in the Global.asax file.

Hello.asmx The Hello.asmx file contains the WebService directive.

Hello.asmx.cs The Hello.asmx.cs file contains the code-behind for the Web
Service.

Hello.asmx.resx A file consisting of XML entries for resource added in the designer. Is
normally empty.

VSDemo.vsdisco The Web Service discovery file. See Chapter 7 for more information
about Disco.

Web.config The configuration file for the Web Service.

Building ASP.NET Web Services

19

The Hello.asmx file contains a single line, the Web Service directive (to open this file from Visual
Studio.NET, right-click on the file and select Open With… then select the Source Code (Text) Editor):

<%@ WebService Language="c#" Codebehind="Hello.asmx.cs" Class="VSDemo.Hello" %>

This is the same directive we saw earlier. Note the Codebehind attribute. This attribute is not used by
ASP.NET. It is used by Visual Studio to associate a code-behind file with the .asmx file.

Visual Studio .NET uses code-behind for Web Services. If you don't want to use code-
behind in VS.NET, remove the Codebehind attribute from the .asmx file and delete
the codebehind file.

Why Use Visual Studio .NET?
So if it is so easy to create Web Services with a simple text editor such as Notepad, why should we use
Visual Studio .NET? The answer is simple: VS.NET is a fantastic tool.

VS.NET gives us an integrated development environment where we can develop, debug, test and
deploy the Web Service. We also get Intellisense, which completes the code for us.

As we have seen, VS.NET also does some of the plumbing for us; it creates files and a virtual directory
in IIS where we can develop and test our Web Service.

More On Building Web Services
In this section, we are going to look beyond just VS.NET, at the options we have to configure a Web
Service using the various directives and attributes that are available with ASP.NET. We will look at:

❑ The WebService directive

❑ The WebService attribute

❑ The WebMethod attribute

❑ The WebService class

WebService Directive
The WebService directive is placed on the first line of an .asmx file. It specifies the class to expose as
a Web Service.

<%@ WebService Language="c#" Codebehind="Hello.asmx.cs"
 Class="VSDemo.Hello,VSDemo" %>

The directive is required for ASP.NET Web Services. If the class for the Web Service is in a code-
behind file, this line will be the only line in the .asmx file.

Chapter 2

20

The directive may use the following attributes:

❑ Language

❑ Codebehind

❑ Class

Language
The Language attribute is optional. It specifies the language to use to compile the Web Service. Any
.NET compiler installed on the system may be specified. By default the installed compilers are C#,
VB.NET and JScript.NET. These are specified using the values VB, C#, or JS.

The default language is VB.NET as specified in the machine.config file, unless it is overridden in the
web.config file.

Codebehind
The Codebehind attribute is optional. It is used by Visual Studio .NET to find the code-behind file for
the .asmx file so that when you click on the .asmx file it can open the code-behind file. The attribute is
only used in Visual Studio .NET, it has no effect when the Web Service is executing.

Class
The Class attribute specifies the class to expose as a Web Service. If the class is within a namespace,
the namespace is specified, as in the following example. In this example, the namespace is VSDemo and
the class is Hello:

<%@ WebService class="VSDemo.Hello"%>

If the class is not within a namespace, we specify the class directly:

<%@ WebService class="Hello"%>

The class attribute may optionally also specify the assembly where the class exists:

<%@ WebService class="VSDemo.Hello,VSDemo"%>

If the assembly is not specified, ASP.NET searches all assemblies in the bin directory for the Hello class.

WebService Attribute
The WebService attribute is used to add additional information about a Web Service such as a
description of the Web Service. The attribute is implemented by the
System.Web.Services.WebServiceAttribute class and may use any of the following properties:

❑ Description

❑ Name

❑ Namespace

Building ASP.NET Web Services

21

The attribute is added to the Web Service class as follows:

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;

namespace VSDemo
{
 [WebService(Description="This is a simple test service",
 Name="Hello Universe",
 Namespace="http://www.wrox.com/services")]
 public class Hello : System.Web.Services.WebService
 {
 public Hello()

This attribute is not required to build Web Services. The attribute and its properties are added to the
metadata of the Web Service. The metadata is stored in the assembly along with the compiled code.

Now, let's go on to see what each property does.

Description
The Description property is used to add a description to the Web Service:

[WebService(Description="This is a simple test service")]

public class Hello : System.Web.Services.WebService
{

ASP.NET uses the description when rendering test pages.

Chapter 2

22

When ASP.NET creates the WSDL file it also includes the description in the <documentation>
element of the WSDL service description, which we can view by clicking the Service Description link
on the test page:

Name
By default, the name of the Web Service is the same as the name of the class. The Name property is used
to give the Web Service a different name from that of the class. We'll discuss why in a moment, here is
how you use the property:

[WebService(Name="Hello Universe")]
public class Hello : System.Web.Services.WebService
{

The value specified becomes the name of the Web Service. Here is the test page:

Building ASP.NET Web Services

23

The new name is also exposed to the outside world through the WSDL:

Why would we want to give the Web Service a different name? It may be a matter of taste: we can use a
name that is different from the internal name of the class. If we use an internal naming convention for
classes for instance, we may not want to use the convention when exposing the class as a Web Service.

We may also give the Web Service a name that we are not allowed to use for our class. This may for
instance be a name that is reserved in the language. Say we are building a trade application and we want
a Web Service with the name 'Imports'. We are not allowed to use this as the name of a VB.NET class
since Imports is a key word in VB.NET. However, by using the Name property we can give the Web
Service the 'Imports' name. Another example is if you develop your Web Service in C# and you want
the service to have the same name as a method. You saw earlier that we named our HelloWorld Web
Service 'Hello' to avoid this issue. By using the Name property you can name the service HelloWorld
and still have a method with the same name.

Namespace
All the generated test pages we have seen up to now have had a message on them:

This Web Service is using http://tempuri.org/ as its default namespace.
Recommendation: Change the default namespace before the Web Service is made public.

The pages also explain how you change the namespace. You do that by setting the Namespace property
of the WebService attribute:

[WebService(Namespace="http://www.wrox.com/services")]
public class Hello : System.Web.Services.WebService
{

The namespace uniquely identifies your Web Service methods and allows two different Web Services to
have methods with the same name.

TE
AM
FL
Y

Team-Fly®

Chapter 2

24

When you set the Namespace property the warning disappears:

The namespace is also used in the WSDL:

The namespace is a URI or a Universal Resource Identifier. This may be a URL, but it need not be. It
need not point to a valid HTTP address. It should be unique so we should use a name that we control. It
is a good idea to use your company's domain name as a starting point.

If we don't specify the namespace property, ASP.NET uses http://tempuri.org/. This name should only
be used during development and should be changed before we go live with our Web Service.

Building ASP.NET Web Services

25

WebMethod Attribute
We have now seen the WebService directive and the WebService attribute. They apply to the Web
Service as a whole.

The WebMethod attribute is added to each method we want to expose as a Web Service.

The attribute is implemented by the System.Web.Services.WebMethodAttribute class and it
supports a number of properties that control the behavior of the methods.

The following properties are available:

❑ CacheDuration

❑ Description

❑ EnableSession

❑ MessageName

❑ TransactionOption

❑ BufferResponse

Here we will describe each of the properties with simple examples. The examples can be found in the
Properties.asmx file in the code download. Caching with Web Services is described in more detail
in Chapter 12. Session state and Web Services are covered in detail in Chapter 10. Transaction handling
and Web Services is covered in Chapter 11.

CacheDuration
ASP.NET has built-in support for caching the data on the server. Web Services can use the caching
support of ASP.NET to cache the result of a web method.

Caching makes sense when the data returned from the Web Service does not change often and many
clients call the service with the same parameters to get the same result. Good examples of this are
Web Services for news feeds, currency services returning the currency conversion rate, stock quotes
and so on.

Caching the result of a web method does not make sense when the results are highly dynamic. If a
currency service actually takes in the amount to convert it does not make much sense to cache the result
as each request will most likely be different.

The CacheDuration property is used to enable caching of the web method result:

[WebMethod(CacheDuration=10)]

public string GetTime()

{

 return DateTime.Now.ToString("T");

}

Chapter 2

26

The duration is specified in seconds. The example above sets the cache to expire after 10 seconds. The
default value is 0, which means that caching is disabled.

If the web method takes parameters, the parameters are used as keys for the cache. The result will be
cached for each combination of the parameters. Here is an extension of the GetTime() function above
that takes the format string as a parameter:

[WebMethod(CacheDuration=10]

public string GetTime(string format)

{

 return DateTime.Now.ToString(format);

}

The result will be different for each format string. If the format string is 'd' the time will be returned in
the format 'M/d/yyyy', if the format string is 'g', the time will be returned in the format 'M/d/yyyy
HH:mm aa' and so on. If the web method is called within 10 seconds with the same format string, the
result will be fetched from the cache.

Using the CacheDuration property, results from the Web Service are cached on the
server on which the Web Service is running. You should also consider adding caching
on the client calling the Web Service.

If the client is an ASP.NET page, we can use the ASP.NET cache to cache the result of the Web Service
on the client side.

Description
The Description property of the WebMethod attribute is used to describe the web method in the
same way that the description property of the WebService attribute is used to describe a Web Service.

Here is an example where a description is added to the GetTime() method:

 [WebMethod(Description="Returns current time, format 'hh:mm:ss'")]

 public string GetTime()

 {

 return DateTime.Now.ToString("T");

 }

Building ASP.NET Web Services

27

The description is added to the test pages:

and to the <documentation> element in the WSDL:

Adding a textual description to your Web Service and to the methods is good practice. It makes your
Web Service easer to use.

EnableSession
The best practice for ASP web applications has been to disable session state. This best practice applies
to Web Services as well. By default, Web Services do not support session state. Most Web Services
should be designed to be stateless to achieve Internet scalability, as session state consumes memory for
each client on the server.

Chapter 2

28

There are cases, however, where we might want to enable session state for Web Services. We can enable
session state for individual methods. To enable session state for a Web Service method we use the
EnableSession property of the WebMethod attribute. Here is an example of a function that counts the
number of times it is called for each user.

[WebMethod(EnableSession=true)]
public int UserCount()
{
 int count;
 System.Web.SessionState.HttpSessionState Session;

 Session = System.Web.HttpContext.Current.Session;

 if (Session["UsageCount"] == null)
 count = 1;
 else
 count = (int) Session["UsageCount"] + 1;

 Session["UsageCount"] = count;
 return count;
}

Session state is enabled by setting the EnableSession property to true. The Session object is used
within the function to keep a usage count for each user.

Session state handling is not specified in the SOAP specification. As is often the case with Web Services,
you must rely on the support of the underlying infrastructure. ASP.NET relies on HTTP cookies to
support session state. The session cookie stores a session ID and ASP.NET uses the session ID to
associate the client with the session state on the server.

Session handling is not specified in the SOAP specification, different SOAP
implementations may handle session state differently.

When you test the UserCount function from a browser using the ASP.NET test pages, you get the
expected behavior. Each time you refresh the browser, the count increases:

Building ASP.NET Web Services

29

If you open a new browser instance, you will see the count start from 1 again. Note that if you open
several browser instances from a test page, they will share cookies. You need to open a brand new
browser instance from e.g. the Start menu.

The next chapter will show you how to generate a proxy for the Web Service. If you call the Web
Service through the generated proxy you need to supply the proxy with what is called a "cookie
container". The cookie container is used to host the cookies. The proxy object has a cookieContainer
property for this purpose.

In the download available with this chapter is a Windows Forms application that can be used to test the
session state handling. The form for this application is available under
/ProWebServices/ch2/TestApp/Form1.cs. See the readme file that comes with the code for
setup instructions.

The class contains a private cookieContainer object. This class is defined in the System.Net namespace:

public class Form1 : System.Windows.Forms.Form
{
 private static System.Net.CookieContainer cookieContainer =
 new System.Net.CookieContainer()

We make the variable static so that each time the callback is called, the same object will be used. If the
cookieContainer variable is not declared as static, we will get a new cookieContainer object each
time we click the button.

Here is an example of a button callback function in the Windows Forms application. This function calls
the UserCount web method and displays a message box:

private void button5_Click(object sender, System.EventArgs e)
{
 WebMethodExamples.properties service;
 string message;

 service = new WebMethodExamples.properties();
 service.CookieContainer = cookieContainer;

 message = "Calling UserCount() returns ";
 message = message + service.UserCount();
 MessageBox.Show(message, "WebMethodExamples");
}

We create the Web Service proxy and set the CookieContainer property of the proxy to our static
cookie container object. When we then call the Web Service, the session cookie will be sent to the
service and we are able to use session state.

If we press the button three times we see that the count is 3.

The Web Service client may be a web application. In this case we have three parties involved;

❑ The user(s) of the web application

❑ The web application

❑ The Web Service

Chapter 2

30

The web application needs to store the cookie container in an appropriate place. If each user of the web
application needs a separate session, we can store the cookieContainer object in the Session object
of the web application. Note that the session state of the web application is different from the session
state of the Web Service.

If we need a session for the web application, we can store the cookieContainer object in the
Application object of the web application.

Chapter 10 has more information on session handling in Web Services.

MessageName
When we expose a method, the name of the Web Service method is by default the same as the name of
the method in our class. There are cases when we want to give the web method a different name than
the class method.

One example is with overloaded methods. In our CacheDuration samples we saw two different
methods for returning the time:

[WebMethod]
public string GetTime()
{
 return DateTime.Now.ToString("T");
}

[WebMethod]
public string GetTime(string format)
{
 return DateTime.Now.ToString(format);
}

Since C# and VB.NET allow overloaded methods, this code compiles just fine. However, if we try to
use the Web Service we will get an error. We can see this if we browse to the test page:

Building ASP.NET Web Services

31

We need to supply unique names for each web method. One way to do this is to rename one method.
Another way is to use the MessageName property to give the web method a new name:

[WebMethod]
public string GetTime()
{
 return DateTime.Now.ToString("T");
}

[WebMethod(MessageName="GetTimeFormat")]
public string GetTime(string format)
{
 return DateTime.Now.ToString(format);
}

The web method is now named GetTimeFormat. When the method is called, the SOAP message will
identify the message as GetTimeFormat. The WSDL will now contain two messages, one GetTime
message and one GetTimeFormat message. It will also show two GetTime operations:

When we build a proxy as shown in the next chapter, we will again get two GetTime functions, each
with a different signature.

TransactionOption
ASP.NET is integrated with the transactional services of COM+. We can set ASP.NET pages to be
transactional. We don't need to build COM+ components and register them in Component Services.
We simply mark our ASP.NET page with a transaction attribute, and all code within that page will be in
the same transaction.

ASP.NET Web Services support the same model. We can mark our web method as transactional. All
code within that method will be executed in the same transaction. Note that with ASP.NET we can
specify transactional support on a method level. This contrasts with COM+ components where
transactional support has to be declared at the class level.

Chapter 2

32

To set transaction support for a web method, we use the TransactionOption property of the
WebMethod attribute as in the following example, which is part of the Pubs.asmx Web Service in
the code download:

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Data.SqlClient;
using System.Diagnostics;
using System.Web;
using System.Web.Services;
using System.EnterpriseServices;

namespace WebMethodExamples
{
 public class pubs : System.Web.Services.WebService
 {
 public pubs()
 {
 //CODEGEN: This call is required by the ASP.NET Web Services Designer
 InitializeComponent();
 }

 [WebMethod(TransactionOption=TransactionOption.Required)]
 public int UpdatePublisher(string name, bool blowup)
 {
 string conn;
 string sql;
 int rows;

 conn = "server=localhost;uid=sa;pwd=;database=pubs";
 sql ="update publishers set pub_name='" + name + "' where
pub_id=0736";

 SqlConnection connection = new SqlConnection(conn);
 SqlCommand command = new SqlCommand(sql, connection);

 connection.Open();
 rows = command.ExecuteNonQuery();

 if (blowup)
 throw new Exception("You killed me!");

 return rows;
 }
 }
}

The transactional services live in the System.EnterpriseServices namespace. So we need to set a
reference to the System.EnterpriseServices assembly found in the
System.EnterpriseServices.dll.

Building ASP.NET Web Services

33

The method updates a specific row in the publishers table in the pubs database. This database is a
demo database that comes with SQL Server 2000. The method takes two parameters. The first is the
name of the publisher. The second is a Boolean that is used to simulate errors. If this is set to true, the
web method will raise an error. When an error is raised, all database updates executed will be rolled
back. The method returns the number of rows updated.

If you are familiar with MTS or COM+, you may ask why we don't call SetComplete() and
SetAbort(). This is because COM+ has a feature called "AutoComplete" that is turned on for Web
Services. If a method returns without an error, this is considered as a SetComplete(). If the method
raises an error, this is considered a SetAbort().

System.EnterpriseServices.TransactionOption is an enumeration with the following
possible values:

❑ Disabled

❑ NotSupported

❑ Required

❑ RequiresNew

❑ Supported

A web method will always be the root of a transaction, so the only value that makes sense for a Web
Service is Required. RequiresNew will have the same effect; turning on transactional support.

A Web Service cannot participate in an ongoing transaction. It will always start a new
transaction. The Web Service and the client cannot share transaction context.

If a transacted Web Service calls COM+ transacted objects, these objects are able to participate in the
transaction of the Web Service. If a transacted Web Service calls another transacted Web Service, they
will not be part of the same transactions. Transactions are covered in more detail in Chapter 11.

BufferResponse
The BufferResponse property allows you to control when data returned from the Web Service is sent
to the client. By default, the BufferResponse property is set to true. This means that the entire result
is serialized before it is sent to the client. By setting this property to false, ASP.NET will start
returning output as it is serialized.

[WebMethod(BufferResponse=false)]
public DataSet GetLargeResultset()
{
 // do something
 }

Setting BufferResponse to False does only make sense when the Web Service
returns a large amount of data.

TE
AM
FL
Y

Team-Fly®

Chapter 2

34

The Web Service method will always complete execution before anything is returned. Buffering on/off relates
to the serialization that takes place after the method has executed. With buffering turned off, the first part of
the result is serialized and sent. Then the next part of the result is serialized and sent, and so on.

Deriving from the WebService Class
There is one more option for implementing Web Services that we have not yet discussed. A Web Service
class may inherit from a class in the System.Web.Services namespace, the WebService class. You may
have seen this already, since the code emitted by Visual Studio .NET inherits from this class:

public class Service1 : System.Web.Services.WebService
{
 [WebMethod]
 public string HelloWorld()
 {
 return "Hello World";
 }
}

Inheriting from the WebService class is mainly a convenience; it does not add any functionality to our
Web Service.

The convenience is that the WebService class provides direct access to the Web.HTTPContext object
of the current request. We saw earlier in this chapter that to get at the Application object we had to
write the following code:

HttpApplicationState Application;
Application = HttpContext.Current.Application;

By inheriting from the WebService class we can access the Application object directly. The code
above becomes unnecessary, so we can write:

public class Service1 : System.Web.Services.WebService
{
 [WebMethod]
 public void SetAppState(string key, string value)
 {
 Application.Lock();
 Application[key] = value;
 Application.UnLock();
 }
}

The WebService class adds the following properties:

Property Description

Application The Application object holding the application state of the Web Service.

Context The Web.HTTPContext object of the current request.

Building ASP.NET Web Services

35

Property Description

Server The HTTPServerUtility object of the current request. This is similar to
the Server object found in ASP. It contains, for instance, the
CreateObject() function.

Session The Session object holding the session state of the Web Service. See the
description of the EnableSession property earlier.

User The User object is used to get access to security information such as whether
the user is authenticated and the name of the authenticated user. See Chapter
13 for more information about security.

Since the .NET Framework only supports single inheritance, inheriting from WebService means that our
class cannot inherit from other classes. This is really the only reason not to inherit from WebService.

An interesting point with inheriting from WebService is that WebService is derived from the
System.MarshalByRefObject class. This class is the base class for .NET Remoting.

This allows our class to be remoted using Remoting as well. Remoting is a Microsoft proprietary
technology available in the .NET Framework. It allows objects to be passed by reference between
machines and application domains. .NET Remoting is somewhat similar to DCOM but is much more
flexible. We can configure how data should be serialized, if it should use binary, XML, or other formats,
and how data should be transported: using TCP, HTTP etc.

By inheriting from WebService (and indirectly from MarshalByRefObject) we have several options
for our class:

❑ The class can be used directly within an application, without going through serialization at all.

❑ The class can be exposed as an ASP.NET Web Service.

❑ We can configure the class to use .NET Remoting and for example we could use a binary
formatter over TCP.

If you want to know more about .NET Remoting, you can read the upcoming book Professional C#
Web Services ISBN 1861004397 also by Wrox Press.

Chapter 2

36

Summary
This chapter has showed how we can create basic Web Services using ASP.NET. We can create a Web
Service using any text editor or we can use Visual Studio .NET.

An ASP.NET Web Service exists in an .asmx file. The code for the service can be in the same file or in
a code-behind file.

By adding a directive and a few attributes to our code, a .NET class is exposed as a Web Service.
ASP.NET gives us:

❑ Support for HTTP-GET, HTTP-POST and SOAP.

❑ Test pages we can use to test the Web Service.

❑ A description of the Web Service in the form of a WSDL file.

The following table summarizes the main options we have when building ASP.NET Web Services:

Option Mandatory Description

Web Service Directive Yes Added as first line in an .asmx file.

WebService attribute No Added to the class. Used to set the namespace,
add a description, and give the Web Service a
name other than the name of the class.

WebMethod attribute Yes Add to public methods you want to expose. May
also add attributes to specify caching, enable
session state, enable transactions etc.

Inherit from WebService
class

No Gives direct access to intrinsic objects such as
the Application object.

So now that we have seen how we can create Web Services using ASP.NET, let us see how we can turn
around and consume Web Services from ASP.NET.

Building ASP.NET Web Services

37

Chapter 2

38

Asynchronous Programming

To wait or not to wait; that is the question! Whether or not to implement asynchronous processing is
one of the fundamental issues that a developer must answer when invoking function calls across process
boundaries. Given that the option to invoke an asynchronous is available, the programmer has to weigh
the relative ease of coding synchronous calls with its inherent drawback – when a synchronous call is
made, the calling thread is blocked and has to wait until the function completes. In many instances, this
is an acceptable shortcoming, as in the case when a program's logic flow should not continue until data
is retrieved from a database. Asynchronous processing, on the other hand, allows more parallelism. A
thread that initiates an asynchronous call is not blocked and can therefore do almost any computation
while the method is in transit. The case for asynchronous processing becomes very compelling in the
enterprise computing space where systems need to handle hundreds of thousands of function call
requests and synchronicity may become a barrier to scalability.

Web Services support both synchronous and asynchronous communication between the client
application and the server hosting the service. Since both are supported, the developer is challenged
with deciding which type of process to initiate in their application. In this chapter, we're going to dive
into the subject of synchronous and asynchronous programming as it pertains to ASP.NET Web
Services. We'll explore the mechanics of invoking Web Services via an asynchronous mechanism. We'll
also look into the .NET framework and how it provides the infrastructure for asynchronous processing.

So, the topics for this chapter are:

❑ Synchronous versus asynchronous invocations

❑ Asynchronous design patterns in .NET

❑ How to invoke Web Services asynchronously

❑ What to consider when developing asynchronous Web Service calls

9

Chapter number

2

Synchronous Versus Asynchronous Invocations
As we learned in Chapter 2, the .NET framework shields the programmer from the complexities of
generating a remote procedure call (RPC) to a Web Service hosted on another server. As far as we are
concerned, they are simply making a method call to another component. The mechanism for invoking
the method call looks the same whether the server component is within the application's assembly or
many miles away running on another machine.

Despite their similarities on the surface, the underlying plumbing used to invoke a Web Service is very
different from an in-process function call. In the case of a Web Service, the function call is packaged
into a SOAP message and marshaled across the Internet via the HTTP protocol. Because of the inherent
nature of the Internet, performance of the RPC call to the Web Service can vary greatly from one call to
the next. The design choices you make when developing your Web Service client application can make
a big difference in how your users will perceive application availability and performance.

In this section, we'll compare the merits and shortcomings of both the synchronous and asynchronous
approaches to calling Web Services. We'll also learn how to actually develop client applications that
make use of the asynchronous mechanisms built into the .NET framework. This will set the stage for a
deeper discussion of asynchronous processing in the subsequent sections.

The Case for Synchronous Processing
Synchronous operations consist of component or function calls that operate in lockstep. A synchronous
call blocks a process until the operation completes. Only then will the next line of execution be invoked.
There are many examples in life that model this pattern of behavior. The cafeteria line at your local
restaurant, for example, behaves in a synchronous fashion. Customers are serviced one at a time. While
they are in line, they are blocked from conducting other activities, and they wait until all their food choices
are served before they can continue with their lunch-break. Of course, after waiting for a very long time
they might give up and leave. Here's a diagram illustrating the concept of synchronous processes:

As you can see, the procedure for making synchronous calls is straightforward:

1. The client obtains an interface pointer to the server object and calls a method through
that pointer

2. The client waits until the server either completes the method call, or if there is no
response for a given period of time the client raises an error

3. Only after the method call returns is the client free to continue with it's processing

Asynchronous Programming

3

It is this simplicity that makes synchronous processes a compelling choice. Most of the time, the
performance achieved from method calls is acceptable and does not warrant the extra overhead
required for concurrent processing. In fact, most of the function calls in the .NET Framework are
synchronous to minimize problems that can arise from asynchronous message processing. Likewise, the
method calls you will be implementing will be done in a synchronous fashion in most cases.

Asynchronous message passing, on the other hand, is more difficult to code and introduces several
problems. What happens if the method call is not delivered to the server object successfully? The calling
process does not wait for delivery of the message, and thus never hears about the error. The operating
system has to provide the infrastructure for reporting such errors, or worse, the programmer may have
to write special code to handle such cases. Another related problem is how will the calling application
discover the completion of the called function. The application will either have to create a polling
mechanism, event trigger, or callback method in order to be later notified of the operation.

Because synchronous messaging is so easy to implement, you may be tempted to take the simple route
and always use a synchronous mechanism when invoking a Web Service from your client code.
Consider your choice carefully because this decision will have an impact on how your client application
will perform. When implemented properly, using asynchronous communication may improve system
usage and avoid delays on the client side, while waiting for the Web Service results.

When Asynchronous Processing is Better
When method calls are invoked across process and machine boundaries via an RPC mechanism, it's
often times a likely candidate for asynchronous processing. This is definitely true in the case of Web
Services where the remote procedure call is sent via HTTP and must deal with issues such as bandwidth
constraints and network latency.

What makes asynchronous method invocations a good choice for communicating with Web Services?
An asynchronous operation will not block the calling thread, which only initiates the operation. The
calling application must then discover completion of the call by polling, by software interrupt, or by
waiting explicitly for completion later. An asynchronous operation will need to return a call or
transaction ID if the calling application needs to be later notified about the operation. At notification
time, this ID would be placed in some global location or passed as an argument to a handle or wait call.
Here is a diagram illustrating the concept of an asynchronous process:

The procedure for making an asynchronous call is not as simple as its synchronous counterpart:

Chapter number

4

1. The client obtains an interface pointer to the server object and calls the method asynchronously.
The client includes a function pointer to a sink object for message callback.

2. The call returns immediately and the calling thread is free to execute the next line of code.

3. When the method is finished processing the request, the server notifies the client through
the callback routine in the sink object.

Even with advancements implemented in the .NET framework, successfully developing asynchronous
programming logic is not trivial. You need to examine the requirements of your application carefully to
determine whether or not the code you're writing can even benefit from asynchronous events. Here are
some general guidelines to consider when making your decision:

❑ Consider asynchronous processing if the calling thread controls a Windows user interface. In this case,
the calling thread can't afford to be blocked during a remote method call because the UI will freeze.

❑ Asynchronous processing may help with scalability if the Web Services client is an ASP.NET
application or another ASP.NET Web Service. In this scenario, a blocked synchronous call in
the code can stall the ASP.NET worker thread, which can force other applications' requests to
queue and, therefore, impact scalability. Using asynchronous communication instead could at
least free up the threads that ASP.NET isn't using for the Web Service calls. Asynchronous
Server processing is discussed in detail towards the end of this Chapter.

❑ If there is a possibility that the remote procedure call to the Web Service may take a while to
complete, asynchronous processing may be beneficial. In this case the client application can
do other work on the thread before it needs the results from the remote procedure call.

❑ The client application may need to make concurrent calls to one or more remote services. In this
case, using an asynchronous remote procedure call is much better than spinning off multiple
threads to do the same work. For example, if an application needs to make concurrent
synchronous calls to three different Web Services, it cannot do so with one thread. It has to spin
off at least two threads and make a remote call in each thread. However, if the client uses an
asynchronous remote call, it can make all three calls on one thread and then wait for all of them.

A Sample Web Service
Now that we've discussed the pros and cons of both the synchronous and asynchronous programming
methodologies, let's write some code to illustrate the concepts. We'll begin by creating an ASP.NET
Web Service that our client application can invoke. We'll then create two separate applications, with
one calling the Web Service synchronously, and the other asynchronously, so that we can compare the
techniques of each approach.

For the purposes of our discussion, we will be making use of an ASP.NET Web Service that returns a
stock quote. The Web Service, named StockService, accepts a ticker symbol parameter that will
return a string representing the value of the stock. In order to properly demonstrate asynchronous
programming, the Web Service we will be invoking will also have the ability to simulate a long-running
process. For that purpose, the StockService example accepts another parameter that represents the
number of seconds the service will wait before returning the stock value back to the calling application.
Overleaf is a screenshot of the StockService.asmx page displaying the GetStockQuote method.

Asynchronous Programming

5

The TickerSymbol parameter will accept a string value representing a stock symbol or a company
name. The DelayInSeconds parameter will accept an integer value representing the number of seconds
the Web Service will wait before returning the stock's value. Below is the code for the StockService
Web Service written in C#. Bear in mind that this Web Service is simply a simulation for illustrative
purposes only and obviously doesn't return accurate stock values. The actual algorithm that a production
Web Service would use to return a stock's actual value will be much more complex than this example.

StockService.asmx
<%@ WebService Language="C#" Class="StockWebService.StockService" %>

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;
using System.Threading;

namespace StockWebService
{

TE
AM
FL
Y

Team-Fly®

Chapter number

6

 public class StockService : System.Web.Services.WebService
 {

 [WebMethod(Description="Returns a stock quote")]
 public string GetStockQuote(string TickerSymbol, int DelayInSeconds)
 {
 //Create a delay to simulate a long-running process
 if (DelayInSeconds > 0)
 {
 //Have the thread sleep based on the DelayInSeconds parameter
 //Note: The constant "1000" is to convert seconds to milliseconds
 System.Threading.Thread.Sleep(DelayInSeconds * 1000);
 }

 //Retrieve the stock quote based on the TickerSymbol parameter
 //NOTE: Stock values are for simulation purposes only
 string Quote;
 switch (TickerSymbol.ToUpper())
 {
 case "MSFT":
 Quote = "67";
 break;
 case "SUNW":
 Quote = "36 31/32";
 break;
 case "IBM":
 Quote = "80";
 break;
 case "ORCL":
 Quote = "25 1/32";
 break;
 case "CSCO":
 Quote = "51";
 break;
 default:
 Quote = "Unknown";
 break;
 }

 //Return value of Quote to calling application
 return Quote;
 }
 }
}

The Web Service has one method, GetStockQuote. GetStockQuote accepts the two parameters we
previously discussed: TickerSymbol and DelayInSeconds.

 [WebMethod(Description="Returns a stock quote")]
 public string GetStockQuote(string TickerSymbol, int DelayInSeconds)

The GetStockQuote method returns a string, which represents the value of the requested stock. The
method will return a string value of "Unknown" if the stock's value is not known.

Additionally, this method has the functionality to delay the delivery of the return message to simulate a
long server-side process. The code accomplishes this by retrieving a handle to the current thread and
causes the thread to sleep for the duration specified in the DelayInSeconds parameter:

Asynchronous Programming

7

//Have the thread sleep based on the DelayInSeconds parameter
//Note: The constant "1000" is to convert seconds to milliseconds
System.Threading.Thread.Sleep(DelayInSeconds * 1000);

Here's is the output of the GetStockQuote method when invoked from the sample page provided by
ASP.NET:

You will notice in our sample Web Service that there is nothing specific in the implementation of
StockService that provides asynchronous functionality. It's actually the calling application that will
decide if a particular call should be asynchronous. This is in keeping with one of the tenets of the .NET
framework, which states that it's not necessary for a called object to do additional programming to
support asynchronous behavior by its clients. In fact, the called object doesn't even have to be an
ASP.NET Web Service. It could be a Web Service developed on another platform and we would still be
able to invoke an asynchronous call from a client running on the .NET framework.

Using the Sample Web Service
Now let's have some fun by invoking this Web Service from a client application both synchronously and
asynchronously. The client will be developed as a console application using Visual Studio .NET. As you
learned in Chapter 3, we'll first need to create a SOAP proxy to serve as a wrapper class for the
StockService Web Service. You can generate the proxy class using the WSDL.exe utility, which
comes with the .NET SDK, or simply add a web reference to the Web Service in the Visual Studio .NET
development environment. If you wish to use the WSDL.exe utility, you can generate the proxy class
using Build.bat from the StockWebService folder of the download (assuming you're running the
StockService Web Service locally in your machine):

Wsdl /l:vb http://localhost/stockwebservice/stockservice.asmx?WSDL

Chapter number

8

The generated C# proxy class contains both synchronous and asynchronous versions of the
GetStockQuote method. The asynchronous version consists of two methods, a
BeginGetStockQuote and an EndGetStockQuote method. The BeginGetStockQuote method is
used to initiate the call to the Web Service, while the EndGetStockQuote method retrieves the results.
We'll take a closer look at this proxy class in the section Asynchronous Programming in .NET.

A Sample Synchronous Method Call
The code for calling a Web Service synchronously should be relatively familiar by now, since many of the
examples in this book have been synchronous remote procedure calls to Web Services. This example will be
no different. Here's the C# code for the console application, SyncStockClient.exe in the bin subfolder
of the SyncStockClient folder in the download, that uses the StockService Web Service:

using System;
using System.Runtime.Remoting.Messaging;

namespace SyncStockClient_CSharp
{
 class SyncStockClient
 {
 static void Main(string[] args)
 {
 string ReturnValue;

 //Create the web service instance via the proxy class
 localhost.StockService objStockService = new localhost.StockService();

 //Make sure there are at least two items in args[] array
 //NOTE: the args[] array contains command line arguments
 if (args.GetUpperBound(0) >= 1)
 {
 //Invoke the synchronous call to the web service
 //This thread is blocked until method call returns with the return value
 //NOTE: System.Convert.ToInt32 converts the string argument to integer
 ReturnValue = objStockService.GetStockQuote(args[0],

System.Convert.ToInt32(args[1]));

 //Display the results to the user
 Console.WriteLine("Stock quote for " + args[0] + " is " + ReturnValue);
 }
 else
 {
 //User did not enter the right number of parameters
 Console.WriteLine("You need to input 2 parameters. Try again.");
 }
 }
 }
}

SyncStockClient.exe is designed to be used at the command prompt. This application accepts two
command-line parameters that will then be passed to the GetStockQuote method call of the
StockService Web Service. Here's the line of code that invokes the Web Service method:

 ReturnValue = objStockService.GetStockQuote(args[0],
System.Convert.ToInt32(args[1]));

Asynchronous Programming

9

When the application starts, the command-line is parsed by the GetCommandLineArgs method and the
command-line entries are then stored in the args array. When the user starts the application correctly,
args[0] will contain the StockSymbol parameter, and args[1] will contain the DelayInSeconds
parameter. Below is the output for SyncStockClient.exe:

In this example, the user starts the SyncStockClient.exe application, requesting the stock quote for
Microsoft (MSFT) and setting a server-side delay of 5 seconds:

C:\>SyncStockClient msft 5

Since the Web Service call, in this example, is synchronous, the application has no choice but to wait
for the processing to conclude before running the next line of execution, which then prints the outcome
of the method call:

Stock quote for msft is 67

Let's now look at a similar application that calls StockService asynchronously.

A Sample Asynchronous Method Call
This next example will also be a console-based application written in Visual Basic .NET. It's identical in
functionality to SyncStockClient.exe with the exception that the GetStockQuote method will be
invoked asynchronously. Here's the C# code for the console application, AsyncStockClient.exe,
that uses the StockService Web Service:

using System;
using System.Runtime.Remoting.Messaging;

namespace AsyncStockClient_CSharp
{

 class AsyncStockClient
 {

 static void Main(string[] args)
 {

 string ReturnValue;
 IAsyncResult AsyncResult;

 //Create the web service instance via the proxy class
 localhost.StockService objStockService = new localhost.StockService();

Chapter number

10

 //Make sure there are at least two items in args[] array
 //NOTE: the args[] array contains command line arguments
 if (args.GetUpperBound(0) >= 1)
 {
 //Invoke the asynchronous call to the web service
 //NOTE: System.Convert.ToInt32 converts the string argument to integer
 AsyncResult = objStockService.BeginGetStockQuote(args[0],
 System.Convert.ToInt32(args[1]), null, null);

 //Method call returns right away!
 //This thread is free to do more processing
 //Check for method completion in the while loop
 Console.Write("I'm not blocked. I can do more processing");
 while(AsyncResult.IsCompleted == false)
 {
 Console.Write(".");
 }
 Console.WriteLine("Method call has returned!");

 //Retrieve return value from the web service
 ReturnValue = objStockService.EndGetStockQuote(AsyncResult);

 //Display the results to the user
 Console.WriteLine("Stock quote for " + args[0] + " is " + ReturnValue);
 }

 else
 {
 //User did not enter the right number of parameters
 Console.WriteLine("You need to input 2 parameters. Try again.");
 }

 }
 }
}

The call to BeginGetStockQuote starts the asynchronous communication process, sending out the
method request, and then returning immediately. The return value of this method call is not the actual
stock quote, yet, as was the case in the synchronous version. Instead, it's an object of type
IAsyncResult, which is part of the System.Runtime.Remoting.Messaging namespace. The
AsyncResult object will be used later to poll for completion and to fetch the results of the method call:

 //Invoke the asynchronous call to the web service
 //NOTE: System.Convert.ToInt32 converts the string argument to integer
 AsyncResult = objStockService.BeginGetStockQuote(args[0],
 System.Convert.ToInt32(args[1]), null, null);

The parameter list of the BeginGetStockQuote begins with the parameters of the synchronous
method – StockSymbol and DelayInSeconds. The method has two additional parameters used in
providing a callback mechanism for the asynchronous process. Since we won't be using a callback
mechanism in this example, the C# code simply passes null to the last two parameters (we'll be
covering the callback mechanism in a later example in this chapter).

Asynchronous Programming

11

Once the Web Service method has been invoked asynchronously, the calling thread needs a way to find
out when the operation has completed. The IAsyncResult class contains a property for just this
purpose, called IsCompleted, which will return the Boolean value, true, when the Web Service is
finished processing the request. In the code, outlined below, we call the AsyncResult.IsCompleted
method periodically to check for method call completion.

 //Method call returns right away!
 //This thread is free to do more processing
 //Check for method completion in the while loop
 Console.Write("I'm not blocked. I can do more processing");
 while(AsyncResult.IsCompleted == false)
 {
 Console.Write(".");
 }

To retrieve the results of the operation, we call the EndGetStockQuote method provided by the Web
Service's proxy class:

 //Retrieve return value from the web service
 ReturnValue = objStockService.EndGetStockQuote(AsyncResult);

The method accepts one parameter of type IAsyncResult. In this case, we pass the AsyncResult
object that we originally received from the BeginGetStockQuote method. This is how the .NET
infrastructure is able to determine which result to give back to our code, since the client may have
invoked any number of requests at the same time.

Note that we need to wait for the AsyncResult.IsCompleted to return true before invoking the
EndGetStockQuote method. If we call the EndGetStockQuote method before the operation is finished,
it will block until the operation does in fact complete. Below is the output for AsyncStockClient.exe:

In this example, the user starts the AsyncStockClient application, requesting the stock quote for
Microsoft (MSFT) and setting a server-side delay of 5 seconds:

C:\>AsyncStockClient msft 5

Chapter number

12

Since the Web Service call, in this example, is asynchronous, the method call returns immediately and
the calling thread is free to do more processing. In this case, the calling thread writes to the console to
demonstrate that it's able to do more work:

I'm not blocked. I can do more processing……………………………………….

At the same time, the client application is polling to check if the method call has returned. Upon
completion of the call request, the client then prints the outcome of the method call:

Method call has returned!
Stock quote for msft is 67

Asynchronous Programming in .NET
We've now gotten our feet wet with a relatively simple example of an asynchronous method call to a
Web Service. Let's dig deeper into the plumbing of the .NET framework to find out how the common
language runtime provides the infrastructure for asynchronous programming.

Until the .NET framework, coding against an asynchronous model had always been a daunting task. One had to
be intimately familiar with the complexities of multi-threaded programming in order to create an asynchronous
process. For programmers, synchronous method calls are a no-brainer: a single thread initiates a task, and then
does nothing until the task completes. Providing a mechanism to free up the main thread, however, required
more complex programming involving spawning worker threads to initiate the function call, thread
synchronization, and providing a callback mechanism to alert the main thread that the function call has
completed. Thankfully, the .NET framework provides an infrastructure to address many of these issues.

The .NET Runtime Provides the Plumbing
Having programmed in Visual Basic for most of my professional career, I used to be envious of my
C++ counterparts and their seemingly magical ability to create multi-threaded applications that did any
number of parallel tasks, which is a requirement for asynchronous processing. Sure, I was able to mimic
asynchronous behavior in VB using out-of-process servers and the use of the dreaded timer control. It
worked, but it just wasn't elegant. And the application definitely didn't scale.

Life became easier with the advent of VB 6 and its ability to use apartment-model threading. In
addition, the programmer's arsenal of tools increased with Windows 2000 providing more ways to make
asynchronous calls using COM+ events, and COM asynchronous interfaces.

Although it's still a non-trivial undertaking, the .NET framework makes programming asynchronous
processes much easier than before. .NET has asynchronous code built in, and asynchronous programming
is a feature supported by many areas of the .NET framework, including I/O operations, networking,
messaging, message queues, Async delegates, ASP.NET web forms and, of course, Web Services.

A Common Design Pattern
In order to provide a consistent framework for modeling asynchronous processes, the .NET framework
provides an important common design pattern as a core guiding concept. The basic ideas behind this
pattern are as follows:

Asynchronous Programming

13

❑ The .NET framework will provide services needed for supporting the asynchronous
programming model.

❑ It is the client code that decides if a particular call should be asynchronous.

❑ It is not necessary for a called object to do additional programming to support asynchronous
behavior by its clients. The common language runtime infrastructure should be able to handle
the difference between the caller and called object views.

❑ The called object can choose to explicitly support asynchronous behavior either because it can
implement it more efficiently than a general architecture or it wants to support only
asynchronous behavior by its callers. However, it is recommended that such called objects
follow the asynchronous design pattern for exposing asynchronous operations.

❑ The common language runtime provides type safety. For Async delegates, which are
explained in the next section, the compiler generates type-safe method signatures for the
BeginInvoke and EndInvoke method calls.

Because all the .NET languages make use of the common language runtime, the programmer is not
constrained to using a specific programming language to provide asynchronous processing within the
.NET framework. The examples demonstrating asynchronous processing provided in this chapter could
have easily been written in VB.NET as well as C#.

Let's now examine one of the key concepts in the .NET framework that makes asynchronous
programming possible, the .NET delegate classes.

An Introduction To Delegates
As previously mentioned, one of the requirements of asynchronous programming is that there needs to be
a way for a calling thread to find out when an operation has completed processing. The example, outlined
earlier, provided this functionality through a polling mechanism. Another technique is to provide a sink
object with a callback method to allow the called object to inform the client that processing is complete.

In the C/C++ languages, the address of a function, known as a function pointer, is used to provide the
callback functionality. VB6 had a similar technique using the AddressOf operator, although its use was
limited to returning the address of procedures in a BAS module. The problem with function pointers is
that they are just memory addresses. Memory addresses don't contain any additional information about
the function they are referring to, such as the number of parameters expected, the types of the
parameters, and the return value type. Also, because function pointers cannot be differentiated from
other pointer types, you can essentially point them to anything. In other words, function pointers are
not type-safe, and this is often the source of many errors in C++ programs.

The .NET framework provides the same callback functionality that a C++ function pointer provides through
the mechanism of delegates. Unlike the function pointer, however, delegates are type-safe. Since one of the
goals of the .NET framework is to be type-safe, all types in the .NET framework are self-describing, including
delegates. A delegate can, therefore, be thought of as a type-safe, self-describing function pointer object.

Using Delegates
.NET delegate classes behave as containers. A delegate contains the information about a single method
and is used to provide a communication mechanism between the server object and the client
application. Here's a sample delegate declaration in C#:

Chapter number

14

 public delegate int MyDelegate(ParameterValue As String);

When a delegate is created in code, the compiler creates a class that, in addition to a method called
Invoke, which is used to initiate a synchronous connection to the methods referred to by the delegate,
also creates methods called BeginInvoke and EndInvoke.

BeginInvoke

BeginInvoke starts execution of your asynchronous operation on a different thread from the calling
method and accepts the parameters specified in the delegate, plus a few others:

❑ An AsyncCallback delegate, which allows you to pass a callback method to be called as
soon as the asynchronous method is done.

❑ An AsyncState object representing some context information for the callback.

The return value of the BeginInvoke method is a reference to an object that implements the
IAsyncResult interface. The IAsyncResult object returned from the delegate's BeginInvoke
method can be cast to an AsyncResult object. The AsyncResult object has the AsyncDelegate
property that is the delegate object on which the asynchronous call was invoked.

EndInvoke

EndInvoke is used to harvest the results of the method call. The AsyncResult object returned by
BeginInvoke is passed to EndInvoke as a parameter to provide access to the remoting infrastructure
that was used to make the asynchronous call. It returns the value (and output/reference parameters) that
the asynchronously invoked method returned. EndInvoke will also block the calling thread, if called
early, until the asynchronously executing method returns, and then returns the results to you.

Using Asynchronous Calls in .NET

The .NET framework's scheme for asynchronous processing is relatively simple, but powerful. The beauty of the
design is that any method can be called in this manner. All that needs to be done is to define an appropriate
delegate and call that delegate's BeginInvoke and EndInvoke methods to communicate asynchronously.
You don't have to write complex code that spawns threads, nor do you have to worry about how parameters are
passed or how results are returned. The .NET infrastructure takes care of the heavy lifting for you.

Invoking Web Services Asynchronously
Invoking Web Services asynchronously from within a .NET client application follows the same design
pattern used by the .NET framework for invoking asynchronous processes. The design pattern dictates that
for each synchronous method implemented, there should be two asynchronous methods, a Begin and an
End asynchronous method. The Begin method takes input from the client and kicks off the asynchronous
operation. The End method supplies the results of the asynchronous operation back to the client.

In addition to accepting the input parameters required by the asynchronous operation, the Begin
method also takes an AsyncCallback delegate to be called when the asynchronous operation is
completed. The AsyncCallback delegate will serve as a pointer to a function that the client
application will implement to retrieve the results from the method call. The return value of the Begin
method is a waitable object that implements the IAsyncResult interface used by the client to
determine the status of the asynchronous operation. The client application will then use the End method
to obtain the results of the asynchronous operation by supplying the AsyncResult object.

Asynchronous Programming

15

When calling the Begin method to kick-off an asynchronous call, there are two options available to the
client for initiating the operation:

❑ Supply the AsyncCallback delegate when beginning the asynchronous operation. This
will provide a mechanism for the server to notify the client application that the method call
has completed.

❑ Don't supply the AsyncCallback delegate when beginning the asynchronous operation. The
callback delegate is not required if the client application chooses to poll for completion
instead, or if the return value of the function being called is not needed.

The client application also has a number of options available for completing asynchronous operations:

❑ Poll the returned IAsyncResult.IsCompleted property periodically for completion. Note
that this does add processing overhead due to the constant polling.

❑ Attempt to complete the operation prematurely by calling the End method, which blocks the
calling thread until the operation completes.

❑ Wait on the IAsyncResult object. The difference between this and the previous option is
that the client can use timeouts to wake up periodically.

❑ Wait for the callback to occur and complete the operation inside the AsyncCallback routine.

The asynchronous programming example we studied earlier did not use a callback mechanism but
simply polled the IAsyncResult.IsCompleted property to check for method completion. The next
example we will be looking at shortly makes use of the callback mechanism. Before we dive into our
next example, let's take another look at the Web Services proxy class to fully understand how Web
Services are invoked asynchronously.

A Closer Look at the Web Services Proxy Class
The Web Services proxy class, built by the WSDL.exe tool, provides a wrapper around the .NET
remoting functionality required by our client application to communicate with a remote Web Service.
The proxy class for the StockService Web Service, which we built earlier, inherits from the
SoapHttpClientProtocol class. The SoapHttpClientProtocol class is ideal for asynchronous
calling and, therefore, has the BeginInvoke and EndInvoke methods built into its structure. Below is
the code for the proxy class, StockService.cs:

namespace AsyncStockClient_CSharp.localhost
{
 using System.Diagnostics;
 using System.Xml.Serialization;
 using System;
 using System.Web.Services.Protocols;
 using System.Web.Services;

 [System.Web.Services.WebServiceBindingAttribute(Name="StockServiceSoap",
 Namespace="http://tempuri.org/")]
 public class StockService : System.Web.Services.Protocols.SoapHttpClientProtocol
 {

 public StockService()
 {

TE
AM
FL
Y

Team-Fly®

Chapter number

16

 this.Url = "http://localhost/stockwebservice/stockservice.asmx";
 }

 [System.Web.Services.Protocols.SoapDocumentMethodAttribute(
 "http://tempuri.org/GetStockQuote",
 Use=System.Web.Services.Description.SoapBindingUse.Literal,
 ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)]
 public string GetStockQuote(string TickerSymbol, int DelayInSeconds)
 {
 object[] results = this.Invoke("GetStockQuote", new object[] {
 TickerSymbol, DelayInSeconds});
 return ((string)(results[0]));
 }

 public System.IAsyncResult BeginGetStockQuote(string TickerSymbol,
 int DelayInSeconds, System.AsyncCallback callback, object asyncState)
 {
 return this.BeginInvoke("GetStockQuote", new object[] {
 TickerSymbol, DelayInSeconds}, callback, asyncState);
 }

 public string EndGetStockQuote(System.IAsyncResult asyncResult)
 {
 object[] results = this.EndInvoke(asyncResult);
 return ((string)(results[0]));
 }
 }
}

The Web Service proxy class encapsulates the mechanism for calling a Web Service asynchronously.
When the proxy class is auto-generated by Visual Studio .NET, there are three methods created for
each public Web Service method in the Web Service. The table below describes these three methods:

Method name in proxy class Description

<NameOfWebServiceMethod> Invokes a Web Service method synchronously (for
StockService, the method name is GetStockQuote).

Begin<NameOfWebServiceMethod> Begins an asynchronous call to a Web Service method (for
StockService, the method name is BeginGetStockQuote).

End<NameOfWebServiceMethod> Ends an asynchronous call to a Web Service method, getting the
return value(s) for the Web Service method (for StockService,
the method name is EndGetStockQuote).

The Begin<NameOfWebServiceMethod> method in the proxy class is simply a wrapper around the
BeginInvoke method call that we discussed earlier. The same is true for the
End<NameOfWebServiceMethod> in the case of the EndInvoke method.

An Asynchronous Method Call Using a Callback
Now that we've covered the mechanics of asynchronous processing from within the .NET framework,
we should have enough information to develop another sample application that will make use of a more
sophisticated asynchronous mechanism, the use of a callback delegate.

Asynchronous Programming

17

This next example will be a Windows Forms-based application written in C#. The application will have code
to invoke our StockService Web Service in both a synchronous and an asynchronous fashion. Here's the
Visual Basic .NET code for the Windows Forms application that uses the StockService Web Service:

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.Runtime.Remoting.Messaging;

namespace StockServiceClient
{
 public class frmMain : System.Windows.Forms.Form
 {

 // Create an instance of the web service via the proxy class
 localhost.StockService objWebService = new localhost.StockService();

 private void btnCallSync_Click(object sender, System.EventArgs e)
 {
 string ReturnValue;

 //Display hourglass to show system is busy
 this.Cursor = System.Windows.Forms.Cursors.WaitCursor;

 //Call the web service synchronously and wait for a response
 ReturnValue = objWebService.GetStockQuote(txtSymbol.Text,
 System.Convert.ToInt32(txtDelay.Text));

 //Display stock quote to user
 lblQuote.Text = "Stock Quote = " + ReturnValue;

 //Return cursor to default pointer
 this.Cursor = System.Windows.Forms.Cursors.Default;
 }

 private void btnCallAsync_Click(object sender, System.EventArgs e)
 {
 //Create an instance of a CallBack delegate and
 //point the object to our callback function
 AsyncCallback AsyncCallback = new AsyncCallback(MyCallBack);

 //Call the web service asynchronously
 //Display a message box to notify a successful call
 IAsyncResult AsyncResult;
 AsyncResult = objWebService.BeginGetStockQuote(txtSymbol.Text,
 System.Convert.ToInt32(txtDelay.Text), AsyncCallback, null);
 MessageBox.Show("The asynchronous was invoked successfully.",
 "Asynchronous Call");
 }

 private void MyCallBack(System.IAsyncResult AsyncResult)
 {
 string ReturnValue;

HR
Highlight

HR
Highlight

HR
Highlight

HR
Highlight

HR
Highlight

Chapter number

18

 //End asynchronous call and retrieve the return value
 //Display a message box to notify a successful return
 ReturnValue = objWebService.EndGetStockQuote(AsyncResult);
 MessageBox.Show("Asynchronous response has returned with the value.",
 "Asynchronous Call");
 lblQuote.Text = "Stock Quote = " + ReturnValue;
 }

 }
}

This Windows application consists of one form containing two textboxes to provide a way for the user
to input the parameters required by the StockService Web Service, StockSymbol and
DelayInSeconds. The form also includes two buttons. One to invoke StockService synchronously,
and the other for asynchronous operation. Here's a screenshot of the sample application:

The code for synchronous invocation is essentially the same as the previous example. We will therefore
skip this section of the code and jump right into the asynchronous implementation code.

The event handler for the Asynchronous Call button contains the code that initiates the asynchronous
call. The code begins with the creation of the AsyncCallback delegate object. This will serve as the
pointer to the callback function named MyCallBack:

 //Create an instance of a CallBack delegate and
 //point the object to our callback function
 AsyncCallback AsyncCallback = new AsyncCallback(MyCallBack);

The call to BeginGetStockQuote starts the asynchronous communication process, sending out the
method request, and then returning immediately. The return value of this method call is not the actual
stock quote, yet, as was the case in the synchronous version. Instead, it's an object of type
IAsyncResult, which is part of the System.Runtime.Remoting.Messaging namespace. The
AsyncResult object will be used later to fetch the results of the method call:

 IAsyncResult AsyncResult;
 AsyncResult = objWebService.BeginGetStockQuote(txtSymbol.Text,
 System.Convert.ToInt32(txtDelay.Text), AsyncCallback, null);

The parameter list of the BeginGetStockQuote method begins with the parameters required by
StockService – StockSymbol and DelayInSeconds. The method has two additional parameters
used in providing a callback mechanism for the asynchronous process:

HR
Highlight

Asynchronous Programming

19

Additional BeginInvoke Parameters Description

Callback The delegate to call when the asynchronous invoke is
complete. If callback is a null reference, the delegate is not
called (in this example, we are passing the AsyncCallback
object which references the MyCallBack function).

asyncState The asyncState parameter can be used to pass information
about the context of the asynchronous call to the delegate. If
the parameter is a null reference, the object is not used (in this
example, we are not making use of this functionality).

Once the Web Service method has been invoked asynchronously, the call, of course, returns right away.
This is demonstrated by the fact that the Windows Forms application is not blocked and responsive to user
interaction. In this example, the client will not be doing any polling to check for completion. Since the
callback delegate was provided to the marshalling infrastructure in the BeginGetStockQuote method,
the calling thread will be notified that the method is finished through the callback function outlined below:

 private void MyCallBack(System.IAsyncResult AsyncResult)

To retrieve the results of the operation, we call the EndGetStockQuote method provided by the Web
Services proxy class from within the callback function:

 //End asynchronous call and retrieve the return value
 //Display a message box to notify a successful return
 ReturnValue = objWebService.EndGetStockQuote(AsyncResult);

The method accepts one parameter of type IAsyncResult. In this case, we pass the AsyncResult
object that we originally received from the BeginGetStockQuote method. This is how the .NET
infrastructure is able to determine which result to give back to our code, since the client may have
invoked any number of requests at the same time.

Design Considerations
This section will cover additional topics about synchronous and asynchronous processing that you may
wish to consider when developing your server-side Web Service or client application.

Handling Timeouts
If you decide to use the synchronous Web Service invocation model in your client application, you have to
consider how your application will behave if the Web Service is not performing optimally. For example,
the communications pipe your client is using may be bandwidth constrained, or the Web Service could
become saturated with client requests causing server response times to degrade significantly.

In cases like these, you may decide to implement a timeout period to prevent the client application from
having to wait indefinitely for a Web Service call to complete. The proxy class that is auto-generated by
Visual Studio .NET contains additional methods and properties beyond the methods used in our Web
Service examples. One of these is the Timeout property.

Chapter number

20

The Timeout property is part of the WebClientProtocol base class from which our proxy class is
derived. The property indicates the time a Web Service client waits for a synchronous Web Service
request to complete (in milliseconds). The default value for the property is -1, which represents infinity.
This indicates that the default behavior of the Web Service client is to wait indefinitely for the remote
procedure call to complete. Here's a C# sample code setting the timeout value to 15 seconds:

 //Set timeout value to 15 seconds
 objWebService.Timeout = 15000;

Note that even when a Web Service client has the Timeout property set to infinity with a value of -1,
the server hosting the Web Service may still cause the request to time out on the server side. In this
case, an exception would be raised to the client application.

Providing a Cancel Method
When using the asynchronous process model in your client application, you have to consider how your
application will behave if the callback mechanism doesn't return within an acceptable timeframe. You
may decide to abort the call in your code and continue with other processing. The problem with this
approach is that it doesn't necessarily free up the resources on the server. Providing a Cancel method
that stops the server-side processing gracefully can solve this issue.

Sadly, the IAsyncResult interface does not provide a Cancel method. This is because it's difficult to
provide a universal mechanism for stopping all processes gracefully. In many implementations there can be
no guarantee that the server will be able to cancel the BeginInvoke call on the Web Service proxy class.

Because a Cancel methodology will vary from implementation to implementation, exposing and implementing
a Cancel method is up to the implementer of the proxy class that exposes BeginInvoke and EndInvoke.

Note that the .NET framework imposes certain design guidelines on how to implement a Cancel
method. Here are the things to consider:

❑ By definition, a Cancel method is a request to cancel processing of the BeginInvoke
method after a desired timeout period has expired.

❑ The client can only make a Cancel request; the server may choose not to honor it.

❑ The client should not assume that the server has stopped processing the request completely after it
receives notification that the method has been canceled. In other words, the client is recommended
not to destroy server resources such as file objects as the server may still be actively using them.

❑ The IsCancelled property will be set to True if the call was canceled and the
IsCompleted property will be set to True after the server has completed processing of the
call. It is illegal for the server to use any client-supplied resources outside of the agreed upon
sharing semantics after it sets the IsCompleted property to True. So it is safe for the client to
destroy the server resources after the IsCompleted property returns True.

Asynchronous Server Processing
Our discussion has centered around the asynchronous process originating from the calling application. In this
scenario, only the client benefits from the asynchronous mechanism. The process running the Web Services
code may still be running synchronously. The scenario that we've been discussing is illustrated here:

Asynchronous Programming

21

In this scenario, the client gets a call object from the proxy manager and uses it to make the asynchronous
call to the server. The called object turns around and makes synchronous calls on the server to the business
tier. Because the Web Service thread is blocked during the synchronous call, scalability may be hampered.

If you want the server to asynchronously process requests, you must do a little more work. There are
two more modes of operation to consider when using asynchronous interfaces. The second mode is the
exact opposite. The client makes a synchronous call to the proxy. The proxy then turns around and
makes a call to the server. That call is processed asynchronously:

In the third mode, the client makes an asynchronous call, and that call is processed asynchronously, just
as the client wanted:

The Web Services themselves, running on a web server, can be designed to be synchronous or
asynchronous. A synchronous design allows the ASP.NET thread of execution to run until it's complete,
but if a long-running process is invoked server-side, other requests will be blocked. This can stall the
ASP.NET worker thread forcing other applications' requests to queue, ultimately resulting in scalability
and performance issues. Designing the server-side Web Service to run asynchronously will allow
ASP.NET to manage threads of execution more effectively.

Summary
As we've learned, ASP.NET Web Services support both synchronous and asynchronous client
invocations. There are benefits to both approaches, and the programmer has to weigh the pros and cons
of each approach when deciding how to implement their client application.

The .NET framework provides a rich set of base classes and services to make it easier to develop asynchronous
communication mechanisms. One of the key features in the .NET framework that makes asynchronous
programming possible are the .NET delegate classes. Delegates are type-safe self-describing function pointers.

Chapter number

22

Invoking Web Services asynchronously from within a .NET client application follows the same design
pattern used by the .NET framework for invoking asynchronous processes. The Web Service proxy
class encapsulates the mechanism for calling a Web Service asynchronously. In this chapter we have
discussed the following:

❑ How to invoke Web Services both synchronously and asynchronously

❑ How to design an asynchronous application in .NET

❑ What factors should be taken into consideration when developing asynchronous Web Service calls

Asynchronous Programming

23

Chapter number

24

Design Criteria

Web Services have a distinct possibility of changing the way business is done on the web. As EDI did
for document transfer in the mid-eighties, and HTTP did for information viewing in the mid-nineties,
Web Services promises to allow cross-company logic interchange regardless of system. The cross-
platform nature of SOAP allows IT managers and application developers to build business logic that
spans installed systems with little overhead or increase on upfront cost. This alone may mean that Web
Services will make a significant change in the way business gets done in distributed systems.

Notice the use of 'may mean', 'promises' and 'possibility' in the above paragraph. This is because Web
Services are not the magic bullet. There are things that Web Services don't do well, but these things are
massively compensated for by the things that Web Services can do well. We saw this with DHTML, and
things didn't turn out so well. The minor differences between the platform-specific implementations of
JavaScript and the DOM caused massive headaches for programmers and architects that continue to this day.

Could this happen to Web Services? Sure. We keep it from happening by understanding Systems and n-
tier application development. This chapter will introduce you to the design criteria of Web Services: how,
when and where to use them, how to architect for them when you use them, and how to integrate them
with existing logic. Once the subject has been introduced, the following chapters will fill in the details.

So before diving in, let's look at the topics we'll be covering:

❑ When a Web Service does and doesn't fit into a design

❑ Fitting Web Services into your design methodology

❑ Design considerations such as error handling and security

❑ Performance Considerations

8

TE
AM
FL
Y

Team-Fly®

Chapter number

2

When a Web Service Fits In a Design
As with any new technology, the ability to use it correctly is paramount. As mentioned above, DHTML
became a hammer for many who saw a nail, and many of us have spent countless hours rewriting
intranets for Internet Explorer 5 from IE4-specific code. Let's take a look at where Web Services fit into
your architecture or the design of your application.

There are three principal situations in which to use Web Services – Internets, Extranets and Intranets.
That is perhaps a little vague, but it is a good way to look at things. First, Web Services are useful for
connecting to information on the Internet that is blocked off by a local or remote firewall, or both.
Second, Web Services allow you to expose specific portions of your business logic to customers or
partners via your extranet. Third, Web Services make an acceptable distributed architecture to share
logic between disparate systems in the same room, building or organization. So here we have three
types of common communication – external to customers, external to partners, and internal. Let's look
at each in turn.

Consuming the Resources of the Internet
Key to the usefulness of Web Services is their ability to transfer complex data structures through
corporate firewalls without compromising already existent security. Web Services travel through the
same transport layer as web sites, so the hole through which they fly is already well defined.

Firewalls are designed to prohibit unauthorized traffic between computers within its control and
computers outside its control. When computers communicate with the Internet through the firewall,
traffic for specific functions travel on designated ports. These ports allow the firewall to restrict traffic to
designated protocols, since it can assume that the computers within its control will react in expected
ways to that traffic.

Traffic for the World Wide Web, travels via HTTP on port 80, or 443 if encrypted. In order for a
computer to surf the web, the firewall between it and the Internet must allow port 80 and 443 traffic.
These are the ports, and the protocol, that Web Services use. Therefore, all of this functionality flows
conveniently through your corporate firewall, without compromising the security of the rest of the
system. Other distributed network architectures like DCOM, CORBA and RMI use custom ports for
their information transfers, often encountering firewall-enforced roadblocks.

This is useful in several ways, but the primary benefit is to be able to consume logic from providers that
would normally require FTP of preprocessed information. For example, Weather.Com (The Weather
Channel) provides a service to ISPs where a large file of weather data, containing data for all of the
Midwest for example, is FTP-ed to the client site in a preset directory several times a day. Then the
client software parses through the text file, looking for the weather data for its specific needs. Often,
when the end user views the information it is several hours old.

With Web Services, Weather.Com could expose the logic that gathers the data for that text file to the
Internet. The client could call the service with its username, password and zip code if needed. Then the
Web Service would return, on demand, the current weather information for that location. The Web
Service call can be built directly into the consuming object, treating the logic as though it was resident
on the local system. The logic, however, remains safely behind Weather.Com's firewall, being served by
its web server.

Design Criteria

3

Selling Business Services
The ubiquitous nature of Web Services provides a prime platform for potential profit. There are an
almost unlimited number of processes and pieces of data that can be exposed in the form of a Web
Service. Any application that is developed, or any database that is stored, probably is of enough use to
someone out there that they will pay twenty cents every time they use it. This is an undeniably
marketable concept.

HailStorm

A fine example of this is Microsoft's HailStorm, a user-centric architecture and set of XML Web
Services. You can read much more about HailStorm in Appendix A, or at the HailStorm site at
http://www.microsoft.com/net/hailstorm.asp. These services will make it easier to integrate an average
user's information 'silos', thus providing a more integrated experience with technology. Microsoft's
example is remembering a phone number. Imagine what an average user has to do to make this happen.
Often, it must be typed into Outlook with a keyboard, written into a Palm with Graffiti, and punched
into a cell phone with a number pad.

With HailStorm, each of these devices could use a centralized data store, communicating with this
database using Web Services as needed. The API is salable, the services are salable, and the storage is
salable. This could be a very successful project.

Any organization with information for sale can make fantastic use of Web Services. Weather.com again
serves as a good example. I had to integrate their massive text files into a site several years ago, and it
took four days of programming to get what I wanted. Then, of course, they added a field and I had to
edit my component – three times. We eventually dropped the service. That won't happen with Web
Services because all of the logic is inherent to the method call.

Brokerages

Another great business model, and one already being exploited by Lucin, which runs SalCentral, is a
Web Services brokerage service (you can find SalCentral at http://www.salcentral.com). They have
their own authentication scheme whereby you register your Web Service, and SalCentral will make sure
users are authorized to use your service, charge them on your behalf, and take a small brokerage fee.

Exposing Business Logic to Partners
The ability to expose existing business logic to clients, customers or partners becomes a powerful tool.
With few security concerns, well-designed Web Services have the power to leverage existing business
logic – in house tools, mind you – and transfer the power of their use to select business partners in a
secure fashion.

Currently, if an organization wants to share information with a partner they often use Electronic Data
Interchange , passing documents in established formats through message handlers like Gentran or
BizTalk. If they want to share business logic, they get a leased line or Virtual Private Network to the
partner and write an application. The classic ways to share business logic and information among
partners are so fraught with security and technical troubles, however, that few use them. In today's
technological environment there should be a better way, and now there is.

Web Services give businesses another potential path. Since the protocol is a standard, similar to HTML
for the web or SMTP for email, organizations have a common platform upon which to build these
pathways. Additionally, because the standards are open, implementation costs are within the reach of
even the smaller companies.

Chapter number

4

Interop Internally Between Systems
One IT staff, two systems, Unix and NT. Need I say more? Web Services is supported by scores of
system vendors already. Although the overhead of using a Web Service for an application function call
is rather high, it's better than a batch job. A surprising number of platforms support Web Services
intrinsically, including IBM, Microsoft and Sun – those you will find in most enterprises.

Of course, any language that will handle XML and HTTP will handle Web Services, but it helps to have
a protocol pipeline for SOAP. Of course, .NET has Web Services built in, but what about that other
platform? For Visual Studio 6, Microsoft provides the SOAP Toolkit, now in version 2. You can learn
more about the SOAP Toolkit at http://msdn.microsoft.com/webservices. The fun really starts, though,
when you have to interop with a Delphi program, or that Linux box around the corner.

A fantastic example of the SOAP protocol simplified is the SOAP::lite modules. Available for both Perl
and COM, this simple API allows a developer to integrate Web Services into any platform that speaks
Perl, or any Windows language that speaks COM. Let's look at a quick example. In order to actually do
this, you'll need to install ActiveState's Perl 5.6, for Windows, and add the SOAP::lite libraries.
Instructions for SOAP::lite can be found on http://www.soaplite.com, and the free ActiveState
download can be found at http://aspn.activestate.com/ASPN/Downloads/ActivePerl.

For example, set up a simple service on your .NET development server, just the basic HelloWorld is fine:

<%@ WebService Language="CS" Class="HelloWorld" %>

using System;
using System.Web.Services;

 public class HelloWorld : System.Web.Services.WebService
 {

 [WebMethod]
 public string SayHelloWorld()
 {
 return "Hello World";
 }
 }

Build a simple .cgi file on your web server, and slip in this code:

use SOAP::Lite;

print SOAP::Lite
 -> service('http://localhost/sd/service1.asmx?wsdl')
 -> SayHelloWorld();

How easy was that? We'll spare you the example with a Perl server and a .NET client, it's just as simple.
We can see from this simple example that complex logic written in .NET can be run on your Linux web
server with practically no coding at all for the web developer.

Interoperability with other platforms is similar. IBM WebSphere, the most common Java/EJB
development tool, has Web Service interaction similar to .NET, as does Delphi 6 and the latest version
of Fujitsu COBOL (the mainframe version too!). If your company is working on many platforms, Web
Services will benefit interoperability greatly.

Design Criteria

5

When NOT to Use Web Services
On the other hand there are times when it doesn't pay to use Web Services. First, there are some
overhead and performance considerations. Second, there are few existing security models. Third, there
are better ways to solve some of the problems that Web Services can solve. Web Services aren't here to
replace things so much as add a new dimension to interoperability. This is a very fine line, but if it
seems that Web Services are missing something intrinsic to be useful, then you are probably trying to
use them inappropriately.

Rest assured, this is a great standard, and it is well implemented by .NET, but Web Services won't solve
every development task you have on your plate. We talked above about what they do well; now let's
look at what they don't do so well.

Internal to an Application, use DLLs
All of the hype surrounding Web Services has caused an explosion in the number of developers that use
SOAP just because the Toolkit or .NET is installed on the server. Aside from the tenet to "keep it
simple", there are two primary reasons not to do this.

First, method calls to Web Services are a lot slower than normal method calls. The information in the
call, encoded into a SOAP header, has to be parsed to and from text on the client and server side.
Though .NET is better with string handling, Microsoft languages are still significantly slower at handling
strings than they are handling binary. Keeping the method call in .NET and away from Web Services
speeds up the process significantly. For instance, there have been a lot of applications floating around
that use Web Services when a normal DLL would do. If you are writing and application, and have a
DLL that supports, say, communications between your application and exchange, don't expose those
methods as Web Services just because you can. The network hit, the performance crunch, and the
complexity aren't worth the interoperability benefits.

Second, as we'll discuss below in the section on Performance Considerations, Web Services don't handle
stateful environments well. In a Windows Forms application, where you may handle events or
properties, a DLL will give you better performance and is smarter design. Just like maintaining state
with COM+ in n-tier applications, maintaining state with Web Services is bad news. It reduces
scalability, significantly impacts performance, and eats bandwidth.

Communicating .NET to .NET? Use Remoting
Sometimes, even if you are writing a distributed application – say in Windows Forms – and there are no
state issues, you should reconsider your use of Web Services. When writing COM to COM, DCOM was
the best solution. When writing .NET to .NET, try Remoting. Learn more about remoting on the MSDN
library by reading the .NET Remoting Overview.

Remoting provides a feature-rich API for an application distributed across AppDomains, processes or
machines. Essentially, it allows the passing of objects from one system to another, so that 'remote'
method calls are performed as though the logic was on the calling system:

Chapter number

6

Client Environment

Client Object

Proxy

.NET Remoting System

Server Environment

Server Object

.NET Remoting System

Although Remoting does allow for SOAP calls like Web Services provide, use of the TCP channel
significantly speeds up the process to almost five times as fast. Remoting is designed for
communications at the DLL level, and should be used that way. What we're trying to prevent is working
through the ASP.NET layer with business logic, then back down to the component layer. If you can use
Remoting to communicate directly, business layer to business layer, do.

Sometimes, It's Best Not to Distribute
There are times when it would be best not to expose anything to the Internet. If you are running a
security installation for the government, you may want to reconsider exposing any logic to the outside.
Making yourself a target for crackers and thieves may not be worth the benefits of having the services
exposed. Balance the needs of the client against the risks and resources available to secure the service.

For instance, we all know about the break-ins at various company and agency web sites over the years.
These crimes largely occur because the attacker has a point of entry – mainly the web page. Giving an
attacker an obvious door is going to provoke attack in today's computing environment. Web Services
will give attackers another door. Sooner or later, with enough tries, some of them will be broken. If the
business process that is being exposed by the Web Service cannot, under any circumstances, be
compromised, then don't expose it.

Fitting Into an Existing Design Methodology
So you've decided to use a Web Service. How do you add it to your corporate methodology? How do
you diagram a Web Service? How does this fit into your existing design? Fortunately, it's pretty easy.
There are two design camps we must discuss in the arena of Web Services.

❑ Using the service in a new web or Win32 application

❑ Creating a Web Service

Design Criteria

7

Using a service in an application is a straightforward proposition from the design perspective. To an
architect, a Web Service is just another method, enabled by generating another object. In the case of a
Web Service the object is a proxy, but it works just like any other DLL, and it looks like one in the
design. The most important considerations are in the global view of the network map.

Developing a Web Service, while fairly simple from an architecture perspective, is a daunting task from
a design perspective. An architect must consider the ins and outs of distributed method calls as seen
above, but a designer has a whole host of considerations. We will look at actual design issues shortly,
but will focus here on the architectural viewpoint.

Architectural Considerations
Web Services expose a layer of business logic through a method call. So do DLLs. In fact, as we have
learned, the proxy is just a DLL acting as a proxy. From an architectural perspective, that's all there is to it.
For the .NET developer, Web Services are just another method call. In reality, though, the network layer is
the internet itself, via whatever network protocol the client and server are using at the moment.

The magic of Web Services is in the WSDL file, which if everything goes well, we'll never see. This file, auto-
generated by a call to the originating system if we need it, describes the entire class of methods available in
the service along with their parameters (you can view the WSDL file at any time by adding ?wsdl to the end
of a ASPX file name in a URL). The various utilities .NET uses to make a Web Service proxy read this file to
generate a DLL that works just like the other compiled .NET Framework components you use in your
project. The cross-platform comes in because any language that handles WSDL can generate that file for a
specific service, so the business end of your DLL file is truly platform-agnostic.

The Method Call
At the architectural level, a Web Service looks like a method call. Our design should reflect that by
showing a Web Service running in the business layer just as if it were a normal business object. The
proxy format of the WSDL file on the .NET Framework ensures that essentially it is just another
business object.

In this sample sequence diagram of a simple login scheme, we see a Web Service fronting an application,
as if we were designing the service as the user interface. When designing a service, this is essentially what
we are doing. We are allowing an application to access our application as if it were the user:

Chapter number

8

Login (Username, Password)

AuthorizeUser (UserName, Password)

GetUserInformation (Username)

WebServiceMethod()
Business Logic

Object
Data Layer

Object

In the case of using a service as part of another application, we must take into account the likely
asynchronous nature of the method call. Note the change in arrow type or the login method here, by a
.NET application potentially using the above service for login.

Login (Username, Password)

Login (Username, Password)

WebServiceMethod() Data StructureWindows Form
Business Logic

Layer

SecurityAudit()

UserAccessAudit()

If you are working for an organization with very strict documentation guidelines, some analysis of the
WSDL file may be necessary. Since the WSDL description offers all of the information about the
service, it makes a service practically self-documenting. Please take a look at Chapter 4 for a more in-
depth coverage of WSDL.

Design Criteria

9

Designing at the Enterprise Level
At the enterprise level, you'll find that Web Services make for more paperwork. Since we are actually
using logic outside of the norm, we can draw a flow diagram that shows the breakdown of the network
calls. This diagram lays out the design of network traffic though the .Net portions of the application, as
well as the HTTP calls passing SOAP from system to system. This is remarkably important from both a
functionality and network perspective.

0. Get operation for
retrieving data
from enterprise
database

4. Web Service makes call to ISP for update

7. Update Operation
for publishing
Enterprise data to
remote server

Firewall

Local Enterprise Server

SQL DB

2. SP Returns Recordset

1. Request for Update

3. DLL Provides Web Service with Data

The Internet

The DMZ

Remote Internet Server

Firewall

5. Call routed to ISP via HTTP

8. Remote Database
updated with
enterprise data

9. Web Site visitors
see current
enterprise data

6. Web Service calls
update DLL

Chapter number

10

In this diagram from the Chapter 11 transactional service example, we show a Web Service that updates
a database on a remote server. In the transaction diagram, this would essentially appear the same as a
normal database update, but in this diagram we show the SOAP call sliding through the corporate
firewalls on both sides. Since the traffic moved on Port 80 or 443 at those points the firewalls don't
require changes to the security profiles.

Once again, a company with a more strict documentation standard may not be pleased to discover that
business logic is extending beyond the firewall, so more explanation may be in order. For many
projects, however, a basic diagram like the one shown above will do the job.

Design Considerations
Now that we have fitted Web Services into our architecture, how do we fit it into our design? The
individual techniques for these considerations are significant topics that will be covered in later chapters.
However, we'll look at the design implications for the some of these techniques here, including:

❑ Error Handling

❑ Synchronous and Asynchronous connections

❑ Transactions

❑ Interoperation with other platforms

❑ Security

Error Handling
In designing error handling for Web Services, we have a number of situations we must be able to
handle. These include:

❑ Handling internal errors, to make sure the service doesn't crash or hang

❑ Passing error codes back to the consumer

❑ Documenting error handling so that a consumer can effectively use it

❑ Dealing with transmission or network problems

In handling internal errors, good Try … Catch blocks are essential for Quality Of Service reasons. Since
these services are just essentially ASP.Net pages with a new interface, most of the error handling one
would do in a normal web application still applies.

What of reporting those errors, though? In an ASP.Net page, we would simply display a user-friendly
message to the screen, warning of the error and suggesting responses. The user can choose to ignore the
error and press the back button, close the browser, email the webmaster, etc. In the case of a Web
Service, though, there are very few choices on the part of the consumer. The client either deals with the
error returned by the service, or it doesn't work properly.

To that end, services like the MSDN Favorites Service carefully document the error codes that can be
returned by each method in their battery of services. For instance, the Logon() method that is used by
licensees to access the service, can throw these errors:

Design Criteria

11

Number Description

1002 Invalid licensee key.

1005 Invalid user name.

1006 User not authenticated.

Network problems will turn out to be a significant source of errors in Web Services. In fact, the
Microsoft implementation of SOAP doesn't allow Web Services to participate in transactions, as we'll
see in a later section. As far as handling these problems with ASP.Net services, the best bet is probably
to design around them. A few key things to remember in this respect are:

❑ Make sure you have the same redundancies you would have in an important web site

❑ Don't maintain state

❑ If you need to resend what may be redundant information, do so

❑ If you need an acknowledgement that something has been handled, require it

❑ If you need to pass acknowledgement that something has been handled, supply it

Keep in mind how asynchronous technologies like FTP and email have kept working through various
network trials and tribulations. FTP maintains reasonable timeout limits. Email tries for several hours to get a
message through, and then expects a response from the receiving server. When we are in doubt as to how to
design around network problems our best bet is to look at how these protocols have been so successful.

Synchronous vs. Asynchronous
Synchronous communication is connected communication – where the calling application waits for a
response from the method called before going on. COM+ and Windows Scripting Host use this type of
communication. Asynchronous communication is disconnected communication. MSMQ and BizTalk
use asynchronous communication, but, of course, the largest user of asynchronous communication is the
Internet itself. Synchronous and Asynchronous communications in an application are important in
design considerations and also apply to other considerations like error handling and transactions.

Web Services provide a loosely coupled model that causes some trouble in enterprise applications.
Transactions, as we'll see later, are one of these problem issues – synchronization is another. When your
method call has no knowledge of the underlying network layer, you can't always tie up an entire
component until the service method has returned.

The best way to deal with the synchronous issue is to design around it. Knowing that the service is
loosely coupled should lead a developer to only use an asynchronous call. Microsoft does, however,
provide some functionality to assist with synchronous services.

The System.ServicedComponent namespace provides much of the functionality found in COM+.
Currently, this includes features like just-in-time activation, loosely coupled events, pooling and
synchronization. To enable synchronization on a serviced component providing a Web Service, you'll
need to inherit from ServicedComponent. Transactional services, Just In Time readiness and other COM+
services will not work without synchronous communication.

Another solution is to make use of the naturally asynchronous nature of Web Services. IIS will handle
that for you, as .aspx pages are by definition asynchronous. For more detail on this topic, please see
Chapter 9.

TE
AM
FL
Y

Team-Fly®

Chapter number

12

Transactions
Transactional processing is an important part of distributed systems. Since different parts of the program
change different parts of the data, transactions are needed to ensure that everything gets done by the
end of the method. Since Web Services are loosely-coupled by design, they have no knowledge of the
underlying network layer. This makes acknowledgement of transactional coupling very difficult.

There are a few different situations where Web Services could participate in transactions.

❑ As the creator of a transaction, as in a Web Service that credits and debits an account

❑ As the participator in a transaction, as a Web Service that it called by another Web Service

❑ As the participator in a transaction called by a .Net object

We'll look at several different transactional situations in Chapter 11, but let's look at some high level
issues here.

There are two perspectives on transactions as part of Web Services: as the provider, and as the
consumer. As the provider, .NET provides a number of technologies, not least of which is COM+, to
help maintain the option for distributed transactions.

When providing a Web Service, transactional design considerations are fairly obvious. When you are
providing a service that makes a batch transaction you should provide rollback in case of failure.
Normally, this is a service provided by COM+, and that is an option still available in .NET. Despite
what many think, .NET is not a replacement for COM+, it is a replacement for COM. Also, .NET
provides the same roll-your-own transactions that you found in COM, inheriting from the
Microsoft.EnterpriseServices namespace.

As the consumer, however, distributed transaction coordination is a difficult task. Since the SOAP
protocol is loosely-coupled, we have no knowledge of the failure of a service at the network level. Of
course, the service can provide an error we can handle at the consumer level, but if the remote machine
dies in the middle, there is no response returned to us. Therefore, our application can hang forever
waiting for the data to return, except in the case of a timeout or 404 Not Found form the web server.

If we are using COM+ on the consumer side, major problems will occur. First, Web Services don't play
well when called in transactions by other services or objects. Second, we must consider failures in Web
Services in our error handling, as discussed above, so the consumer can properly handle them in the
transactional system using the service. If you are consuming a Web Service as part of an enterprise
system that requires distributed transactions, you should consider .NET Remoting instead, which
provides this feature.

Interoperation with Other Platforms
The whole point of Web Services is cross-platform interoperability. To this end, you'll need to know what
Microsoft-only features to avoid in making sure your services are interoperable. When working in a
COM/.NET world, you'll be very surprised with the simplicity of Web Services using the SOAP Toolkit 2.0.

Although Web Services by definition are based in interoperability, there are a few specifics that are
helpful in more advanced usage. Microsoft provides advanced features for Web Services in .NET that
you won't really find on other platforms. These must be considered when designing with Web Services.
For instance, the issue of advanced data types is a significant problem. If you send, for instance, a
DataSet with Web Services from .NET, the client will get – from its perspective – a poorly formed XML
file, if not using a .NET server.

Design Criteria

13

So, the general consensus is to stick to the basic data types when working with fully cross-platform Web
Services. These consist of the built-in data types found in the XML Specification, as shown in the
diagram below:

all complex types

duration dateTime time date gYearMonth gYear gMonthDay gDay gMonth

boolean base64Binary hexBinary float double anyURI QName NOTATION

decimal

anyType

anySimpleType

Built-in Datatype Hierachy

interger

long

negativeInterger int positiveInterger

short

byte

nonPositiveInterger

unsignedLong

unsignedInt

unsignedShort

unsignedByte

nonNegativeInterger

normalizedString

token

language NMToken

NMTokens

ID IDREF ENTITY

IDREFS ENTITIES

ur types

built-in primitive types

built-in derived types

complex types

derived by restriction

derived by list

derived by extension or
restriction

Name

NCName

string

This diagram is more than we really need to know, but it is useful information. Essentially, we are
looking at:

❑ dateTime

❑ Boolean

❑ string

❑ int

❑ decimal

❑ hex

❑ float

❑ Base64

Chapter number

14

One of the more significant uses of Web Services will be interoperability from .NET to COM, and
Microsoft has provided a very significant tool (the SOAP Toolkit, now in Version 2.0), which will
provide a simpler COM/.NET interop than wrapping each component in formal interop code. We
discussed the implementation details in Chapter 4.

Security
Web Services are as important, in terms of security, as a web site is. Because they are exposed to the
public, we have to be on the lookout for many of the same problems as we do for our sites:

❑ Compromised data

❑ Denial of Service

❑ Unauthorized use

❑ Network level issues

❑ User Privacy

Fortunately, as we are using the same software we use for those sites many of the solutions are the same.

Web Services combines the security problems of the Web with the security problems if a distributed
application. This provides quite a challenge for the application architect. While the security within a
Web Service is well documented and covered in Chapter 15, there are other tools at our disposal of
which we should be well aware, including:

❑ Operating System security

❑ Secure Sockets Layer

❑ Database security

❑ Policy

Classic NT Authentication is a very good scenario when security is a must on a Windows 2000 web site.
Since the password is never actually sent via cleartext through the network – even encrypted – there is
little chance of interception and misuse. Web Services don't make for much use of NT Security in their
external interface, but controlling access internally using access control lists is a must. Remember that
when we give the world access to a Web Service, we are letting them run a program on our web server.
Controlling what that program has access to is a must when considering overall security.

In the Favorites Service, the MSDN team decided to pass the logon and password of the licensee
directly to the services' logon sequence, using Secure Sockets Layer, or port 443 of the web server. SSL
makes use of Public / Private Key pairs to ensure that cleartext like SOAP sent through the Internet is
not available for viewing. Since it is an integral part of IIS, it is fairly easy to use in your service, but
hard to set up administratively. Check the MSDN library and IIS documentation for more details there.

In the Methodology section above, we discussed how a database server should be placed in the network
for optimum control. This applies in the security scenario too. The database should not have a publicly
accessible address under almost any circumstance. Having a Web Service exposed will certainly draw
database crackers, and if we don't have a publicly available database, they don't have anything to crack.
Let your Web Service be the gateway to the database.

Design Criteria

15

Finally, as in any good security implementation, policy is our best weapon. Follow the same security
procedures that any good administrator follows when designing and maintaining a network or secure facility.

Centrally control passwords. Since your users don't usually have to worry about remembering
passwords, make them complex and change them regularly. Remember to watch your log files.

Keeping a vigilant eye for crackers is probably the best defense against problems. Those who want to
break into systems are never ending in their ingenuity. Don't expect to be able to plan around
everything, or design out all security flaws – it won't happen. Do, however, follow the basic procedures
and keep a sharp eye out for trouble.

Performance Considerations
Finally, we need to consider the performance of a loosely-coupled protocol like SOAP in a tightly-
coupled world like .NET. Since Web Services are handled as an XML stream, there are significant
performance considerations to even using them. As a general rule of thumb, a method call to a service
on the same box runs around five times slower than a call to a .NET object with the same code. Not
only are you depending on IIS to broker the transaction, you are forcing XML parsing on both sides of
the transaction.

Of course, one of the largest performance considerations is the Internet itself. Since we are dependant
on so many different points of presence for the connectivity, performance can never be guaranteed. We
only have control on the server itself – just as when developing web applications in general.

So there are two things we can do to improve the performance on the service side: use caching and not
use state. Caching allows us to keep useful information around for when we might need it again. State in
a web application is dangerous to begin with but some new tools provided by .NET provide an
interesting new look at state and its potential.

State
Although state should be avoided in most web applications, Microsoft has provided two 'stateless' ways
to provide state in .NET. Many of us have built data-driven state tools that use GUIDs to track user
existence, then store the GUID in a cookie, or keep it alive in the URL as a QueryString variable. As
part of .NET, Microsoft has done this for us, providing both implementations of state as part of the
familiar Request and Response objects. These implementations are also available to Web Services.

The problem with state in COM was that it required Windows 2000 to track some secret number and store
it in the database for its own private use. As most of us know, that simply didn't work – if you were to load
balance your server, it fell apart. Even just using it with a single server added massive overhead. Now, this
value assigned to a user is in the open, available to the Cookies collection, or merged into the URL.

A Real Performance Hit

Even though this ends the well known problems that ASP Version 3 has with web farms and load
balancing, there is still a significant performance hit. On every page, .NET objects must make behind
the scenes calls to generate or parse the SessionID, a 120 bit unique code. Then database entries must
be made to allow .NET namespace access to this session information. Despite the fact that the .NET
Framework does significantly speed up this operation, it still doubles the response time from IIS for an
average page.

Chapter number

16

Another option is to use the Cookie-based state option, which is even slower – though more invisible to
the user. Since the application has to make a second call to the client and request the cookies file, we
have network lag added to the parsing and metabase manipulation.

What it is important to remember is that state is still to be used only when necessary – like within a
shopping cart application for example. Fortunately, it is turned off by default, so a change has to be
made in the web.config to even turn it on. On the other hand, the new state objects are good enough
that when we do need to use them, we can use the built-in tools, rather than rolling our own.

Caching
On the other side of the performance coin is Caching, which provides a window of time in which a
value in the response of a Web Service method should be held in a memory cache. Caching is used by
many technologies in this networked world. For instance, Internet Explorer holds your last 14 days of
web sites in a cache, so if you re-request one, it only needs to check for updates before displaying. In the
world of Web Services, this feature can significantly reduce server processing time.

For instance, say you are running a weather service. You can set the web method to hold on to the
results for 60 seconds, so if it is requested again for that zip code you won't have to reprocess from the
database. Alternatively, you could proactively look up the alerts and cache those results, knowing that
this will be the next request.

CacheDuration is set to 0 as a default, and is a property of the WebMethodAttribute class. The
WebMethodAttribute class is inherited by most Web Services and also provides descriptions, sessions
and buffer information. You can read more about the WebMethodAttribute in Chapter 2.

Summary
Web Services have the potential to change the Internet and Enterprise application development in one
fell swoop. Just as HTML did in the mid-nineties, SOAP provides a much-needed solution to a massive
problem – sharing logic like we share data. If they are carefully designed and effectively implemented,
Web Services will change the way we do business with clients, partners, and internally.

To this end, we covered the following very important design topics:

❑ When a Web Service does and doesn't fit into a design

❑ Fitting Web Services into your design methodology

❑ Design considerations including:

� Error handling

� Synchronous calls versus asynchronous

� Transactions

� Interoperability

❑ Performance Considerations

Design Criteria

17

Through the rest of the book, we'll discuss this design and implementation in high detail, culminating
with ideas for using Web Services in your business. You'll find details on some of the topics covered
above, and later chapters on Discovery and Security. Putting it all together, you have the opportunity to
seriously improve your enterprise architecture, dramatically increase customer service, and significantly
increase shareholder value.

Chapter number

18

Web Service Discovery

Let me guess. You've just completed the greatest Web Service in the civilized world and have just put it
on a computer that's attached to the Internet and you're wondering why no one's using it. You sit back
and all of a sudden it dawns on you, instead of being a developer you've now got something else to
consider. You need to market your Web Service.

With the onset of Web Service technology and ASP.NET, our industry role is changing; it's all very well
developing that Web Service, but if no one uses it you might as well have developed a component DLL
instead. Discovery can help you advertise (This is a dirty word in some quarters, but we'd better get
used to it with Web Services) your functionality by giving you some unique tools and standards to allow
you to tell people that you exist.

Component development up until now has been a process of allowing people to download a utility and
if they like it, carry on using it. You can use that technique with Web Services by simply telling people
where your WSDL file is. However, this chapter explains that there is much, much more to discovery
than simply giving someone your WSDL file. Discovery can be used to save you enormous amounts of
time by keeping your own libraries of past work, or by telling millions of developers about that new
Web Service you've got rather than the few thousand that visual a single ASP.NET web site.

As developers we must consider the following, "Instead of thinking I'm a VB.NET or C# programmer, I
am now a developer that creates functionality for EVERY operating system". Adopting ASP.NET you
can expand the platform where your functionality can now be used by 1000, overnight.

This chapter will enlighten you about how you can utilize Web Service discovery to tell the world about
what you're doing and hopefully put you and your Web Services ahead of the game.

Web Service Discovery is the process of locating and interrogating Web Service definitions, which is a
preliminary step for accessing a Web Service. It is through this discovery process that Web Service
clients learn that a Web Service exists, what its capabilities are, and how to properly interact with

7

Chapter 7

2

it.There are several methods of promoting/advertising your Web Service to the outside world with the
tools in ASP.NET, although most have a common result: the creation of a pre-defined XML-formatted
file that can be read to advise interested parties of where your Web Services are.

The term "Web Service Discovery" is often referred to as simply DISCO.

DISCO first of all came into conception as a file that simply wrapped together XML Web Services that
a Web Service developer wanted others to use. It has now become apparent that Microsoft will be using
this open standard as their de facto standard for discovering Web Services from within ASP.NET.
Fundamentally speaking it's here to stay.

The term DISCO, although now often associated with ASP.NET technology, is designed as an open
standard making it freely available for all to use. However, currently it has not been submitted to W3C
along with other well-known Web Services standards such as SOAP and WSDL. As an open standard it
is not specifically designed for ASP.NET but can be incorporated within a client or search engine that
chooses to understand how DISCO files are constructed. DISCO has currently had no significant
adoption from the industry outside of ASP.NET and for the moment seems to be remaining solely
within the ASP.NET technology suite of applications.

In this chapter we'll cover the basics of promoting your Web Services as well as some advanced ideas
about how you can make sure that your Web Service is used by others without reproducing work you or
other development teams have done previously.

Here's what we'll cover in this chapter:

❑ How to use discovery to advertise Web Services

❑ Solving some of those intrinsic problems about component and resource sharing between teams

❑ Realizing that discovery is an essential part of programming even for the sole developer

Why Do We Need Discovery?
Discovering Web Services is an important part of Web Service development. However it is currently
too often ignored. Without discovery, you would simply end up developing a Web Service that could
not be found by others.

Web Service discovery is broken up into two distinct types:

❑ Web Services developed for private or internal use within an organization or limited group

❑ Web Services developed for public or external use on the Internet

The idea behind Web Service discovery is to allow your functionality (which ever of the above types
you select) to be used by others. Therefore, for the first time component promotion/advertising is being
seen as part of the entire development process, not as some additional service you perform at the end of
a development cycle.

To explain a little of how discovery can benefit you let's discuss a number of scenarios where Web
Service discovery really comes into its own:

Web Service Discovery

3

Scenario 1

Working inside a development team can be interesting but often exasperating. Not mentioning any names,
the worst I came across was one contract where our manager approached us and asked us why we were
developing a utility to work out whether a zip code was correctly formatted. Anyway after much deliberation
the manager decided to walk around each team in turn and subsequently found eight teams all having either
done or doing exactly the same utility to check for a correctly formatted zip code.

Everyone who's worked in large corporate teams realizes that this isn't unusual; in fact, some would
even say it was the norm.

By producing a central library, which contains DISCO, formatted files that can be shared by all the
development teams, these teams can develop Web Services and immediately make them available for
others to use. This library then forms the central repository for Web Services within an organization and
as such can be used to reuse much more easily common components, therefore significantly reducing
development overlap.

Team A

Team B

Team C

Team D

Develop common Web Service

Produce Discover XML files

Central Library of all Teams XML FIles

Scenario 2

Releasing products used to mean producing EXEs or packages that needed to be installed on other
companies' computers. This technique often leads to confusing installation problems and techniques
along with compatibility concerns.

Using discovery, however, you can now release many Web Services, from different ASP.NET projects
and even different operating systems using one single DISCO XML file. This allows you to promote
your system as a package of functionality rather than as individual Web Services

The Three Main Discovery XML Files
When a Web Service is created, you create a suite of additional discovery XML files that contain
information to help other clients find out what Web Services you have available. Let's go through our
first example to help describe the three main files that are common to Web Service discovery:

TE
AM
FL
Y

Team-Fly®

Chapter 7

4

❑ .disco

❑ .vsdisco

❑ .map

The .disco File
For our first example, we need to create an ASP.NET Web Service project called Discovery1. It does
not matter which language you choose as the creation of these XML files is the same for each, however
during the examples in this chapter we will predominantly be using C#.

❑ After opening a VS.NET session, select File, New then Project.

❑ Then create an ASP.NET Web Service project called Discovery1.

After the project has been created, select View, then Solution Explorer to see the following
window displayed:

Web Service Discovery

5

You may already be familiar with some of these automatically generated files but let us explain further
the associated discovery files contained within this project:

The first area we're interested in is the Service1.asmx file. This VS.NET project dynamically
generates the .disco XML file when you browse a specific Web Service (.asmx) and suffix it with
?disco. To display the .disco file, follow these steps:

❑ Select the Debug menu

❑ Select the Start menu option

❑ Wait for Internet Explorer to be displayed

❑ Type on the address line the following URL and hit enter:
http://localhost/ProWebServices/Disco/Discovery1/Service1.asmx?disco

The .disco file will be displayed and will look like this:

<?xml version="1.0" encoding="utf-8" ?>
<discovery xmlns="http://schemas.xmlsoap.org/disco"/>
<contractRef
 ref="http://localhost/ProWebServices/Disco/Discovery1/Service1.asmx?wsdl"
 docRef=" http://localhost/ProWebServices/Disco/Discovery1/Service1.asmx"
 xmlns="http://schemas.xmlsoap.org/disco/scl/" />
</discovery>

The above .disco file contains the information that is most relevant when promoting your Web
Service. The description of the structure of this file is covered later in this chapter. You may have
noticed that we have not yet actually created any publicly available methods within the .asmx Web
Service file for anyone to run.

Chapter 7

6

Therefore, before we continue, let's actually create a method within our Web Service to see how it
affects our .disco file. To do this:

❑ Click on the Service1.asmx file

❑ Press the right mouse button and select View Code

❑ Uncomment the example HelloWorld method

Now lets view the .disco file again by starting the project and using the ?disco suffix:

<?xml version="1.0" encoding="utf-8" ?>
<discovery xmlns="http://schemas.xmlsoap.org/disco"/>
<contractRef
 ref=" http://localhost/ProWebServices/Disco/Discovery1/Service1.asmx?wsdl"
 docRef=" http://localhost/ProWebServices/Disco/Discovery1/Service1.asmx"
 xmlns="http://schemas.xmlsoap.org/disco/scl/" />
<soap address="http://localhost/ProWebServices/Disco/Discovery1/Service1.asmx"
 xmlns:q1="http://tempuri.org/" binding="q1:Service1Soap"
 xmlns="http://schemas.xmlsoap.org/disco/soap/" />
</discovery>

A new element has been added to the .disco file: the <soap> element reproduces a portion of the
binding information found within a WSDL schema. It does this to allow a Web Service client to locate a
service using lightweight information. Therefore, rather than having to load the WSDL schema file
every time it needs to find the relevant information, it uses this summary information within the
.disco file to identify the contents of a specific WSDL file.

This <soap> element is actually optional information, it does not have to be included for the .disco
file to be used within a discovery process. The information it contains identifies the binding
information. Binding information is directly correlated to the transport that is acceptable for a Web
Service, so if you are after a Web Service (you know its HTTP location) but you specifically want the
SOAP transport, only then will the <soap> element advise you whether its available.

Structure of the .disco File
Discovery is performed by the creation of an XML file with a .disco extension. It is not compulsory to
create a discovery file for each Web Service. In some cases you may not wish to supply the .disco file,
because for example your Web Service is going to be consumed by another non-ASP.NET client that
does not understand the .disco file format. In this case you can simply supply the location of the
WSDL schema instead.

The DISCO standard is based around a strictly defined XML-structured file that is freely available for
Web Service clients to read to ascertain what Web Services are available. In the case of ASP.NET, this
file is created at run-time by the ASP.NET runtime when you browse to the .asmx file for a specific
Web Service project. During creation, the file is cached within the ASP.NET runtime. Subsequent calls
are therefore faster.

Web Service Discovery

7

As previously mentioned it is not a mandatory requirement that a .disco file is created along with the
Web Service. In fact, we can create our own .disco file, independently of the .asmx file, that can be
placed on another Internet server (such as IIS) to point towards our Web Service (more about this later
in the Creating Your Own .disco File section). This advanced customization can be used to create a series
of linking DISCO files that promote packages of functionality combining multiple Web Services. Even
though we have this flexibility to create our own custom .disco files away from the original project it
does not mean that our project's .disco file is suppressed. In fact these files are always created.

This XML .disco file uses XML attributes and elements to supply a Web Service client with
information as to the location of Web Services that may be available on our server.

An example of an XML-structured .disco file is shown below. The following file contains all the
elements and attributes that are supported by the DISCO standard:

<?xml version="1.0" encoding="utf-8"?>
<discovery xmlns="http://schemas.xmlsoap.org/disco/">
 <contractRef
 ref="http://localhost/ProWebServices/Disco/discovery1/service1.asmx?wsdl"
 docRef="http://localhost/ProWebServices/Disco/discovery1/service1.asmx"
 xmlns="http://schemas.xmlsoap.org/disco/scl/" />
 <soap address="http://localhost/ProWebServices/Disco/discovery1/service1.asmx"
 xmlns:q1="http://tempuri.org/" binding="q1:Service1Soap"
 xmlns="http://schemas.xmlsoap.org/disco/soap/" />
 <schemaRef ref="http://localhost/ProWebServices/Disco/discovery1/xmlfile1.xml"
 xmlns="http://schemas.xmlsoap.org/disco/schema/" />
 <discoveryRef
 ref="http://localhost/ProWebServices/Disco/discovery1/service1.asmx?disco"
 xmlns="http://schemas.xmlsoap.org/disco/" />
</discovery>

The above DISCO file contains links to WSDL files (<contractRef>) that describe the methods and
arguments that a specific Web Service has available for a remote Web Service client to consume. In
addition there are other elements <soap>, <schemaRef> and <discoverRef> which will be covered
later within this chapter.

As previously mentioned there is one .disco file for every ASP.NET Web Service .asmx file.
However, .disco files can in fact point to other .disco files (see <discoveryRef> element) to allow
for multiple Web Service promotion.

The previous .disco file shows the five main constituent parts

❑ Header (discovery element)

❑ Contract (contractRef element)

❑ Discovery (discoveryRef element)

❑ Schema (schemaRef element)

❑ Soap Binding (soap element)

Please note that URL locations defined within any .disco element are either specific or relative. If the
location is relative, paths are always relative to the location of where the .disco file is located.

Chapter 7

8

In the following sections, we'll describe the attributes and structure for each of these elements plus an
indication as to how they can be used in some real world scenarios.

Discovery Element
This section is mandatory and defines the XML header along with all relevant namespaces. It contains
the mandatory discovery namespace, http://schemas.xmlsoap.org/disco/. For those not
familiar with XML constructs this simply states that this file conforms to the XML DISCO standard. It
does not in this case point towards a specific Internet file that contains that standard definition, though it
should be noted that often this is the case with other XML standard definitions. :

This brings up an interesting thought about namespaces, because this namespace defines the DISCO
namespace. The elements within this XML-structured file only exist because that namespace standard
definition states that they should exist. For example, the DISCO namespace states that there can be zero
or more <discoveryRef> elements within a .disco file.

This leads us to the point about customization: we can in fact extend the DISCO format by creating our
own DISCO format. For example http://www.anycompany.org/myformat.xsd may actually
define an additional standard which extends a basic DISCO standard. See the following file:

<disco:discovery xmlns:disco="http://www.anycompany.org/myformat.xsd" >
 <contractRef ref="" docRef=""? xmlns="http://schemas.xmlsoap.org/disco/scl/"? > *
 <webserviceDescription ref="" xmlns="http://www.anycompany.org/wsdesc/"? > *
 <discoveryRef ref="" xmlns="http://schemas.xmlsoap.org/disco/"? > *
 <schemaRef ref="" xmlns="http://schemas.xmlsoap.org/disco/schema/"? > *
 <soap ref="" binding="" xmlns="http://schemas.xmlsoap.org/disco/soap/"? > *
</disco:discovery>

This advanced option is a little out of context for this chapter, however one interesting point to note is
that the above definition describes the current .disco XML standard but also significantly it adds a
new element to the standard called the <webserviceDescription> element. This ability to extend
the schema definition allows you to add additional definition files, information, documentation etc. to
the original DISCO standard in order to suit your own potentially unique requirements. An example of
this would be a development team that required a version or release number attached to each .disco
file, which changed every time a Web Service changed that was pointed to by this .disco file.

contractRef Element
The <contractRef> element defines the location of the WSDL schema, but in addition can also
include the URL location of some help or a Web Service description document.

The contract section is located on the <contractRef> element line. An example of this element is
shown below:

 <contractRef
 ref="http://localhost/ProWebServices/Disco/Discovery1/Service1.asmx?wsdl"
 docRef="http://localhost/ProWebServices/Disco/Discovery1/Service1.asmx"
 xmlns="http://schemas.xmlsoap.org/disco/scl/" />

This element contains the location information for the WSDL schema file within the ref XML attribute.

ref="http://localhost/ProWebServices/Disco/Discovery1/Service1.asmx?wsdl"

Web Service Discovery

9

The WSDL schema file describes the Web Service methods, arguments, and the Web Service's server
location. Please note that appending the ?wsdl parameter to the end of the .asmx file location will
always display the WSDL schema file, which describes the Web Service using an XML definition:

The <contractRef> element also contains the optional docRef attribute, which identifies the location
of an associated page, which can contain any HTML browser-readable text:

docRef="http://localhost/ProWebServices/Disco/Discovery1/Service1.asmx"

This text could contain any of (but is not limited to) the following subjects:

❑ Help

❑ Testing tools (for example .asmx file)

❑ Service level agreement

❑ Company information

By default, the docRef attribute link is automatically generated for ASP.NET and points to the .asmx
file. This page allows us to test a Web Service using a web browser front end, which is built by
ASP.NET, as we have seen in previous chapters.We can specify multiple contractRef elements within

one .disco file, however, Visual Studio .NET automatically limits this functionality
to one contractRef element per generated .asmx?disco file.

It's worth noting that the DISCO standard specifies that only WSDL schema files can be identified using
this element, making the WSDL file type the only currently supported use of the contractRef
element. This support is identified by the use of the http://schemas.xmlsoap.org/disco/scl/
namespace (the DISCO standard). However, we can also use other namespace definitions,
allowing us to extend the use of the DISCO standard. To do this we would need to define (using an
XML definition) a new namespace, for example
http://www.newnamespace.com/yournamespace.xml, and then change the namespace name
within this element to match the new definition being used. That namespace then needs to be defined
using an XML definitions file to describe a new file type that can be used within this element.

discoveryRef Element
The <discoveryRef> element allows us to further extend the abilities of our .disco file. We can use
this mechanism to point to other .disco files either on other servers or within our own localhost.
It's worth noting that the linking of .disco files is primarily to allow automated search engines, such as
www.salcentral.com, to browse through Web Services using a tree-like structure, discovering Web
Services and using this information to populate their search database.

The following diagram shows how multiple .disco files can create a peer-to-peer structure for the
discovery of Web Services:

Chapter 7

10

WebService1.asmx?disco

WebService2.asmx?disco

<discoveryRef ref="WebService2.asmx?disco" />

<discoveryRef ref="WebService3.asmx?disco" />
<discoveryRef ref="WebService4.asmx?disco" />

WebService3.asmx?disco WebService4.asmx?disco

Although this element is available within the .disco file, there is currently no method of adding it to a
definition for an .asmx file. However, as the .vsdisco format shares the same structure as the .disco
file, this extremely powerful element can be utilized successfully, as we will see later.

schemaRef Element
The <schemaRef> element allows us to attach an XML schema definition to the .disco file. This
allows extra information to be encapsulated within the .disco file to describe data types being
transferred within the Web Service:

<schema:schemaRef ref="http://localhost/webservice1/xmlschema.xsd" />

An example of when this would be used is when we have created a Web Service which creates its own
data type using an XML parser or by simply concatenating string elements together in a pre-described
fashion. The Web Service in these cases would not know about the structure, but we must still be able to
relay this information to the calling client. In that case we would create an additional .xsd XML
definition file and simply attach it to our .disco file using this <schemaRef> element.

soapRef Binding Element
The <soapRef> element reproduces a portion of the binding information found within a WSDL
schema. It does this to allow a Web Service client to locate a service using lightweight information, so
that rather than having to load the WSDL schema file every time it needs to find the relevant
information, it uses this summary information to identify the contents of a specific WSDL file.

The .vsdisco File
The .vsdisco file contains multiple .disco files and is dynamically generated when browsed to,
similar to how the .disco file works.

It conforms to the exact same standards as defined in the .disco file, but instead of being generated by
the information found within a single .asmx file it is generated from all the files found within the
current project.

Web Service Discovery

11

The .vsdisco file and .disco file perform similar tasks, however they can be simply differentiated
as follows.

The VS.NET .disco file:

❑ Points to one WSDL Web Service

❑ Is dynamically created using VS.NET runtime

❑ Contains additional elements such as <soap> and <schemaRef>

The VS.NET .vsdisco file:

❑ Points to many .disco files

❑ Can be used to package together many Web Services

❑ Is dynamically created using VS.NET runtime

❑ Points to all Web Services contained within a VS.NET Web Service project

Before we display the .vsdisco file, we first need to create a new Web Service .asmx file. To
accomplish this just follow these steps:

❑ Click on the project name Discovery1

❑ Right click your mouse.

❑ Select Add menu option

❑ Select Add Web Service… menu option

❑ Press the Open button to use the default name, which should be Service2.asmx.

Your Solution Explorer window will now look something like this:

Chapter 7

12

Within the Solution Explorer window, you will see the file suffixed with a .vsdisco:

❑ Highlight the .vsdisco file within your Solution Explorer window

❑ Right click your mouse and choose View in Browser menu option

The .vsdisco file will now be generated, this may take some time, but please note that subsequent calls are
usually quicker, it's only when you change a file within the project that it takes a while to generate.

Looking at the file you should be able to see some remarkable resemblances to the .disco file
displayed previously. This is because, first of all, the .vsdisco file conforms to the DISCO standard,
hence the namespace of http://schemas.xmlsoap.org/disco is being used in its header.
Secondly, it contains information on all the Web Services contained within this project.

Now it may become apparent why we added a new Web Service to this project, this was to see how it
reflects the information within this .vsdisco file by adding a new <contractRef> element line.

Your .vsdisco file, when browsed to, should now look like this:

You must browse to the file by typing the following location into your browser address
field, do not simply load the file into VS.NET by double clicking your mouse on it.

http://localhost/ProWebServices/Disco/Discovery1/Discovery.vsdisco

<?xml version="1.0" encoding="utf-8" ?>
<discovery xmlns="http://schemas.xmlsoap.org/disco"/>
<contractRef ref="http://localhost/ProWebServices/Disco/Discovery1/Service1.asmx?wsdl"
 docRef="http://localhost/ProWebServices/Disco/Discovery1/Service1.asmx"
 xmlns="http://schemas.xmlsoap.org/disco/scl/" />
<contractRef ref="http://localhost/ProWebServices/Disco/Discovery1/Service2.asmx?wsdl"
 docRef="http://localhost/ProWebServices/Disco/Discovery1/Service2.asmx"
 xmlns="http://schemas.xmlsoap.org/disco/scl/" />
</discovery>

Looking at the above file you will see that the <contractRef> elements describe the Service1.asmx
and Service2.asmx Web Services. However, neither have an associated <soap> element. This is
because this information is not meant to be included within these .vsdisco files as it is already
covered within each Web Service's associated .disco file. This omission is a feature of ASP.NET.

Linking to Remote Web Services Using a .vsdisco File
Previously we discussed how we can link discovery files from outside sources using the
<discoveryRef> element, what we'll see now is how we can attach multiple Web Service projects
together using this method.

For this example, you will need to add a new Web Service project to your existing project:

❑ Select File from the menu

❑ Select Add Project

Web Service Discovery

13

❑ Select New Project

❑ Select to create a C# ASP.NET Web Service project

❑ Type in Discovery2 as the project name

❑ Press the OK button to create project

Now we need to add this new Web Service (Discovery2) into our current Web Service project
(Discovery1). To do this, follow these steps:

❑ Right click on the new Service1.asmx and select Set as Start Page

❑ Press F5 to build the projects

❑ Select the References folder of project Discovery1

❑ Right click your mouse button

❑ Select Add Web Reference

❑ Type in the following and hit enter:
http://localhost/ProWebServices/Disco/Discovery2/Service1.asmx

❑ Press the Add Reference button (lower right)

Your project should now look as follows:

TE
AM
FL
Y

Team-Fly®

Chapter 7

14

What we want to do now is make the Discovery1.vsdisco file link to the new Discovery2 project.
We can do this by double clicking the mouse on the Discovery1.vsdisco file, which will display
the following:

<?xml version="1.0" encoding="utf-8" ?>
<dynamicDiscovery xmlns="urn:schemas-dynamicdiscovery:disco.2000-03-17">
 <exclude path="_vti_cnf" />
 <exclude path="_vti_pvt" />
 <exclude path="_vti_log" />
 <exclude path="_vti_script" />
 <exclude path="_vti_txt" />
 <exclude path="Web References" />
</dynamicDiscovery>

This is unlike the browsed version of the .vsdisco file we've seen previously and in fact the information
contained within this file is used dynamically to create the .vsdisco file when viewed in a browser.

Notice the above line that states <exclude path="Web References" />. This indicates that when
creating the .vsdisco file ASP.NET should not include any Web Services contained within the Web
References directory (and others listed above). This is in fact where our newly imported
Discovery2/Service1 Web Service resides.

All paths contained within the .vsdisco file are relative to the .vsdisco file
location.

We can use the ability to include Web Services within our .vsdisco file by simply removing the
<exclude path="Web References" /> element, thus allowing the .vsdisco file to generate itself
using any Web Services it now finds in the Web References folder, in addition to the other folders it's
allowed to scan.

Once you've removed that element and saved the file, right click on the Discovery1.vsdisco file
and click View in Browser:

<?xml version="1.0" encoding="utf-8" ?>
<discovery xmlns="http://schemas.xmlsoap.org/disco"/>
<contractRef ref="http://localhost/ProWebServices/Disco/Discovery1/Service1.asmx?wsdl"
 docRef="http://localhost/ProWebServices/Disco/Discovery1/Service1.asmx"
 xmlns="http://schemas.xmlsoap.org/disco/scl/" />
<contractRef ref="http://localhost/ProWebServices/Disco/Discovery1/Service2.asmx?wsdl"
 docRef="http://localhost/ProWebServices/Disco/Discovery1/Service2.asmx"
 xmlns="http://schemas.xmlsoap.org/disco/scl/" />
<discoveryRef ref="http://localhost/ProWebServices/Disco/Discovery1/Web
References/localhost/Service1.disco" />
</discovery>

Now a new element has appeared:

<discoveryRef ref="http://localhost/ProWebServices/Disco/Discovery1/Web
References/localhost/Service1.disco" />

Web Service Discovery

15

This element was dynamically created because the system recognized our need to include Web Services
in the Web References directory. What actually happens during generation of the .vsdisco file is
that it searches the current root of your project and all sub-directories within the project for files with
the suffix .disco and then places them as <discoveryRef> element links.

When ASP.NET is generating the .vsdisco file it searches for other .disco files

The .vsdisco file automatically generates and searches for these files because it has the .vsdisco
extension and because it contains the following basic XML construct:

<?xml version="1.0" ?>
<dynamicDiscovery xmlns="urn:schemas-dynamicdiscovery:disco.2000-03-17">
 . . . optional excludes goes here . . .
</dynamicDiscovery>

We can in fact create this file at any level and not necessarily within an ASP.NET Web Service project.
To make sure that all .disco files are discovered on your entire web server, simply place this file at a
root level on a web server that has had the server version of ASP.NET installed. When browsed to it
will then generate all the .disco files it finds in all sub-directories.

.disco files generated by using the command .asmx?disco in a URL are not
recognized by dynamic discovery using the .vsdisco file. It can only discover files
that actually exist and are not dynamically generated by the VS.NET runtime.

Add Web Reference
Within VS.NET, we can consume someone else's Web Service by adding it directly into our VS.NET project.
This is done using the Add Web Reference menu option from within Visual Studio .NET. Once added to
our project, we may call that Web Service as part of the general functionality of our application.

Adding a Single Web Service to Your Project
We can add a single Web Service by creating a client project using the following steps:

❑ View code of Service1.asmx file in the Discovery1 project

❑ Uncomment the HelloWorld example if you haven't already done this

❑ Build the Discovery1 project by selecting the project name, right clicking your mouse and
choosing Build

❑ Select File menu option

❑ Select Add Project

❑ Select New Project

Chapter 7

16

❑ Select Windows Application

❑ Type in DiscoveryClient for your project name then press OK button. You should now have
the following files and projects in your Solution Explorer window.

❑ Click on the References folder in your new DiscoveryClient project

❑ Right click your mouse and select Add Web Reference

❑ Type in the following address and hit enter:
http://localhost/ProWebServices/Disco/Discovery1/Service1.asmx

❑ Refresh the screen

You will now see the following screen. This screen allows us to view the details of the Web Service we want
to add into our project, and in the case of .asmx files also allows us to test the Web Service before we use it:

Web Service Discovery

17

The Add Reference button will have become enabled. We can therefore click on it to add our Web
Service directly into our new client project. However, before you do let's consider the following. The
question is how does the Add Reference button know that we have identified a Web Service?

It can all be revealed by looking at the source for our .asmx file. To view the source for the .asmx file click
on the Service1 page on the left within the above screen, then right click your mouse, now choose View
Source. Notepad will now load and you will be able to see the following link in the HTML header:

<link rel="alternate" type="text/xml" href="Service1.asmx?disco"/>

This simple link identifies to the Add Web Reference browser that there is an associated .disco file
for this page, so when it loads, your .asmx file also looks for the location of the above tag. If found the
Add Web Reference browser also reads and interprets the associated .disco file. Then, if a
<contractRef> link exists (or even multiple <contractRef> elements), it automatically enables the
Add Reference button.

This in-built facility is actually a designated use for the .disco file. However, for the moment only two
ASP.NET Search Directories support it, UDDI and www.salcentral.com (more about these later).

The Add Web Reference address field will accept any of the following file types and at the same time
enable the Add Reference button to allow us to add Web Service(s) into our project:

Chapter 7

18

❑ .disco (Disco file)

❑ .vsdisco (dynamic Discovery file)

❑ .wsdl (Web Service Description Language file)

❑ .asmx

Adding Multiple Web Services to Your Project
In a previous part of this chapter (section on Linking to Remote Web Services Using a .vsdisco File) we
created a .vsdisco file which included links to two local Web Services using the <contractRef>
element and a remote Web Service using the <discoveryRef> element.

What we'll do now is to see how it can actually be used to help in the discovery of Web Services. For
this example, we will need to display the Add Web Reference screen for the client project we just
created and then type in the name of the following dynamic discovery file from our first project:

http://localhost/ProWebServices/Disco/Discovery1/Discovery1.vsdisco

Once loaded the following screen will be displayed:

For ASP.NET a single .disco file is always associated with a single .asmx file.
However, the DISCO standard allows for multiple .disco files pointing toward the
same Web Service, allowing for greater customization.

Web Service Discovery

19

The important bit that interests us is in the window (headed Available references) on the right, which
contains the Web Service links:

Icon Description

This link denotes that it is a link to the WSDL definition of a Web Service and when
the Add Reference button is pressed it will be added into your project and be able to
be consumed. Please note that this icon changes depending on what language you
are using (VB.NET uses a different icon).

This link denotes that a sub-list of Web Services exist and by selecting this link you can
browse to further Web Services. If you press the Add Reference button while this is
displayed then the Web Services this link to that are currently not displayed
are ignored.

If you click the Add Reference button then the Web References folder now contains links to two Web
Services, which reflects the two Web Services contained within the Discovery1 project. You should
see something similar to the following screen:

Chapter 7

20

Look at the new files that have been copied into your project. It's apparent that the two Web Services
have now been attached to this client by importing copies of the relevant .wsdl files. However, in
addition to these files it has also imported two .disco files. All files within the Web References folder
are copies of the original WSDL files and can be changed accordingly. You can experiment by changing
the local WSDL and later replace your changed copies with the originals by clicking your mouse on
localhost1 (or the server name) and selecting Update Web Reference.

The .map File
A DISCO .map file is an XML document published by a Web Service that contains the original links to
its resources, for example links to .wsdl and .disco files that describe the Web Service. These links
are used to associate this linked remote file name with the name of a local file contained within the
current project.

The .map file is created by the client at the time you add a web reference. We can view it by simply
double clicking our mouse on the file called Reference.map within the Web References folder. On
creation, the .map file is always named Reference.map.

After loading the Reference.map file you will now see the following displayed. The values contained
within the following file are based upon the assumption that you have carried out all previous steps in
this chapter:

<?xml version="1.0" encoding="utf-8"?>
<DiscoveryClientResultsFile xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <Results>
 <DiscoveryClientResult
 referenceType="System.Web.Services.Discovery.DiscoveryDocumentReference"

Web Service Discovery

21

 url="http://localhost/ProWebServices/Disco/Discovery1/Discovery1.vsdisco"
 filename="Discovery1.disco" />
 <DiscoveryClientResult
 referenceType="System.Web.Services.Discovery.ContractReference"
 url="http://localhost/ProWebServices/Disco/Discovery1/Service2.asmx?wsdl"
 filename="Service2.wsdl" />
 <DiscoveryClientResult
 referenceType="System.Web.Services.Discovery.ContractReference"
 url="http://localhost/ProWebServices/Disco/Discovery1/Service1.asmx?wsdl"
 filename="Service1.wsdl" />
 <DiscoveryClientResult
 referenceType="System.Web.Services.Discovery.DiscoveryDocumentReference"
 url="http://localhost/ProWebServices/Disco/Discovery1/Web
 References/localhost/Service1.disco" filename="Service1.disco" />
 </Results>
</DiscoveryClientResultsFile>

The Reference.map file is re-generated every time you use the Update Web Reference feature of
VS.NET. Using the previous screenshot, Update Web Reference can be run by selecting the host name
(in our case "localhost1") and right clicking your mouse button. This feature refreshes all files contained
underneath the host name.

As far as finding uses for the .map file, it is most helpful in allowing you to see where the copies of the
original file are located. For example, if for some reason the Update Web Reference feature was not
working, you could load each of the files listed within the .map file and make sure that each could be
viewed within your browser. This would effectively check that the connection was valid for each file.

DiscoveryClientResult Element
The <DiscoveryClientResult> element within the file can be repeated as many times as there are
relevant links to the referenced Web Service. Each element is broken down into three attributes:

Attribute Name Description

referenceType Refers to a string constant value that is a recognized and valid name in the
System.Web.Services.Discovery namespace. The only three valid
entries are currently:

❑ System.Web.Services.Discovery.DiscoveryDocumentRef
erence
(indicates element points to a .disco file)

❑ System.Web.Services.Discovery.ContractReference
(indicates element points to a .wsdl schema file)

❑ System.Web.Services.Discovery.SchemaReference
(indicates element points to an .xsd schema file)

url Points to the remote URL location of the specified file.

filename Points to the name of the file that was created locally when the Web Service
was added to the current project.

Chapter 7

22

The <DiscoveryClientResult> element is populated by the information contained in the .disco
file it finds (if any) when adding a remote WSDL schema into the current VS.NET client project. If no
.disco file is found then only the ContractReference is created inside the DISCO .map file.

Creating Your Own .disco File
It seems because the .disco file is created by VS.NET it is created to a pre-defined limited structure.
Therefore, even though the DISCO standard allows for considerable flexibility, VS.NET itself actually
restricts this flexibility when automatically generating the .disco file. An example of this restriction is
that the .asmx?disco file only ever creates one <contractRef> element for every .disco file,
whereas the DISCO standard allows for multiple <contractRef> elements.

This leads us nicely to how we can get around these restrictions by manually creating additional disco
files that point towards the Web Services we wish to promote.

Create a new XML file within your project following these steps:

❑ Click on the Discovery1 project

❑ Right click your mouse and select the Add menu option following by Add New Item.

❑ Select the XML File template.

❑ Change the file name to XMLFile1.disco

❑ Enter the following XML elements into your new XML file:

<?xml version="1.0" encoding="utf-8"?>
<discovery xmlns="http://schemas.xmlsoap.org/disco/">
 <contractRef
 ref="http://localhost/ProWebServices/Disco/Discovery1/Service2.asmx?wsdl"
 docRef="http://localhost/ProWebServices/Disco/Discovery1/Service2.asmx"
 xmlns="http://schemas.xmlsoap.org/disco/scl/" />
</discovery>

The above example exactly copies the .disco file that would have been produced if we had simply
browsed to the file using the following browser HTTP command:

http://localhost/ProWebServices/Disco/Discovery1/Service2.asmx?disco

However we've now created a local file that can be edited locally and has the same discovery features as
an automatically generated .disco file. Before we see how this looks inside the Add Web Reference
browser, and as this is a little tedious simply reproducing the same file, let's elaborate on the file
structure a little and see how we can use this technique to link .disco files together.

Let's embellish the .disco file by adding a <discoveryRef> element. This element allows us to link
from one DISCO file to another, simulating peer-to-peer discovery of Web Services.

The below diagram describes how peer-to-peer discovery can work within DISCO, by linking together
multiple .vsdisco and .wsdl files.

Web Service Discovery

23

Company D .vsdisco

webservice1.asmx?wsdl

webservice2.asmx?wsdl

webservice3.asmx?wsdl

webservice4.asmx?wsdl

Company C .disco

Company A .disco

webservice5.asmx?wsdl

Company B .disco

Enter the following discoveryRef element line in your XMLFile1.disco file inside the
<discovery> tags:

<discoveryRef
 ref="http://localhost/ProWebServices/Disco/Discovery1/Discovery1.vsdisco" />

The new element location points towards an existing valid .vsdisco file. To see how this affects the
discovery process we simply need to use the Add a Web Reference menu option again (for this
example we'll use the previously created DiscoveryClient project). However, this time type the
location of your newly altered XMLFile1.disco file in the Address field:

TE
AM
FL
Y

Team-Fly®

Chapter 7

24

You can now see that the Available references window of the browser (right hand window) displays the
Service2.asmx file (which is your <contractRef> element), but it additionally displays the additional
linked .vsdisco file (which is the <discoveryRef> element), this is the extra line we added.

We can now simply add the web reference to our project, as we have done previously, or we can click
on the Linked reference groups and navigate to another .disco file.

On first glance it is not obvious but the repercussions of this type of linking ability are astonishing, as it
provides the ability to connect together vast sums of Web Services, in a similar manner to how you
would link web pages together. The future of this type of ability it to create a Napster-style series of
Web Services that allow a user to browse from Web Service to Web Service similar to how you browse
between HTML pages today.

In addition, in the above example we have linked a .vsdisco file instead of a .disco file, clicking on
it will display the following screen:

We've already displayed this screen before (see Adding Multiple Web Services to your Project) however it's
actually now changed. Because we previously discussed how the .vsdisco file dynamically updated its
own entries, you will see that the file we've just added, XMLFile1.disco, has also now been added to
the .vsdisco list. This link in fact allows us to navigate back to the file that displayed this page.

Web Service Discovery

25

Using .disco customization in real world situations can add significant and advanced features to how
we roll out our applications. For example, say we created three Web Services all in separate projects
and we require promotion of all of these Web Services together as a group/package. Normally there
would be no option other than giving our customer three XML files (.wsdl or .disco).However, by
creating a .disco file with multiple <contractRef> elements and giving this .disco file to our
customer, who can subsequently browse to it from within their ASP.NET application, we can roll out
our application using one single file.

The location of a created .disco file is not important as long as it can be accessed
remotely by your customer.

Using this technique we could set up multiple .disco files for each specific software package we wish
to promote, each package containing links to multiple WSDL schemas. We may also mix Web Services
in these .disco packages allowing us to easily reuse common components.

discofileA.disco discofileB.disco discofileC.disco

Project1\Service1.asmx

Project2\Service2.asmx

Project3\Service1.asmx

Project3\Common.asmx
Project4\Library.asmx

Create your own Local Library of Web Services
One significant benefit of Web Service discovery is in the area of keeping track of your own Web Services.

It's apparent that even as individuals we do not reuse work as well as we could. Therefore, what we'll do
now is describe a simple way to create and administer our own list of Web Services to allow us to easily
reuse them in our own subsequent projects in ASP.NET.

You may have noticed that every time you viewed the Add Web Reference screen (in previous
examples in this chapter), the first thing that's displayed is a UDDI search screen similar to the
following one (this screen may change in subsequent versions of Visual Studio .NET):

Chapter 7

26

When we display this screen, what is not generally apparent but becomes available after inspection is
that the left hand screen is actually a simply HTM file situated on your local hard drive. To get a better
feel for how the browser operates:

❑ Click your mouse anywhere on the left hand window (on the text area not the UDDI logo's)

❑ Right click your mouse and select Properties.

You will now see that the home page is actually the following link:

file://C:\Program%20Files\Microsoft%20Visual%20Studio.NET\Common7\Packages\1033\Hel
pWatermark.htm

This is actually the location of the default page for your Add Web Reference browser. This location will
change depending on your original installation path for VS.NET.

You can change the default HelpWatermark.htm yourself using either Notepad or any simple HTML
editor; just treat it as you would any other HTML file. This ability to customize our home page can
allows us to use advanced features such as adding additional search engines that support the .disco
standard (see www.whatwebservice.com) or create a custom built Web Services library that is peculiar
to your own requirement, such as a contact information or a list of commonly used Web Services. A
minus point of this type of feature is that you need to roll it out to each developer.

Web Service Discovery

27

This ability to keep track of our own Web Services allows us to more easily share Web Service
development between projects or even individuals within the same company, but instead of linking
together XML files we can use HTML files with much more descriptive and relevant information.

UDDI is a platform-independent database, which contains information on the location
and category of businesses and Web Services. This allows us to more easily find
business partners or suppliers and also locate and consume Web Services.

Sharing Web Services within a department would mean simply linking from the HelpWatermark.htm
to a simple HTML file, which contains a list of descriptions and links to each WSDL schema. If a
developer wanted to use a Web Service, they would simply decide by reading the text and then browse
to the relevant WSDL schema, which immediately activates the 'Add Reference' button at the bottom of
the browser window.In addition some development teams may even use this feature to omit the UDDI
link to discourage use of third party Web Services.

Project2 \Service1 .asmx?wsdl

Project1 \Service1 .asmx?wsdl

YourWebServices.htm

Description of sereral
web services.

HelpWaterMark.htm

Link to in house library
Link to UDDI

Web References on Local Web Server
Looking at the Add Web Reference screen you will notice the Web References on Local Server link.
If you click on it, it will display a .vsdisco file which is created automatically by VS.NET. This
.vsdisco file scans all sub-directories within the localhost and displays all links to Web Services
and DISCO files it finds. This is by design, but one additional feature benefit is that you can substitute
your own.vsdisco file instead. To do this we must first of all locate the root of our localhost server
(or whichever server you are using). In the case of localhost this will normally be positioned at
[default drive]:/inetpub/wwwroot.

Once located we can now create our own local Web Server file. We simply copy the following
.vsdisco information into the file default.vsdisco in the root of the localhost web server:

<?xml version="1.0" encoding="utf-8"?>
<discovery xmlns="http://schemas.xmlsoap.org/disco/">
 <contractRef
 ref="http://localhost/ProWebServices/Disco/Discovery1/Service1.asmx?wsdl"
 docRef="http://localhost/ProWebServices/Disco/Discovery1/Service1.asmx"
 xmlns="http://schemas.xmlsoap.org/disco/scl/" />
 <contractRef
 ref="http://localhost/ProWebServices/Disco/Discovery1/Service2.asmx?wsdl"
 docRef="http://localhost/ProWebServices/Disco/Discovery1/Service2.asmx"
 xmlns="http://schemas.xmlsoap.org/disco/scl/" />
</discovery>

Now within our client ASP.NET project, click on the Web References on Local Web Server link to
select it. We will then see the following screen displayed:

Chapter 7

28

We can now add or alter the default.vsdisco file in-line to track the Web Services we are interested in.

Creating a HTML Library of Web Services
This type of linking to .vsdisco files is a little uninspiring and tells us very little about the Web
Service we are viewing. Therefore, let's add a specialist HTML file that acts as a library for our own
Web Services.

Create the following HTML file (called disco.htm) and place it in the same directory (root of your
localhost server) as your default.vsdisco file:

<html>
<head>
<meta http-equiv="Content-Language" content="en-gb">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>New Page 1</title>
</head>
<body>
 <h1>My Local Web Services</h1>
 <p>Very simple method that passes back the words helloworld.

Web Service Discovery

29

 HelloWorld

 (Service1.asmx)</p>
 <p>Another simple method that passed back the words helloworld.

 HelloWorld

 (Service2.asmx)</p>
</body>
</html>

The above HTML file contains two links, one to the Discovery1\Service1.asmx file and the other
to the Discovery1\Service2.asmx file, the files we created in our previous examples.

Now edit your HelpWaterMark.htm file using Notepad and change the following link from:

…to…

This link was the link behind the Web References on Local Server link and why we had to create a
default.vsdisco file last time.

That's all the changes we require. Now within our client ASP.NET project, click on the Web
References on Local Web Server link to select it. You will see the following screen displayed:

Chapter 7

30

Simply click on the link for each Web Service to allow you to view the WSDL schema for each Web
Service. When you've selected the .wsdl file the Add Reference button will immediately become
active and you will be able to add it to your project. Using this method of updating the HTML file we've
created we can keep developer notes, keep track of all our common Web Services, and allow them to be
reused within any project we develop.Though this has a certain amount of overhead in maintenance, it has the
advantage of saving time and money throughout the project as developers can now easily understand and reuse
additional Web Services.

Specialist Search Engines
We've covered previously in this chapter how we can use DISCO technology to link pages together and
attach .disco files to an HTML page using the <link> tag on an HTML file. What we'll do now is see
what we can accomplish by using the technology commercially available over the Internet and how
third party search engines (outside of UDDI) can allow us to search for Web Services. SalCentral is a
company that has placed this technology into their Web Services search engine to allow developers to
dynamically consume Web Services from companies around the world.

SalCentral is a search engine that supports the DISCO standard. To see how it works, within the
Address field of the Add Web Reference browser type the following link:

http://www.salcentral.com/dotnet.asp

This is the opening page for the SalCentral search engine; you will now see the following screen:

Web Service Discovery

31

This screen has been specifically designed by SalCentral to allow simple search techniques, similar to
how a web site search engine works. As you search this search engine, you will notice that the Add
Reference button remains disabled.

For this example, we'll skip the selection process (everyone by now should know how to use a search
engine). What we'll do is type in the end location of a screen that will be shown once we navigate down
to a specific Web Service:

http://sal006.salnetwork.com:83/lucin/SMSMessaging/addserv.htm?WSURL=http://sal006.saln
etwork.com/lucin/SMSMessaging/Process.xml

This screen shows you the result of searching for an SMS Text messaging Web Service within SalCentral:

Chapter 7

32

As you can see the Add Reference button has now been enabled. To see why, follow these steps:

❑ Select the left hand browser page, try not to click on a graphic

❑ Press your right mouse button and select View Source

You will now be able to see that the searching mechanism is simply displaying the <link> tag that we
described earlier that attaches a .disco file to the current HTML page. This mechanism is then read
by the Add Web Reference browser and the Add Reference button is then enabled:

<link rel="alternate" type="text/xml"
href="http://sal006.salnetwork.com:83/lucin/SMSMessaging/disco.xml"/>

It's a simple mechanism, which is used very effectively to search for Web Services and to allow us to
pull them into our ASP.NET project.

What's actually happening here is that the search engine is creating the disco.xml files and .htm files
prior to when we view the page, using a specialist HTML file creation tool and SQL Server as the
database. This simple technique means that HTML links are dynamically created from the Web
Services contained within the search engine's database.

Web Service Discovery

33

Promoting your Web Services
You can also enter your Web Services onto a specialist search engine. These search engines simply ask
for basic information about your Web Service and then promote your Web Services using newsletters
and general search techniques.

http://www.salcentral.com/salnet/add.asp

UDDI
We could not cover discovering Web Services without mentioning UDDI (Universal Description,
Discovery and Integration). UDDI is a significant departure from general Microsoft technologies as it
offers a platform-independent database, which contains information on the location and category of
businesses and Web Services. This allows us to more easily find business partners or suppliers and also
locate and consume Web Services.

Why have UDDI? Well one reason for backing UDDI is that if you have a central repository that all
organizations can collaborate in populating, it acts in a similar way to how a phone book operates, in
that we can find and locate organizations either in our area or in a specific category that we are
interested in. Currently we can trawl through vast quantities of Internet pages looking for that specific
supplier, which is more akin to sticking a pin in a map than a selection using categorized information. It
seems sensible to search for, say, a specific supplier (supplier of tape backups) in our area (Washington);
the UDDI registry helps us to accomplish this.

The UDDI Web Service
When we search, update or add a Web Service to UDDI it is always done through a Web Service. There
are currently three ways of interacting with UDDI:

❑ Sending SOAP request messages and receiving SOAP responses
This is certainly the most complex and means that you require a significant understanding about firstly
the SOAP message but also how the UDDI registry is structured.

❑ Using the UDDI SDK for ASP.NET
This SDK hides the creation of SOAP messages from the developer by wrapping them within an object-
based interface. A VS.NET version is available at the following location
http://uddi.microsoft.com/developer/default.aspx.

❑ Using the UDDI SDK for Windows 95, 98 and NT
Same as above but for a different operating system. A COM version is available at the following location
http://uddi.microsoft.com/developer/default.aspx.

Who Controls UDDI?
The UDDI registry is not solely run by Microsoft. IBM and Ariba are also controlling repositories for
UDDI. This means that if we post information with one, then it's replicated on all databases held by
those companies. Each of the independent repositories have the same interface to give any outside
organization or individual the opportunity to post information to UDDI using the UDDI Publish Web
Service and search UDDI using the UDDI Inquire Web Service:

TE
AM
FL
Y

Team-Fly®

Chapter 7

34

Microsoft UDDI IBM UDDI Ariba UDDI

UDDI Publish

UDDI Inquire

UDDI Publish

UDDI Inquire

UDDI Publish

UDDI Inquire

Mirrorred Data Mirrorred Data

The following are the Web Service server end-points for each of the three holding organizations; these
end-points are purely for UDDI inquiries only. The publishing end-points will be alternative server
locations and usually require HTTPS secure transmissions:

❑ Microsoft inquiry server
http://uddi.microsoft.com/inquire

❑ IBM inquiry server
http://www-3.ibm.com/services/uddi/inquiryapi

❑ Ariba inquiry server
http://uddi.ariba.com/UDDIProcessor.aw/ad/process

In simple terms, if you want to inquire about an entry in the UDDI register you send the correct SOAP
message to any one of the above Internet locations. Each one will process the request and send back a
valid SOAP response (or fault) message.

The UDDI Web Service Definition
The UDDI Web Service has a SOAP interface, which can be used to send messages to a SOAP server to
search or edit the UDDI registry. It also has a WSDL schema definition that defines this Web Service.

The UDDI WSDL Schema definition is split into two distinct files:

❑ Searching (locating businesses and Web Services)
http://www.uddi.org/wsdl/inquire_v1.wsdl

❑ Publishing (adding, updating and removing businesses and Web Services)
http://www.uddi.org/wsdl/publish_v1.wsdl

It should be noted that the above WSDL schema specifications as at the time of publishing this book
were not supported from within ASP.NET by browsing to the schemas using the above mentioned
'Add Web Reference' menu option. However, it's expected that a developer can use the ASP.NET
UDDI SDK to interact with the UDDI database.

Both of these files contain a link to the following XML data type definition file:
http://www.uddi.org/schema/2001/uddi_v1.xsd

This file contains the data type definitions that are used within UDDI – valid data types that can be used
when sending/receiving information in UDDI.

Web Service Discovery

35

Understanding the Structure of the UDDI WSDL Schemas
On first inspection the XML structure defined in the WSDL schema looks vague and difficult to
understand, but learning a few simple concepts will allow you to greatly improve your understanding of
the technical side of how UDDI works. With this knowledge you can change the method of trafficking
information to UDDI, by for example, sending down your SOAP request by constructing it yourself and
using a simple communication TCP/IP package to connect to UDDI. This could help you in situations
where you have a potential memory constraint and you need to reduce the components loaded.

First, each of the two functionality files, Searching (locating businesses and Web Services) and
Publishing (adding, updating and removing businesses and Web Services) contains the Web Service
methods and arguments that are available for us to use.

The following XML extract is from the Searching file
(http://www.uddi.org/wsdl/inquire_v1.wsdl) and outlines the definition for the methods to
use if you wish to Find Business within UDDI:

<operation name="find_business">
 <soap:operation soapAction="" style="document" />
 <input message="tns:find_business">
 <soap:body use="literal" parts="body" namespace="urn:uddi-org:api" />
 </input>
 <output message="tns:businessDetail">
 <soap:body use="literal" parts="body" namespace="urn:uddi-org:api" />
 </output>
 <fault name="error" message="tns:dispositionReport">
 <soap:fault name="error" use="literal" />
 </fault>
</operation>

Without going into SOAP message construction (this is covered elsewhere within this book), we'll use
the following diagram to explain what the above XML extract shows us:

find_business

find_business (message)

Input Message (SOAP Request - send to server)

businessDetail (message)

Output Message (SOAP Response - receive from server)

disposition Report (message)

Fault Message (SOAP Fault - receive from server)

Chapter 7

36

In the XML extract it refers to the find_business and the businessDetail messages. If you
perform a text search within that same WSDL schema, you will see the following two sections (they will
not necessarily be situated together):

find_business message:

<message name="find_business">
 <part name="body" element="uddi:find_business" />
</message>

businessDetail message:

<message name="businessDetail">
 <part name="body" element="uddi:business_Detail" />
</message>

So far, the above definitions have already described how the basic SOAP message will look. However,
often in the above <part name> element, you will see a recognized data type (string, boolean etc.).
This time it used the data type definition find_business and business_Detail. These definitions
are unique to UDDI and they contain an XML structure that defines the arguments we should send
within the SOAP request message. They also define the expected XML construct to receive back from
UDDI. These data type definitions can be found in the UDDI XML data type definition file located at
http://www.uddi.org/schema/2001/uddi_v1.xsd.

Below is an example of how the SOAP message would look if you were to construct it yourself:

<?xml version='1.0' encoding='UTF-8'?>
<Envelope xmlns='http://schemas.xmlsoap.org/soap/envelope/'>
 <find_business generic="1.0" maxrows=30 xmlns="urn:uddi-org:api">
 <name>Microsoft</name>
 </find_business>
</Envelope>

That's it, just send this SOAP message to the Inquiry (http://uddi.microsoft.com/inquire)
UDDI server, the returned result will be the businessDetail XML structure.

Searching the UDDI Register Using the ASP.NET SDK
There seems to be an SDK for everything these days and UDDI is no exception. The UDDI SDK gives
you as a developer a common and simple interface to interact with UDDI, without the requirement of
understanding SOAP. The SDK allows you to remove, update, search and add entries into the UDDI
registry. To access this component you must first download and install the UDDI SDK. You will find
the ASP.NET version available at:

http://uddi.microsoft.com/developer/default.aspx

Once installed you need to add a reference to the DLL, the easiest way to accomplish this is to use the
Add Reference menu option to browse to the file Microsoft.UDDI.SDK.dll situated in the directory
where you installed the SDK.

Once this is done you will be able to use the following code to access UDDI from within VS.NET.
Simply create a new client project and type in the following code:

Web Service Discovery

37

using Microsoft.Uddi;
using Microsoft.Uddi.Business;
using Microsoft.Uddi.Service;
using Microsoft.Uddi.Binding;
using Microsoft.Uddi.ServiceType;
using Microsoft.Uddi.Api;

[STAThread]
static void Main()
{
 Application.Run(new Form1());

 FindBusiness oUDDI = new FindBusiness();
 BusinessList oBusinessList;

 Inquire.Url = "http://test.uddi.microsoft.com/inquire";
 oUDDI.Name = "Microsoft";
 oBusinessList = oUDDI.Send();
}

The above code actually does the same as our SOAP construct we created earlier but this time the
SOAP messages have been shielded from us and are all created and sent by the SDK.

Note that to send a publish message you need to substitute the below line:

Inquire.Url = "http://test.uddi.microsoft.com/inquire"

… for:

Inquire.Url = "http://test.uddi.microsoft.com/publish"

This reflects the two Web Service end-points we discussed earlier, one for Search and one for Publish.

The Publish Web Service uses NT Basic authentication to gain access to its Web Service, so by using the
following code, which also sets up your login details for UDDI, you can obtain login details by
registering at http://uddi.microsoft.com:

Publish.Url = "https://test.uddi.microsoft.com/publish"
Publish.User = "PassportSignInName"
Publish.Password = "PassportPassword"

Disco.exe
Included within VS.NET is the disco.exe tool. This tool dynamically scans an .asmx or .disco file
and creates files locally on your computer that correspond to all the Web Services it locates. This tool
can be used to locate Web Services on a server which can then be used to feed into a search engine or
local (work offline) repository. This can be helpful if you want to give developers access to information
about what Web Services are available without actually giving them access to the Internet.

Chapter 7

38

It creates any combination of the following files while it scans the source location:

❑ WSDL Schema

❑ XSD Schema definition

❑ DISCO file

❑ DISCO.MAP file

Looking at the above its apparent that we've seen these files together before and looking at our
previously created projects we can recognize them as all being part of the Web References group
(underneath localhost), shown (again) below:

Note the .map file output using disco.exe is called results.discomap. However, it contains
exactly the same information as the reference.map.

Now what's so special about this application? Well it scans all files and all links when creating output.
Let's point it at our project we created earlier, where we linked multiple files together. Just type in the
following DOS command, making sure that the disco.exe is on the current DOS search path:

disco http://localhost/ProWebServices/Disco/Discovery1/Discovery1.vsdisco

You will now see the following output:

Microsoft (R) Web Services Discovery Utility
[Microsoft (R) .NET Framework, Version 1.0.2914.16]
Copyright (C) Microsoft Corp. 1998-2001. All rights reserved.
Disco found documents at the following URLs:
http://localhost/Discovery1/Service2.asmx?wsdl

Web Service Discovery

39

http://localhost/Discovery2/Service1.asmx?wsdl
http://localhost/Discovery1/XMLFile1.disco
http://localhost/Discovery1/Service1.asmx?wsdl
http://localhost/discovery1/XMLFile1.disco
http://localhost/discovery1/Service1.asmx?wsdl
http://localhost/discovery1/Web References/localhost/Service1.disco
http://localhost/discovery1/Service2.asmx?wsdl
http://localhost/discovery1/discovery1.vsdisco
http://localhost/Discovery1/Web References/localhost/Service1.disco
http://localhost/Discovery1/Discovery1.vsdisco

The following files hold the content found at the corresponding URLs:
 .\Service2.wsdl <- http://localhost/Discovery1/Service2.asmx?wsdl
 .\Service1.wsdl <- http://localhost/Discovery2/Service1.asmx?wsdl
 .\XMLFile1.disco <- http://localhost/Discovery1/XMLFile1.disco
 .\Service10.wsdl <- http://localhost/Discovery1/Service1.asmx?wsdl
 .\XMLFile10.disco <- http://localhost/discovery1/XMLFile1.disco
 .\Service11.wsdl <- http://localhost/discovery1/Service1.asmx?wsdl
 .\Service1.disco <- http://localhost/discovery1/Web References/localhost/Service1.disco
 .\Service20.wsdl <- http://localhost/discovery1/Service2.asmx?wsdl
 .\discovery1.disco <- http://localhost/discovery1/discovery1.vsdisco
 .\Service10.disco <- http://localhost/Discovery1/Web References/localhost/Service1.disco
 .\Discovery10.disco <- http://localhost/Discovery1/Discovery1.vsdisco
The file .\results.discomap holds links to each of these files.

The first section simply identifies the files it finds, but as it navigates through the .vsdisco file it also
the links to the other .disco files and .wsdl files it finds.

The second part of this output signifies the local files it creates in relation to the files it has found.

Using this mechanism and architecture of linking .vsdisco files to a central default.vsdisco file, you
can in fact allow disco.exe to discover every Web Service and therefore every application you have
written in ASP.NET on a specific server. In team environments this can in fact lead to significant benefits by
allowing you to create these local files and feed them into a specialist search engine of your own.

What Does the Future Hold for Discovery?
The DISCO standard in itself is not reliant on whether it's industry-recognized or not, it carries a
considerable momentum by just being used within the ASP.NET technology.

With the pick up in interest in ASP.NET fully expected over the next few years we should expect a
significant increase in the number of Web Services, which will then make sure that other companies will
have to utilize/understand this DISCO technology. Otherwise they will simply omit this potentially
huge untapped library of Web Services.

Using other developers' Web Services is not alien to us as we've been using third party components or
DLLs for years now. However, by combining the ease of use and time saving benefits of components,
with the ability to release functionality globally using Internet technology, this medium will have a
tremendous impact as the years progress. Reliability and consistency of service will of course be an
issue. Nevertheless, as we progress, developers' attitudes will change and the thought of using someone
else's SMS text messaging or Weather forecasting Web Service will be considered the norm throughout
the industry.

Chapter 7

40

Search engines currently search Internet web pages! OK, that's not exactly groundbreaking news, but
the DISCO standard has been designed to allow for the discovery of Web Services in exactly the same
way, by linking together vast tree-like structures of XML files instead of just web pages. This will allow
us to discover Web Services using general searching abilities, but I also expect to see small islands of
Web Services emerging, which for example dedicate themselves to promoting Web Services related to a
specific part of the industry, for example Hospitals or Banks.

Using Web Service discovery for your own benefit is also going to be an extremely important area of
development as even though we all say we like to reuse components. Often, we can't be bothered to get
that old code off the other disk drive and make sure it works first. If it was compiled as a Web Service
and easy to discover on your own internal network, you would just use it immediately.

Because of DISCO's peer-to-peer like architecture, it also works well at being able to feed database search
facilities in the same manner that web sites feed search engines such as Google and Lycos. This would then
allow developers to search for Web Services in the same manner as they do web pages. This is not as far
fetched as one might first imagine, in fact, www.salcentral.com already uses a technique of searching through
XML files to populate its database with information on the whereabouts of Web Services.

Summary
In this chapter we have seen how the discovery of Web Services is now not something that we all do at
the end of a development cycle. It is crucial to have a fundamental understanding in place that will
allow us to utilize this powerful portion of ASP.NET technology.

Points to remember and topics covered in this chapter:

❑ DISCO allows you promote and advertise your Web Services.

❑ You can use DISCO to remind you of Web Services you have developed in the past.

❑ You can link discovery files together forming a peer-to-peer linking of files, similar to how
HTML files link together on the Internet.

❑ UDDI and specialist search engines (For instance, www.salcentral.com) can help you promote
your Web Services.

❑ Creating a library of Web Services along with descriptions and additional information not
contained within the DISCO standard.

❑ .vsdisco files link to multiple Web Services.

❑ .disco files link to single Web Services.

❑ The Add Web Reference menu option allows you to add Web Services directly into your project.

❑ You can adapt the standard by adding XML files or different types to supplement the standard
and tailor it for your own needs.

❑ .vsdisco files are generated dynamically at runtime by browsing to a .vsdisco file.

❑ .disco files are generated dynamically at runtime by browsing to a .asmx?disco.

❑ You can use the Disco.exe to create your own off-line search engine.

Web Service Discovery

41

Chapter 7

42

Custom SOAP Techniques

ASP.NET makes it very easy to create and use Web Services, as we saw in Chapter 2, where we saw
how we can create a Web Service by just adding a few attributes to our code. Chapter 3 showed how we
can easily use a Web Service by creating a proxy from the WSDL file.

Chapter 4 and 5 described WSDL and SOAP. ASP.NET handles the mapping of our code to WSDL and
SOAP automatically.

An additional feature of the ASP.NET architecture is that it is extensible, and allows us to customize the
behavior of ASP.NET Web Services. Why would we want to customize the behavior of ASP.NET Web
Services? Well, in most cases we don’t need to. The standard behavior will often be just fine. We can
concentrate on the logic of our web service and leave the SOAP formatting to ASP.NET.

However, there are cases when we need to modify the behavior of ASP.NET. Firstly, we may need to
extend our ASP.NET web service with functionality not provided out-of-the-box. We may want to
encrypt the XML in the SOAP message before it is sent to the recipient. Or we may want to compress
the SOAP message. In these cases we need to access the XML in the SOAP message before it is sent
over the wire. We will look at how we can do this.

Another case is if we have problems interoperating with other SOAP implementations. We may need to
tweak the XML in the SOAP message so it can be understood by other SOAP implementations. But
isn’t SOAP a standard? Yes, but a standard does not guarantee interoperability. The SOAP specification
opens the door to various ways of encoding SOAP messages. This is understandable, since SOAP
addresses several needs. It is early days for SOAP, and the level of support for the various options in the
SOAP specification varies among tools.

In this chapter we will look at ways in which we can get under the hood of ASP.NET web services.
More specifically we will look at:

6

TE
AM
FL
Y

Team-Fly®

Chapter 6

2

❑ SOAP Extensions, a framework for getting at the SOAP message before and after it is sent
over the wire. We will build a SOAP extension that writes SOAP messages to the event log.

❑ How we can customize the XML format of SOAP messages using the XmlSerializer.

❑ How complex data types such as DataSets, XML data and binary data can be used with
Web Services.

Let us start by looking at SOAP Extensions.

SOAP Extensions
SOAP Extensions is an extensibility mechanism available with ASP.NET. A SOAP Extension is added to a
web service simply by adding an attribute to a web method (in addition to the WebMethod attribute).

The canonical example of SOAP Extensions is the tracer extension. This extension writes the contents
of SOAP messages to a file. This extension is very useful when debugging Web Services. Later in this
chapter we will customize the SOAP message. When doing this it is very useful to see the actual XML
sent over the wire. The tracer extension is discussed in ‘Professional ASP.NET’, and the code for the
tracer extension is available with the downloadable code for this chapter in the folder
\ProWebServices\CustomSoap\TraceExtension.

The file \ProWebServices\CustomSoap\SimpleMath.asmx in the code download contains an
example of adding the trace extension to a web service.

<%@ WebService Language=“C#” class=“SimpleMath” %>

using System.Web.Services;

public class SimpleMath
{
 [WebMethod]
 [TraceExtension(Filename=“c:\\temp\\SimpleMath.txt”)]
 public int Add(int a, int b)
 {
 return a+b;
 }

 [WebMethod]
 [TraceExtension(Filename=“c:\\temp\\SimpleMath.txt”)]
 public int Div(int a, int b)
 {
 return a/b;
 }

};

The web service in this example is a very simple math service with just two methods. The trace
extension is added to each method by using the TraceExtension attribute. This attribute has a Filename
property specifying the name of the trace file.

Custom SOAP Techniques

3

To test this web service you need to make sure you have IIS set up correctly. You can do this by:

❑ Copying the code download into your inetpub\wwwroot folder

❑ Configure the http://localhost/ProWebServices/CustomSOAP IIS application by using the
Internet Services Manager.

The Internet Services manager is available under Start | Programs | Administrative Tools. Navigate to
the CustomSOAP folder, right-click and select Properties. Then click the Create button. The following
screen shot shows the dialog after creating the application:

To test the web service and the tracer extension you can use the SimpleMathClient.exe test
application that ships with the code download. This is a simple Windows Forms application.

When we execute this program, it calls the web service. When the web service is called, the trace
extension writes the contents of the SOAP messages to the c:\temp\simplemath.txt file. Here is
what the trace file looks like after calling the Add method:

Chapter 6

4

You cannot use the ASP.NET generated test pages to test SOAP extensions. The SOAP
extensions only apply when you use the SOAP protocol, not the HTTP-GET and
HTTP-POST protocols. The test pages use the HTTP protocols.

This can be confusing at first. We must build a client using the SOAP protocol for the extension to take effect.

How does SOAP Extensions work?
The process of converting objects to XML is known as serialization, and the process of reconstructing
the objects from XML is know as deserialization. The module that does the conversion is the
XmlSerializer.

The figure opposite illustrates the process.

Custom SOAP Techniques

5

Object

SOAP XML

XML Serializer

Object

SOAP XML

XML Serializer

Before serialize

After serialize

After deserialize

Before deserialize

SOAP Extensions allow us to get access to the data before and after the objects are converted to and
from XML. On outgoing requests and responses, this means we have access to the SOAP stream before
and after it is serialized and sent down the wire to the recipient. On incoming requests and responses,
this means that we have access to the SOAP stream before and after it is deserialized.

The tracer extension does not do anything with the SOAP messages. It simply peeks into the message
after serialization and before deserialization and writes the SOAP XML to disk. A SOAP Extension may
also alter the contents of SOAP messages. In Chapter 16 we will see an example that uses SOAP
Extensions to encrypt the contents of a SOAP message after serialization and decrypt the contents of the
message before deserialization.

Using SOAP Extensions
SOAP Extensions can be used on both the client and the server. To add an extension to the server side
of a web service we need to do two things:

❑ Add SOAP extension attributes to the methods where we want the extension applied.

❑ Copy the extension assembly to the bin directory of the web service.

Below is the simple math service, SimpleMath.asmx, we saw earlier. We use the TraceExtension
attribute on each method we want to trace:

<%@ WebService Language=“C#” class=“SimpleMath” %>

using System.Web.Services;

public class SimpleMath
{
 [WebMethod]
 [TraceExtension(Filename=“c:\\temp\\SimpleMath.txt”)]
 public int Add(int a, int b)
 {
 return a+b;

Chapter 6

6

 }

 [WebMethod]
 [TraceExtension(Filename=“c:\\temp\\SimpleMath.txt”)]
 public int Div(int a, int b)
 {
 return a/b;
 }
};

When adding attributes to our code, we are actually using a shorthand notation. The attribute
referenced is implemented in the extension with a class named TraceExtensionAttribute. We can
shorten the name of the attribute by omitting the word ‘Attribute’ at the end. This means that the
following is equivalent to the code above.

 [WebMethod]
 [TraceExtensionAttribute(Filename=“c:\\temp\\SimpleMath.txt”)]
 public int Add(int a, int b)
 {
 return a+b;
 }

The example above used the extension on the server side in the web service method. Extensions may also
be used on the client side. In the case of encryption they must be used on both the client side and the
server side. It does not make a lot of sense to encrypt on one side without decrypting on the other side.

To add SOAP Extensions on the client side we need to modify the generated proxy and add attributes
to the methods in the proxy. Here is a snippet of the proxy code of the SimpleMath client:

 [System.Diagnostics.DebuggerStepThroughAttribute()]
 [System.Web.Services.Protocols.SoapDocumentMethodAttribute(
 “http://tempuri.org/Div”,
 Use=System.Web.Services.Description.SoapBindingUse.Literal,
 ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)]
 [TraceExtension(Filename=“c:\\temp\\SimpleMathClient.txt”)]
 public int Div(int a, int b) {
 object[] results = this.Invoke(“Div”, new object[] {
 a,
 b});
 return ((int)(results[0]));

 }

The highlighted line is added to the proxy. In the code download we can see this in the file

SimpleMathClientCS\WebReferences\localhost\SimpleMath.cs

To run the code you must also copy the assembly of the extension to the client side.

If you regenerate the proxy, the changes you have made will be lost, and you must add
the attributes again.

Custom SOAP Techniques

7

Using the trace extension on the client side allows us to trace the contents of SOAP messages exchanged
with web services we use.

Creating a SoapLog Extension
We saw earlier that we can use the trace extension to write the contents of SOAP messages to a file. In
this section we will look at how we can implement our own SOAP extensions.

We will develop a new SOAP Extension called SoapLog. This extension will write SOAP messages to
the event log. SOAP faults will be logged as errors in the event log. You may find the SoapLog
extension useful in our own projects. The principles described can also be used to implement other
extensions.

If you want to jump ahead and see the extension in action you can run the SoapLogClient.exe
program available with the download. This client is identical to the SimpleMathClient.exe we saw
earlier, except it uses a web service with the SoapLog extension applied (SimpleMath2.asmx). Execute
the program and call the Add and Div methods. To see the result of the extension, bring up the event
viewer. The event viewer is available under Start | Program Files | Administrative Tools.

The screen shot below shows what the event log looks like after the SoapLog extension has written
information to it. The screen shot shows four messages in the event log, one of them a fault:

Using the log, we can view the contents of the SOAP messages by right-clicking on an event and
selecting Properties. The Description field shows the XML contained in the SOAP message.

Chapter 6

8

The SoapLog extension implements two properties:

❑ A Name property used as source name in the event log. Above the source name is
SimpleMath.Div. The default name is SoapLog.

❑ A Level property setting the logging level. The level may be 0 (no logging), 1 (only errors), 2
(messages and errors), and 3 (messages, errors and additional information). The default is 1.

Let us look at the code for the SoapLog extension.

The SoapLog Code

SOAP Extensions are implemented by creating an assembly with classes deriving from two abstract
classes in the .NET Framework. These classes are the SoapExtensionAttribute class and the
SoapExtension class. We must implement some methods defined in these classes. The SOAP
Extensions live in the System.Web.Services.Protocols namespace.

Here is an overview of the classes we will implement and their base classes:

Implemented class Base class Description

SoapLogAttribute SoapExtensionAttribute Implements the attribute we add to methods.

SoapLog SoapExtension Contains the code to perform the work of
the extension.

Custom SOAP Techniques

9

Most of the work of a SOAP Extension is done in a method named ProcessMessage()defined in the
SoapLog class.

Here is the entire code for the SoapLog extension. The next section will discuss the code. The code is
available in SoapLogCS folder in the code download.

using System;
using System.Diagnostics;
using System.Web.Services.Protocols;
using System.IO;

[AttributeUsage(AttributeTargets.Method)]
public class SoapLogAttribute :
System.Web.Services.Protocols.SoapExtensionAttribute
{
 private int m_Priority;
 private string m_Name = “SoapLog” ;
 private int m_Level = 1;

 public override int Priority
 {
 get { return m_Priority; }
 set { m_Priority = value; }
 }

 public string Name
 {
 get { return m_Name;}
 set { m_Name = value; }
 }
 public int Level
 {
 get { return m_Level;}
 set { m_Level = value; }
 }

 public override Type ExtensionType
 {
 get { return typeof(SoapLog); }
 }
}

public class SoapLog : System.Web.Services.Protocols.SoapExtension
{
 private Stream m_OldStream;
 private Stream m_NewStream;
 private string m_Name;
 private int m_Level;

 public override object GetInitializer(
 System.Web.Services.Protocols.LogicalMethodInfo methodInfo,
 System.Web.Services.Protocols.SoapExtensionAttribute attribute)
 {
 return (SoapLogAttribute) attribute;

Chapter 6

10

 }

 public override object GetInitializer(Type obj)
 {
 return obj;
 }

 public override void Initialize(object initializer)
 {
 m_Name = ((SoapLogAttribute)initializer).Name;
 m_Level = ((SoapLogAttribute)initializer).Level;
 }

 public override void ProcessMessage(
 System.Web.Services.Protocols.SoapMessage message)
 {
 switch (message.Stage)
 {
 case System.Web.Services.Protocols.SoapMessageStage.BeforeSerialize:
 if (m_Level > 2)
 WriteToLog(message.Stage.ToString(),
 EventLogEntryType.Information);
 break;
 case System.Web.Services.Protocols.SoapMessageStage.AfterSerialize:
 LogOutputMessage(message);
 break;
 case System.Web.Services.Protocols.SoapMessageStage.BeforeDeserialize:
 LogInputMessage(message);
 break;
 case System.Web.Services.Protocols.SoapMessageStage.AfterDeserialize:
 if (m_Level > 2)
 WriteToLog(message.Stage.ToString(),
 EventLogEntryType.Information);
 break;
 }
 }

 public override Stream ChainStream(Stream stream)
 {
 m_OldStream = stream;
 m_NewStream = new MemoryStream();
 return m_NewStream;
 }

 private void CopyStream(Stream fromstream, Stream tostream)
 {
 StreamReader reader = new StreamReader(fromstream);
 StreamWriter writer = new StreamWriter(tostream);

 writer.WriteLine(reader.ReadToEnd());
 writer.Flush();
 }

 private void LogInputMessage(SoapMessage message)

Custom SOAP Techniques

11

 {
 CopyStream(m_OldStream, m_NewStream);
 message.Stream.Seek(0, SeekOrigin.Begin);
 LogMessage(message, m_NewStream);
 message.Stream.Seek(0, SeekOrigin.Begin);
 }

 private void LogOutputMessage(SoapMessage message)
 {
 message.Stream.Seek(0, SeekOrigin.Begin);
 LogMessage(message, m_NewStream);
 message.Stream.Seek(0, SeekOrigin.Begin);
 CopyStream(m_NewStream, m_OldStream);
 }

 private void LogMessage(SoapMessage message, Stream stream)
 {
 String eventMessage;
 TextReader reader;

 reader = new StreamReader(stream);
 eventMessage = reader.ReadToEnd();

 if (m_Level > 2)
 eventMessage = message.Stage.ToString() +”\n” + eventMessage;

 if (eventMessage.IndexOf(“<soap:Fault>“) > 0)
 {
 //The SOAP body contains a fault
 if (m_Level > 0)
 WriteToLog(eventMessage, EventLogEntryType.Error);
 }
 else
 {
 // The SOAP body contains a message
 if (m_Level > 1)
 WriteToLog(eventMessage, EventLogEntryType.Information);
 }
 }

 private void WriteToLog(String message, EventLogEntryType type)
 {
 EventLog log;

 if (!EventLog.SourceExists(m_Name))
 EventLog.CreateEventSource(m_Name, “Web Service Log”);

 log = new EventLog();
 log.Source = m_Name;

 log.WriteEntry(message, type);
 }
}

TE
AM
FL
Y

Team-Fly®

Chapter 6

12

Dissecting the SoapLog code
The following UML sequence diagram shows the sequence in which the different methods are called on
both the client and the server when the client calls a method named ‘Div’ on the service.

Div

Initialize

ChainStream

ProcessMessage
(BeforeSerialize)

ProcessMessage
(AfterSerialize)

SOAP message

SOAP message

ChainStream

ProcessMessage

ProcessMessage

(BeforeDeserialize)

(AfterDeserialize)

return

Div

Client ASP.NET / proxy ExtensionExtension ASP.NET Service

Initialize

ChainStream

(BeforeDeserialize)
ProcessMessage

ProcessMessage

ProcessMessage

ProcessMessage

(AfterDeserialize)

(BeforeSerialize)

(AfterSerialize)

ChainStream

The SoapLog extension is implemented as a C# class library. If you want to create the extension
yourself, do the following:

❑ Create a new C# Class Library project named SoapLog.

❑ Rename the Class1.cs file to SoapLog.cs.

❑ Rename Class1 to SoapLog.

❑ Add a reference to System.Web.Services.dll.

Custom SOAP Techniques

13

We are now ready to start coding the extension. When finished, the SoapLog.cs file will contain the
following two classes:

❑ SoapLogAttribute

❑ SoapLog

The SoapLog.cs file uses some namespaces:

using System;
using System.Diagnostics;
using System.Web.Services.Protocols;
using System.IO;

The System.Diagnostics namespace contains the EventLog class. The SOAP Extensions live in
the System.Web.Services.Protocols namespace. The System.IO namespace is used for handling
streams, as we will see later.

Implementing SoapLogAttribute Deriving from SoapExtensionAttribute

Let us take a look at the code for our custom attribute:

[AttributeUsage(AttributeTargets.Method)]
public class SoapLogAttribute :
System.Web.Services.Protocols.SoapExtensionAttribute
{

The SoapLogAttribute inherits from SoapExtensionAttribute. This class contains two abstract
properties that we must override:

❑ The Priority property

❑ The ExtensionType property

We also use an attribute specifying that our custom attribute will be applied to methods. Attributes may
also apply to other constructs. The WebService attribute, for instance, is applied to classes. SOAP
Extension attributes always apply to methods.

 private int m_Priority;
 private string m_Name = “SoapLog” ;
 private int m_Level = 1;

 public override int Priority
 {
 get { return m_Priority; }
 set { m_Priority = value; }
 }

 public string Name
 {
 get { return m_Name;}
 set { m_Name = value; }

Chapter 6

14

 }
 public int Level
 {
 get { return m_Level;}
 set { m_Level = value; }
 }

The SoapExtensionAttribute base class has an abstract property Priority that we must override.
This property is used to set the priority of extensions if several extensions are applied to the same Web
Service method. If we use both an encryption and a compression extension, we should set the priority
so that the compression extension is applied before the encryption extension, otherwise the compression
will be very inefficient.

We add two new properties; Name and Level, and they are stored in private variables.

 public override Type ExtensionType
 {
 get { return typeof(SoapLog); }
 }
}

Finally, we specify what class implements the extension using the ExtensionType property. This
property returns the type of the SoapLog class. The ExtensionType property is the link between the
attribute and the SoapLog class.

Implementing SoapLog Deriving from SoapExtension

The bulk of the code is in the SoapLog class. This class inherits form the SoapExtension class and
overrides the following functions:

❑ GetInitializer

❑ Initialize

❑ ProcessMessage

❑ ChainStream

public class SoapLog : System.Web.Services.Protocols.SoapExtension
{
 private Stream m_OldStream;
 private Stream m_NewStream;
 private string m_Name;
 private int m_Level;

 public override object GetInitializer(
 System.Web.Services.Protocols.LogicalMethodInfo methodInfo,
 System.Web.Services.Protocols.SoapExtensionAttribute attribute)
 {
 return (SoapLogAttribute) attribute;
 }

 public override object GetInitializer(Type obj)

Custom SOAP Techniques

15

 {
 return obj;
 }

 public override void Initialize(object initializer)
 {
 m_Name = ((SoapLogAttribute)initializer).Name;
 m_Level = ((SoapLogAttribute)initializer).Level;
 }

The private variables m_OldStream and m_NewStream are used to store stream references in the
ChainStream function discussed later.

The GetInitializer and Initialize functions are used to handle properties in the attribute. The
GetInitializer method is called with the attribute as parameter the first time a web method is
accessed. The parameter is of type SoapExtensionAttribute. We cast it to the subclass
SoapLogAttribute.

GetInitializer returns a SoapLogAttribute object. This object is cached. Each time a web
method is invoked, the Initialize method is called with this cached object.

The SoapLogAttribute object contains the actual properties. The Initialize method pulls out the
properties from the SoapLogAttribute and stores them locally so that they can be used later.

 public override void ProcessMessage(
 System.Web.Services.Protocols.SoapMessage message)
 {
 switch (message.Stage)
 {
 case System.Web.Services.Protocols.SoapMessageStage.BeforeSerialize:
 if (m_Level > 2)
 WriteToLog(message.Stage.ToString(),
 EventLogEntryType.Information);
 break;
 case System.Web.Services.Protocols.SoapMessageStage.AfterSerialize:
 LogOutputMessage(message);
 break;
 case System.Web.Services.Protocols.SoapMessageStage.BeforeDeserialize:
 LogInputMessage(message);
 break;
 case System.Web.Services.Protocols.SoapMessageStage.AfterDeserialize:
 if (m_Level > 2)
 WriteToLog(message.Stage.ToString(),
 EventLogEntryType.Information);
 break;
 }
 }

The workhorse of the extension is the ProcessMessage method. The SOAP Extension framework
calls this method at various stages of the serialization process. The following stages are defined:

❑ BeforeSerialize – this is before the SOAP request or response is serialized into XML.

Chapter 6

16

❑ AfterSerialize – this is after the SOAP request or response is serialized to XML and sent over
the wire.

❑ BeforeDeserialize – this is before the SOAP request or response is deserialized from XML.

❑ AfterDeserialize – this is after the SOAP request or response is deserialized from XML.

The SoapLog extension only deals with the AfterSerialize and BeforeDeserialize stages
because we are only interested in the XML that is available at these stages. ProcessMessage() calls
private functions to write the contents of a message to the event log. If the logging level is greater than
two we also write the name of the stage to the event log. This is useful for examining the sequence in
which the stages are called.

The XML in the SOAP message is contained in a stream. The stream has a pointer pointing to the
current position in the stream. When we read from a stream we move the pointer. This means that if the
log extension reads a stream that is about to be deserialized, it will move the pointer and the pointer
must be set back after the extension has read the stream. We need to control the stream that the
extension reads from and writes to.

The ChainStream function is used to help chain together streams.

 public override Stream ChainStream(Stream stream)
 {
 m_OldStream = stream;
 m_NewStream = new MemoryStream();
 return m_NewStream;
 }

ChainStream is called before serialization or deserialization takes place. A reference to the original
stream is saved and a new memory stream is created and returned to the next extension in the chain.
This happens for each extension in the chain.

 private void CopyStream(Stream fromstream, Stream tostream)
 {
 StreamReader reader = new StreamReader(fromstream);
 StreamWriter writer = new StreamWriter(tostream);

 writer.WriteLine(reader.ReadToEnd());
 writer.Flush();
 }

The CopyStream function is a private helper function. It copies the contents of one stream to another
stream. Note that after this function is executed, the position pointer for both streams will be at the end
of the streams.

 private void LogInputMessage(SoapMessage message)
 {
 CopyStream(m_OldStream, m_NewStream);
 message.Stream.Seek(0, SeekOrigin.Begin);
 LogMessage(message, m_NewStream);
 message.Stream.Seek(0, SeekOrigin.Begin);
 }

Custom SOAP Techniques

17

When deserializing, the input stream contains the XML to deserialize and the pointer is at the beginning
of the stream. The LogInputMessage method copies the input stream into the memory stream buffer,
and logs the contents of the stream. It sets the pointer to the beginning of the memory stream buffer so
that the next extension can get access to the stream.

 private void LogOutputMessage(SoapMessage message)
 {
 message.Stream.Seek(0, SeekOrigin.Begin);
 LogMessage(message, m_NewStream);
 message.Stream.Seek(0, SeekOrigin.Begin);
 CopyStream(m_NewStream, m_OldStream);
 }

When serializing, the serializer writes to the memory stream created in ChainStream. When the
LogOutputMessage function is called after serializing, the pointer is at the end of the stream. The
LogOutputMessage function sets the pointer to the beginning of the stream so that the extension can
log the contents of the stream. Before returning, the content of the memory stream is copied to the
outgoing stream and the pointer is then back at the end of both streams.

 private void LogMessage(SoapMessage message, Stream stream)
 {
 String eventMessage;
 TextReader reader;

 reader = new StreamReader(stream);
 eventMessage = reader.ReadToEnd();

 if (m_Level > 2)
 eventMessage = message.Stage.ToString() +”\n” + eventMessage;

 if (eventMessage.IndexOf(“<soap:Fault>“) > 0)
 {
 //The SOAP body containts a fault
 if (m_Level > 0)
 WriteToLog(eventMessage, EventLogEntryType.Error);
 }
 else
 {
 // The SOAP body contains a message
 if (m_Level > 1)
 WriteToLog(eventMessage, EventLogEntryType.Information);
 }
 }

The private LogMessage helper function logs the contents of a SOAP message to the event log. This
function is called from the LogInputMessage and the LogOutputMessage functions. It reads the
stream and writes the contents of the stream to the event log. The function also checks if the SOAP
message contains a fault. In that case, the message is logged in the event log as an error.

The LogMessage function uses the private m_Level field to control if only errors should be written to
the event log. This happens it the level is greater than 0. If the log level is greater than 1, all messages
are written to the event log. If the level is greater than 2 we also append the name of the stage to the
event log message.

Chapter 6

18

 private void WriteToLog(String message, EventLogEntryType type)
 {
 EventLog log;

 if (!EventLog.SourceExists(m_Name))
 EventLog.CreateEventSource(m_Name, “Web Service Log”);

 log = new EventLog();
 log.Source = m_Name;

 log.WriteEntry(message, type);
 }
}

The actual writing to the event log is handled in the private function WriteToLog(). The function uses
the EventLog class to create a new ‘Web Service Log’ if it does not already exist. The source of the
message in the event log is set to then name specified in the m_Name field.

Using the SoapLog Extension
If we compile the SoapLog extension, we get an assembly. To use the extension we can copy the
compiled dll from the bin directory of our extension to the bin directory of the web service. We can
then use the extension by adding an attribute to the code of a Web Service.

Here we add the SoapLog extension to the SimpleMath service. The example is available as
SimpleMath2.asmx in the code download.

<%@ WebService Language=“C#” class=“SimpleMath” %>

using System.Web.Services;

public class SimpleMath
{
 [WebMethod]
 [SoapLog(Name=“SimpleMath.Add”, Level=3)]
 public int Add(int a, int b)
 {
 return a+b;
 }

 [WebMethod]
 [SoapLog(Name=“SimpleMath.Div”, Level=3)]
 public int Div(int a, int b)
 {
 return a/b;
 }

};

To test the extension we need to build a client using the service. When we call the service, messages
should appear in the event log. The SoapLogClient.exe test client available with the code download
can be used to test the web service.

Custom SOAP Techniques

19

Here is a screen shot of the event log after calling first ‘Div’ and then ‘Add’:

The SoapLog extension is a useful tool when developing Web Services. It can also be used when
running the Web Service to monitor the SOAP messages transmitted.

Shaping the SOAP Message
Web Services are based on the SOAP and WSDL specifications. These specifications open the door to
various ways of encoding the XML in the SOAP messages.

The SOAP specification itself specifies the overall structure of the SOAP message, as we saw in Chapter
5. The SOAP message may contain a header, it must contain a body, and the body must be formatted as
XML. However, the SOAP specification does not say what the XML within the body shall look like. We
may put any valid XML in the body and it will be a valid SOAP message.

The SOAP specification is available at http://www.w3.org/TR/SOAP/. Section 5 of the SOAP
specification contains the bulk of the specification and describes how data types such as integers, strings,
arrays, and structs can be encoded. Note the emphasis on ‘can’. The specification does not mandate the
use of the encoding rules specified in section 5.

Section 7 of the SOAP specification specifies how SOAP can be used for RPC. The section specifies that
the method invocation is modeled as a struct named after the method name. Once again, following
section 7 is optional.

There are two principal styles of SOAP. Document style SOAP views the data exchanged as documents.
Your web service may receive and/or return an XML document. The XML document is carried in the
body of the SOAP message. The document may be an invoice as illustrated in the figure overleaf.

Chapter 6

20

XML invoice

SOAP Body

Optional SOAP header

SOAP Envelope

RPC style SOAP views the data exchange as method calls on remote objects. The remote object may for
instance be a Java object, a COM component or a .NET object. In RPC style SOAP, the outermost
element in the request will be named after the method and there will be an element for each parameter
on that method. In the response, the outermost element will be named after the method with the string
‘Response’ appended as illustrated in the figure below.

SOAP Envelope

Optional SOAP header

SOAP Body

SOAP Envelope

Optional SOAP header

SOAP Body

<Add>
<a>2
2

</Add>

<AddResponse>
<AddResult>4</AddResult>

</AddResponse>

Custom SOAP Techniques

21

When we create web services, ASP.NET handles the details of the XML in the SOAP message received and
returned automatically. It does this through a process called serialization. We discussed serialization earlier in
this chapter. Serialization is the process of converting objects to XML. The process of reconstructing the
objects from XML is known as deserialization. The module that does the conversion is the XmlSerializer.

Using ASP.NET we can influence the way the XmlSerializer works. There are several reasons we may
want to control the shape of the XML:

❑ We need the XML returned from our web service to conform to a predefined schema. If we are
returning an invoice, we may have agreed on the XML schema with our partner. Internally we
may have an object representing the invoice and we want to map the object to the XML schema.
In this case we need to instruct the XmlSerializer how it should to the serialization.

❑ We receive an XML document from a partner. The XML document is according to a schema
and we want to map the document to an internal object. In this case we need to instruct the
XmlSerializer how it should do the deserialization.

❑ We need to use a web service implemented using another SOAP tool, e.g. a Java based toolkit.
Ideally, this should be transparent, but in the real world there will be differences in the
implementations. Especially in the early days of SOAP. We may need to tweak the XML in
the SOAP message to work around incompatibilities.

ASP.NET allows us control over the shaping of the XML in the SOAP message. There are two ways we
can shape the SOAP message:

❑ Specify the overall encoding of the message, that is, should it be document style or RPC style?
Classes in the System.Web.Services namespace handle the overall encoding.

❑ Control how data types such as integers, structs, and arrays are serialized and deserialized using the
XmlSerializer and other classes in the System.Xml.Serialization namespace.

These mechanisms may be used together or separately to shape the XML the way we want it. The figure
below illustrates the process:

Object

XML object

Class with
attributes

Overall
encoding

XML object

SOAP message

XmlSerializer

System.Web.Services

TE
AM
FL
Y

Team-Fly®

Chapter 6

22

The XmlSerializer serializes the object into an XML representation. To do this, it uses the class
definition. The class definition contains the name of classes and fields and may also be annotated with
attributes, as we will see later.

The result from the XmlSerializer is then wrapped in a SOAP message (with envelope, header and
body) by classes in the System.Web.Services namespace. The overall encoding can be specified
using attributes on the web service, as we will see in the next section.

Overall Encoding of the Message
As we touched on above, there are two main ways in which the overall SOAP message may be encoded:

❑ The messages may be constructed according to section 7 of the SOAP specification. This is
known as RPC style SOAP. RPC style SOAP is suited for exposing object methods. The
SOAP Toolkit for COM components and .NET Remoting uses RPC style SOAP by default.

❑ The messages may be constructed according to an XML schema document definition in a WSDL
file. This is known as document style SOAP. ASP.NET uses document style SOAP by default.

ASP.NET has two attributes we can use to control the overall encoding of all methods in a Web Service:

❑ The SoapDocumentService attribute.

❑ The SoapRpcService attribute.

These attributes live in the System.Web.Services.Protocols namespace. When applied to a Web
Service they affect the encoding of all methods in the Web Service. We may also apply attributes to
individual methods. The attributes affecting methods are:

❑ The SoapDocumentMethod attribute.

❑ The SoapRpcMethod attribute.

In addition there are two ways in which data may be encoded:

❑ Literal – Data is encoded according to an XML schema.

❑ Encoded – Data is encoded according to the encoding rules in section 5 of the SOAP specification.

RPC style SOAP always uses encoded parameters. With document style soap we can choose between
literal and encoded. Normally literal data is used with document style SOAP. This is logical for
exchanging documents; we want the data in the document to conform to an XML schema.

The default for an ASP.NET Web Service is document style SOAP with literal parameters. If we want to
specify a different overall encoding we do so by adding one of the attributes above. Here is a sample
that sets the overall encoding of all methods in the Web Service to RPC style SOAP. The sample is
available in the code download as SimpleMathRPC.asmx.

<%@ WebService Language=“C#” class=“SimpleMath” %>

using System.Web.Services;

Custom SOAP Techniques

23

using System.Web.Services.Protocols;

[SoapRpcService()]
public class SimpleMath
{
 [WebMethod]
 public int Add(int a, int b)
 {
 return a+b;
 }

 [WebMethod]
 public int Div(int a, int b)
 {
 return a/b;
 }

};

You may find that, if you have problems calling .NET Web Services from other SOAP
implementations, setting the encoding style to RPC in some cases fixes the problems.

To view the result of applying this parameter we need to call it using the SOAP protocol. The ASP.NET
generated test pages do not use SOAP when calling the web service but they show a sample SOAP
request and response.

Chapter 6

24

By default, the request and response appear wrapped in an Add or AddResponse element, respectively.
In addition, document style SOAP allows us to specify bare parameters. We do this using the
ParameterStyle property on the SoapDocumentService or the SoapDocumentMethod attribute.
With bare parameters, the request and response data is directly under the Body element.

Here is how we can specify bare parameters. The example is available as
SimpleMathDocumentBare.asmx in the code download.

<%@ WebService Language=“C#” class=“SimpleMath” %>

using System.Web.Services;

using System.Web.Services.Protocols;

using System.Web.Services.Description;

public class SimpleMath

{

 [WebMethod]

 [SoapDocumentMethod(Use=SoapBindingUse.Encoded,

 ParameterStyle=SoapParameterStyle.Bare)]

 public int Add(int a, int b)

 {

 return a+b;

 }

 [WebMethod]

 [SoapDocumentMethod(Use=SoapBindingUse.Encoded,

 ParameterStyle=SoapParameterStyle.Bare)]

 public int Div(int a, int b)

 {

 return a/b;

 }

};

The SoapBindingUse enumerator lives in the System.Web.Services.Description namespace. Here is
what the SOAP looks like:

Custom SOAP Techniques

25

As we can see, there are no longer any elements wrapping the request and the response.

Using the XmlSerializer
The .NET Framework has built-in XML support. Objects can be serialized to XML and objects may be
reconstructed from XML automatically. If you try to accomplish this using, for example, Visual Basic 6,
you need to write code yourself to serialize objects to XML and to reconstruct objects from XML.

The System.XML.Serialization namespace contains a number of classes that can be used when
serializing and deserializing objects. Many of the classes in this namespace allow us to control the
format of the XML.

The XmlSerializer is used by ASP.NET web services. ASP.NET uses the XmlSerializer to serialize objects
to XML and then adds the SOAP envelope, header and body around the output from the XmlSerializer.

The XmlSerializer and its attributes can also be used by itself. Before we dive into web services, let us
start by looking at the XmlSerializer class. This class can serialize objects into XML and it can
reconstruct the objects from XML. The serializer relies on the reflection support in the .NET
Framework. Reflection is a mechanism by which code can be inspected at runtime.

Chapter 6

26

Serializing and deserializing objects is useful for different purposes, for instance:

❑ XML serialization can be used to store objects to a file, in a database etc. We could for
instance have an object representing the users’ preferences in an application. On application
startup we read an XML file and construct an object representing the preferences. When
changes are made to the preferences, the XML file is re-generated.

❑ Serialized objects can be transported over the network. A Web Service is a good example of
the XmlSerializer in action.

As an example of XML serialization we will use a class representing Titles with Authors. The structure
is loosely based on the structure of the pubs database that ships with SQL Server 2000. The example is
available in the code download as
ProWebServices\CustomSoap\PublicationsCS\Publications1.cs.

using System;

namespace Publications1
{
 public class Author
 {
 public string firstname;
 public string lastname;
 }

 public class Title
 {
 public string title_id;
 public string title;
 public DateTime pubdate;
 public double price;
 public Author[] authors;

 public void CreateDummy()
 {
 title_id = “BU7832”;
 title = “Straight Talk About Computers”;
 price = 19.99;
 pubdate = new DateTime(1992, 6, 9);

 authors = new Author[2];

 authors[0] = new Author();
 authors[0].firstname = “Dean”;
 authors[0].lastname = “Straight”;

 authors[1] = new Author();
 authors[1].firstname = “Dean2”;
 authors[1].lastname = “Straight2”;
 }
 }
}

Custom SOAP Techniques

27

The Title class contains a number of fields and an array of Author objects. The CreateDummy()
method initializes the object with some dummy data.

If we have an object of this class we can easily get an XML representation using the XmlSerializer.
The code download contains a Windows Forms application, PublicationClientCS.exe you can use
to test the serialization. When we click on the Publications1 button, the serialized XML is written to a
text field.

Here is the code for the Publications1 button callback:

... removed namespace references

using System.Xml.Serialization;

... removed code

private void button1_Click(object sender, System.EventArgs e)
{
 XmlSerializer serializer = new XmlSerializer(typeof(Publications1.Title));
 System.IO.StringWriter writer = new System.IO.StringWriter();

 Publications1.Title theTitle = new Publications1.Title();

 // Create object
 theTitle.CreateDummy();

 // Serialize object to XML
 serializer.Serialize(writer, theTitle);

Chapter 6

28

 // Show button text in form caption
 this.Text = ((Button)sender).Text;

 // Show XML in text box
 textBox1.Text = writer.ToString();
}

First we create an instance of the XmlSerializer. The constructor takes the type of the object to serialize
as a parameter. It uses the type information to construct the XML.

The Serialize method does the actual serialization. It can serialize to a stream or to a TextWriter
object. A TextWriter is an object for character output. Here we serialize to a StringWriter.
StringWriter is a subclass of TextWriter.

Finally we show the name of the button in the title of the form, and show the serialized XML in the text box.

We can also recreate the object from the XML. If you use the test application, you can first serialize the
object into XML (click Publications1) then click Deserialize1. Here is the code for the Deserialize1
button callback:

private void button2_Click(object sender, System.EventArgs e)
{

 // We only deserialize if the text box contains correct data

 if (this.Text == “Publications1”)

 {

 XmlSerializer serializer = new XmlSerializer(typeof(Publications1.Title));

 // Get text from text box

 System.IO.StringReader reader = new System.IO.StringReader(textBox1.Text);

 // Reconstruct the object

 Publications1.Title theTitle;

 theTitle = (Publications1.Title) serializer.Deserialize(reader);

 // Show the title

 this.Text = ((Button)sender).Text;

 textBox1.Text = “Deserialize: theTitle.title=“ + theTitle.title;

 }

}

The code first checks if the previous click was on Publications1 (remember that the callback writes the
name of the button to the caption of the form). If so, we can deserialize. The code is otherwise very
similar to the code for serialization, except we call the Deserialize method on the XmlSerializer.

The callback shows the title of the publication in the text box:

Custom SOAP Techniques

29

A few lines of code are all that is needed to get the XML representation of an object. As we can see,
XML serialization is a very powerful mechanism.

Using Attributes to Shape the XML
The format of the XML in the previous section is automatically generated based on the layout of the
objects. The elements are named after the fields and all fields become elements.

What if we want the XML to look different? What if we don’t want title_id to be an element, but
instead be an attribute of the root <Title> element? And what if we want the XML attribute to be
named ‘Id’, instead of being named ‘title_id’ after the field?

The answer to all these questions is ‘use attributes’. We annotate our class with attributes. The
XmlSerializer reads the annotated class definition and uses that when generating the XML
representation of the object as illustrated in the figure below:

Chapter 6

30

Object

XML object

Class with
attributes

XmlSerializer

Why would we want to rename the fields in the first place? It may be a matter of taste; we can use a
different name than the internal name of the field. If we use a naming convention for our code, we may
not want to use the convention when exposing the XML.

We may also give the fields a name that we are not allowed to use in our code. This may, for instance,
be a name that is reserved in the language. Say we are building a biology application and we want to
specify the class of a species as an element named ‘class’. We are not allowed to use this as the name of
a C# field since class is a reserved word in C#. By using attributes we can give the XML element the
name ‘class’.

The System.XML.Serialization namespace contains a number of classes implementing attributes
that can be used to shape the XML. To make title_id an XML attribute, simply add the
XmlAttribute attribute to the title_id field (the code for this is in Publications2.cs).

using System;

using System.Xml.Serialization;

namespace Publications2

{

 public class Author

 {

 public string firstname;

 public string lastname;

 }

 public class Title

 {

 [XmlAttribute(“Id”)]

 public string title_id;
 public string title;

 public DateTime pubdate;

 etc

Custom SOAP Techniques

31

The Publications2 callback in the test application uses this class definition:

By adding the XmlAttribute attribute we have now named the title_id field in the class ‘Id’ and it is
an attribute of the enclosing Title element instead of being a nested element.

The name of the class implementing XmlAttribute is XmlAttributeAttribute.
As with all attributes in the .NET Framework we can write a short hand notation
omitting the last ‘Attribute’ word.

XML Attributes and SOAP Attributes
Above we used the XmlAttribute attribute. The System.Xml.Serialization namespace contains
a large number of attributes that can be used to control the shape of the XML. There are two sets of
attributes, one where the attributes are named Xml<XXX>Attribute and another where the attributes
are named Soap<XXX>Attribute.

Which attributes are used depend on how the parameters are encoded. As discussed in the section,
Overall Encoding of the Message, there are two types of serialization: literal and encoded. Literal
serialization is based on an XML schema, and encoded serialization is based on the serialization rules in
Section 5 of the SOAP specification.

The Xml<XXX>Attribute attributes apply when we use literal style parameters. The
Soap<XXX>Attribute attributes apply when we use encoded style parameters.

This means that the Xml<XXX>Attribute attributes apply in the following cases:

TE
AM
FL
Y

Team-Fly®

Chapter 6

32

❑ It is the default for ASP.NET Web Services.

❑ When we use the XmlSerializer by itself.

❑ When we use the HTTP-GET or HTTP-POST protocols.

❑ When we use the SoapDocumentService or SoapDocumentMethod attribute with the Use
property set to ‘Literal’.

The Soap<XXX>Attribute attributes apply in the following cases:

❑ When we use the SoapRpcService or SoapRpcMethod attribute.

❑ When we use the SoapDocumentService or SoapDocumentMethod attribute with the Use
property set to ‘Encoded’.

A method may have both the Soap<XXX> and the Xml<XXX> attributes applied at the same time.
Which one is used depends on the type of serialization being performed.

The table below lists most of the available attributes.

Xml Attribute SOAP attribute Description

XmlAttributeAttribute SoapAttributeAttribute Used to make fields into
XML attributes instead of
elements.

XmlElementAttribute SoapElementAttribute Used to name the XML
elements. Can also be used
with arrays to list array
elements without being nested
under a common element.

XmlArrayAttribute Used to name arrays.

XmlIgnoreAttribute SoapIgnoreAttribute Used to prevent fields from
being serialized.

XmlIncludeAttribute SoapIncludeAttribute Used with derived classes.

XmlRootAttribute Used to name the top-level
element.

XmlTextAttribute Used to serialize fields
directly in the XML text
without elements.

XmlEnumAttribute SoapEnumAttribute Used to give the members of
an enumeration a name
different from the name used
in the enumeration.

XmlTypeAttribute SoapTypeAttribute Used to control the name of
types in the WSDL file.

Custom SOAP Techniques

33

Most of the attributes contain a number of properties. Some properties are common to most attributes, such as
the Namespace property and the Datatype property. The space here does not permit a complete description
of all attributes and properties. For a complete reference, see the .NET Framework documentation.

A simple web service returning the Title structure above is used as an example when testing the
attributes. The web service is available in the file PublicationService1.asmx in the code download.

<%@ WebService Language=“C#” class=“PublicationService” %>

using System.Web.Services;
using Publications1;

public class PublicationService
{
 [WebMethod]
 [TraceExtension(Filename=“C:\\temp\\PublicationService.txt”)]
 public Title GetBestseller()
 {
 Title theTitle = new Title();
 theTitle.CreateDummy();
 return theTitle;

 }
};

The web service uses the CreateDummy() function to initialize the object with dummy data and returns
the object. We also apply the trace extension so we can see the full SOAP message.

If we invoke the GetBestseller() method using the ASP.NET generated test pages we will see the result
of the XmlSerializer without the SOAP wrapping:

Chapter 6

34

To see the SOAP wrapping we must call the web service using the SOAP protocol, not HTTP-GET. To
do this you can use the supplied PublicationClientCS.exe test application and click
GetBestseller1. Because the web service uses the trace extension, the file
c:\temp\PublicationService1.txt will contain the SOAP messages:

This is similar to the XML we got from the XmlSerializer class; the difference being that the result is
wrapped in a SOAP message and the root element is <GetBestsellerResponse>.

When shaping the XML, the log extension and the tracer extension described earlier
in this chapter are very useful. They allow us to see the format of the serialized XML.

The following sections show the most commonly used attributes and how they can be used to shape the
XML returned from a Web Service.

Shaping Classes
When we used the XmlSerializer, the root element was named ‘Title’ after the class. When we
returned the data from a web method, the root element was named ‘GetBestsellerResult’ after
the method.

Using the XmlRoot attribute we can control the name of the root element. Here is an example of using
the XmlRoot attribute to name the root element explicitly. The root element is given the name
‘TitleRoot’. The full code is in Publications3.cs.

Custom SOAP Techniques

35

[XmlRoot(“TitleRoot”)]
public class Title
{
 [XmlAttribute(“Id”)]
 public string title_id;

 [XmlElement(ElementName=“Name”)]
 public string title;
 ... etc

This gives the following SOAP, which is obtained by clicking GetBestseller3 in the test client:

Shaping Fields and Properties
By default, fields and properties become elements in the XML. Using the XmlElement attribute, the
elements can be given a name other than the field name. Using the XmlAttribute attribute, fields can
be serialized as XML attributes instead of XML elements.

Here is some code for controlling the shape of the serialized fields (from Publications3.cs):

[XmlRoot(“TitleRoot”)]
public class Title
{
 [XmlAttribute(“Id”)]
 public string title_id;

 [XmlElement(ElementName=“Name”)]
 public string title;

 [XmlAttribute(AttributeName=“PublicationDate”, DataType=“date”)]
 public DateTime pubdate;
 ... etc

The code performs the following modifications to the XML:

❑ The title_id field is serialized as an attribute with the name ‘Id’. It becomes an attribute of
the enclosing TitleRoot element.

❑ The title field is serialized as an element with the name ‘Name’.

❑ The pubdate field is serialized as an attribute named ‘PublicationDate’ with data type
‘date’. It becomes an attribute of the enclosing TitleRoot element.

Chapter 6

36

Here is a snippet of the returned SOAP message:

The default behavior of a field is to be represented as an element named after the field.

Ignoring Fields
By default, all public fields of our class are serialized. If there are public fields we don’t want to serialize
we can use the XmlIgnore attribute.

Why would we want to ignore fields? If we exchange documents with partners, it may be that our class
contains fields we don’t want included in the XML. The field may contain confidential information or
information that for other reasons are not relevant to our business partners. We could make the field
private. But if our class is also used by an internal application, we may want that application to see the
field, so we can’t make it private.

Another case is if the field is calculated based on other fields in the class. In this case it does not
necessarily make sense to have the field represented in the serialized XML.

The Publications3.cs file ignores the price field.

[XmlRoot(“TitleRoot”)]
public class Title
{
 [XmlAttribute(“Id”)]
 public string title_id;

 [XmlElement(ElementName=“Name”)]
 public string title;

 [XmlAttribute(AttributeName=“PublicationDate”, DataType=“date”)]
 public DateTime pubdate;

 [XmlIgnore()]
 public double price;
 ... etc

Custom SOAP Techniques

37

This causes the serializer to skip the price field.

Shaping Arrays
The default behavior of arrays is to create a root element for the array. This element is given the name
of the array and all items in the array are nested inside this element.

There are several attributes we can use to shape the array, including the XmlArray attribute and the
XmlElement attribute.

Renaming the Array

We saw above that all the elements of the authors array were contained in a root element named after
the array. We can use the XmlArray attribute to rename the array.

[XmlRoot(“TitleRoot”)]
public class Title
{
 [XmlAttribute(“Id”)]
 public string title_id;

 [XmlElement(ElementName=“Name”)]
 public string title;

 [XmlAttribute(AttributeName=“PublicationDate”, DataType=“date”)]
 public DateTime pubdate;

 [XmlIgnore()]
 public double price;

 [XmlArray(ElementName=“AuthorList”)]
 public Author[] authors;
 ... etc

Chapter 6

38

This results in the array being named AuthorList instead of authors.

Empty Arrays

By default, if the array is empty, it appears in the XML with an xsi:nil=“true” attribute. This is
equivalent to null in C# and Nothing in Visual Basic.

 <AuthorList xsi:nil=“true” />

If we don’t want this XML element generated for empty arrays we can set the IsNullable property of
the XmlArray attribute to False. Here is a snippet from Publications4.cs:

 [XmlRoot(“TitleRoot”)]
 public class Title
 {
 [XmlAttribute(“Id”)]
 public string title_id;

 [XmlElement(ElementName=“Name”)]
 public string title;

 [XmlAttribute(AttributeName=“PublicationDate”, DataType=“date”)]
 public DateTime pubdate;

 [XmlIgnore()]
 public double price;

 [XmlArray(ElementName=“AuthorList”, IsNullable=false)]
 public Author[] authors;

 public void CreateDummy()
 {
 title_id = “BU7832”;
 title = “Straight Talk About Computers”;
 price = 19.99;
 pubdate = new DateTime(1992, 6, 9);
 }
 }

Custom SOAP Techniques

39

Note in the code above that the CreateDummy() method does not create the array of authors. We get an
empty array. If you use the test application and click GetBestseller4 you will see that there is no
reference to the array.

Removing the Root Array Element

We can remove the root array element and have the array elements listed directly under the root of the class.
We do this by using the XmlElement attribute on the authors array. We can also set the name of the array
elements. Here is an example (from Publications5.cs) that names the array elements ‘Writer’.

[XmlRoot(“TitleRoot”)]

public class Title

{

 [XmlAttribute(“Id”)]

 public string title_id;

 [XmlElement(ElementName=“Name”)]

 public string title;

 [XmlElement(ElementName=“Title”)]

 public TitleType type;

 [XmlAttribute(AttributeName=“PublicationDate”, DataType=“date”)]

 public DateTime pubdate;

 [XmlIgnore()]

 public double price;

 [XmlElement(ElementName=“Writer”)]

 public Author[] authors;

Chapter 6

40

When serialized, the XML looks like this:

Note that there is no enclosing element for the array.

Shaping Enumerations
By default, enumeration values are serialized as the name of the enumeration member. We can use the
XmlEnum attribute to give the enumeration member a different name when it is serialized. We’ll expand
our title class with an enumerator for the type of title.

The XmlEnum attribute specifies the value to use when serializing the enumeration. Here is our class
expanded with a new field for the type of title (Publications5.cs). We also use the XmlElement
attribute to name the element.

namespace Publications5
{
 public class Author
 {
 public string firstname;
 public string lastname;
 }

 public enum TitleType
 {
 [XmlEnum(Name=“Business book”)]
 business,

 [XmlEnum(Name=“Modern cooking”)]
 mod_cook,

 [XmlEnum(Name=“Other”)]
 other
 }

Custom SOAP Techniques

41

 [XmlRoot(“TitleRoot”)]
 public class Title
 {
 [XmlAttribute(“Id”)]
 public string title_id;

 [XmlElement(ElementName=“Name”)]
 public string title;

 [XmlElement(ElementName=“Title”)]
 public TitleType type;

 [XmlAttribute(AttributeName=“PublicationDate”, DataType=“date”)]
 public DateTime pubdate;
 ...etc

When serialized with a Title object with the type field set to ‘business’ we get:

Passing Complex Data Types
The examples we have seen so far have all used simple data types, arrays and structures. This section
will show how we can pass more complex data types to and from a Web Service. Specifically, we will
look at how we can pass:

TE
AM
FL
Y

Team-Fly®

Chapter 6

42

❑ A DataSet

❑ An XML string

❑ Binary data

The XmlSerializer is able to serialize and deserialize these complex types. By passing complex data
types we can do interesting things. For example: by returning a DataSet from a web service, we can use
data binding and bind user interface elements to the DataSet. By passing binary data we can transfer
images from a web service.

In this section we will use a Visual Studio .NET project that is available with the code download. The
project is \ProWebServices\CustomSOAP\DataTypesCS\DataTypesCS.sln. You should create an
application in IIS for http://localhost/ProWebServices/CustomSoap/DataTypesCS.

Let us start with looking at how DataSets can be used with web services.

Custom SOAP Techniques

43

Passing DataSets
The DataSet is part of the ADO.NET architecture. A DataSet may be described as a disconnected ADO
Recordset on steroids. It can contain a single table in a similar way to a Recordset. It can also contain
several tables and the relationships between tables. In that respect it is sort of a mini-database in memory.
We may look at the data in the DataSet as relational data or as XML data. When serialized and
transported, the DataSet is represented as XML. Note that although DataSets are similar to Recordsets in
functionality, there is no explicit relationship between ADO.NET DataSets and ADO Recordsets.

DataSets are powerful. We can bind user interface elements such as a data grid to a DataSet. A DataSet
also keeps track of changes made to it so that we can have changes updated in the database.

What’s more, DataSets can be passed to and from a Web Service. Imagine a news service returning a set
of news. On the client, we may simply bind the DataSet to a grid, set up the grid format, and have the
DataSet displayed without writing any display code.

Returning a DataSet
As an example of a Web Service returning a DataSet we will use a service that returns a DataSet with
rows from the titles table in the pubs database. The following Web Service was created using Visual
Studio .NET. The file is available as DataSetService.asmx.cs in the code download. The
highlighted code is the code we have added manually for our Web Service. Some of the code generated
by VS.NET has been removed for brevity.

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;
using System.Data.SqlClient;

namespace DataTypesCS
{
 public class DataSetService : System.Web.Services.WebService
 {
 // private variable used for retrieving data from SQL server
 private SqlDataAdapter sqlAdapter;

 public DataSetService()
 {
 //CODEGEN: This call is required by the ASP.NET Web Services Designer
 InitializeComponent();

 // declare Command builder
 SqlCommandBuilder builder;

 // select statement
 string sql = “SELECT * FROM titles”;

 // connect string to database. You may need to modify this
 string connstr =
 “user id=sa;password=;database=pubs;server=localhost”;

Chapter 6

44

 // create data adapter
 sqlAdapter = new SqlDataAdapter(sql, connstr);

 // generate insert, update, and delete statements automatically
 builder = new SqlCommandBuilder(sqlAdapter);
 }

 ... some generated code removed here

We import the System.Data and the System.Data.SqlClient namespaces. In the constructor we
create a SqlDataAdapter that we will use to query the database. We also use the
SqlCommandBuilder to create SQL commands for updating the database.

 [WebMethod()]
 public DataSet GetTitles()
 {
 DataSet ds = new DataSet();
 // queries the data base and fills the data set
 sqlAdapter.Fill(ds, “Titles”);
 return ds;
 }

The GetTitles method returns a DataSet. No special code is needed to return a DataSet. The
XmlSerializer is able to serialize a DataSet into XML.

If we test the GetTitles()
function using the test pages
generated by ASP.NET, we
will see the XML
representation of a DataSet.
The XML contains both a
description of the data (the
schema), and the actual data:

Custom SOAP Techniques

45

Updating Data Using a DataSet
We can also pass a DataSet back to a Web Service. When the data is retrieved from the web service it is
disconnected from the database. We can work with it locally and then after some time we can send it
back to the web service and have the data source updated. The DataSet keeps track of what has changed
since it was retrieved from the data source.

Here is a method we can use to update a DataSet:

 [WebMethod]
 public void UpdateTitles(DataSet ds)
 {
 // we call update if there are changes made
 // to the data set
 if (ds.HasChanges())
 sqlAdapter.Update(ds, “Titles”);
 }

The UpdateTitles method checks if there are any changes made to the DataSet and calls Update on
the sqlAdapter to update the database.

Using DataSets on the Client

To test the UpdateTitles method we cannot use the ASP.NET test pages. The ASP.NET test pages
use HTTP-GET/POST and can only handle simple name/value parameters. Instead we build a simple
Windows Forms application with a DataGrid control and some buttons as shown below.

If you want to build this application yourself you can perform the following steps:

❑ Create a new Windows application by selecting File | New | Project… from Visual Studio .NET.

❑ Add a DataGrid from the toolbox.

❑ Add the buttons from the toolbox as shown in the screen shot above.

Chapter 6

46

❑ Add a Web Reference by selecting Project | Add Web Reference… from the menu and browsing
to http://localhost/ProWebServices/CustomSOAP/DataTypesCS/DataSetService.asmx.

The project is also available in the code download under
ProWebServices\CustomSOAP\DataSetClientCS

The callback code for the GetTitles button is simple:

 private void button1_Click(object sender, System.EventArgs e)
 {
 //Declare variables
 localhost.DataSetService service;
 DataSet ds;

 //Create web service proxy
 service = new localhost.DataSetService();

 //Call web service
 ds = service.GetTitles();

 //Display result
 dataGrid1.DataSource = ds;
 }

The callback code for the UpdateAll button is almost as simple:

 private void button2_Click(object sender, System.EventArgs e)
 {
 //Declare variables
 localhost.DataSetService service;
 DataSet ds;

 //Get data set from grid
 ds = (DataSet)dataGrid1.DataSource;

 //Create web service proxy
 service = new localhost.DataSetService();

 //Call web service
 service.UpdateTitles(ds);

 //Mark changes as updated
 ds.AcceptChanges();
 }

The only special thing here is the call to AcceptChanges(). The DataSet keeps track of the changes
made to it. After we have successfully updated the database we call AcceptChanges()on the DataSet.
This commits all the marked changes so that they will not be marked as changes the next time we call
the web service.

These two callback functions are all that is needed to be able to change the data in the application. This
shows the power of returning DataSets from Web Services. Data binding to controls can be used in
Windows applications and in Web applications.

Custom SOAP Techniques

47

Reducing the Amount of Data Sent
When updating the Titles table, a DataSet is sent back with all the data in the Titles table that was
originally retrieved from the database in addition to the changes made to the DataSet. Even if we changed
just a single row in the DataSet, it will contain a lot of data. This can be inefficient for large DataSets.

The DataSet has functionality we can use to send only the changes back to the service. The
GetChanges() method returns a DataSet with only the changed data. This function is used in the
callback for the UpdateChanges button:

 private void button3_Click(object sender, System.EventArgs e)
 {
 //Declare variables
 localhost.DataSetService service;
 DataSet ds;

 //Get data set from grid
 ds = (DataSet)dataGrid1.DataSource;

 //Create web service proxy
 service = new localhost.DataSetService();

 //Call web service with changes
 service.UpdateTitles(ds.GetChanges());

 //Mark changes as updated
 ds.AcceptChanges();
 }

When calling GetChanges(), a DataSet with only the changes are returned. This reduced DataSet is
transmitted back to the service and can be used to update the database.

Here too do we call the AcceptChanges() method. This commits all the marked changes so that they
will not be retrieved the next time we call GetChanges().

Strongly Typing the DataSet
The DataSet can be bound to controls such as a DataGrid. We can also navigate the DataSet. When we
navigate the DataSet, we name the tables and the columns we want to retrieve. Since the client
application does not know the structure of the DataSet in advance, late binding has to be used.

To get early binding with strong typing of tables and columns we can create a typed DataSet. A typed
DataSet is a class deriving from DataSet. It has all the functionality of a DataSet, in addition to new
accessors giving us early binding and IntelliSense.

Creating a typed DataSet with Visual Studio .NET is very easy. To add a typed DataSet to the Web
Service, create a new DataSet item:

Chapter 6

48

Give the DataSet a meaningful name. We’ll name it TitleDataset. VS.NET creates an XML schema
file, TitleDataset.xsd.

Now, to bind the file to a table in the database, use the Server Explorer and navigate to the table. Then
drag the table onto the design surface of the XSD file:

Custom SOAP Techniques

49

When we build the Web Service, a typed DataSet is created in the TitleDataset.cs file. This file
contains a class named TitleDataset that derives from System.Data.DataSet. The code for the
typed DataSet is almost 500 lines, so we won’t show it here.

To use the typed DataSet in our Web Service is piece of cake. We simply replace DataSet with
TitleDataset:

 [WebMethod()]
 public TitleDataset GetTitles2()
 {
 TitleDataset ds = new TitleDataset();
 sqlAdapter.Fill(ds, “Titles”);
 return ds;
 }

To get IntelliSense on the client side, we must update our proxy code. The proxy code is the code
added to our client when we add the web reference. If we don’t update the proxy code, the client will
still work since all the functionality of DataSet is preserved by our derived typed data set.

When we change the interface of the Web we need to regenerate the proxy. In Visual
Studio .NET this is done by right-clicking on the web reference and selecting ‘Update
Web Reference’.

After updating the client proxy, we can also navigate the DataSet using strongly typed accessors. Here is
the callback for the GetTitles2 button:

 private void button4_Click(object sender, System.EventArgs e)
 {
 //Declare variables
 localhost.DataSetService service;
 localhost.TitleDataset ds;

 //Create web service proxy
 service = new localhost.DataSetService();

 //Call web service
 ds = service.GetTitles2();

 //Display result
 dataGrid1.DataSource = ds;

 //Iterate through result
 foreach (localhost.TitleDataset.titlesRow row in ds.titles.Rows)
 if (row.title_id == “BU1032”)
 MessageBox.Show(row.title);
 }

In addition to displaying the DataSet in the grid, we iterate trough the data set and display the title of
one selected book:

Chapter 6

50

By using a typed data set we get the advantage of IntelliSense in Visual Studio .NET. We also get strong
typing and compile time checking of access to columns. It us much better to detect typing errors at
compile time than at run-time.

XML Strings
In some cases we might have an XML string that we want to return from a Web Service. This may be
for instance an XML string returned from a legacy COM component.

Many different ways have been used in the past to send data between the tiers in an n-tier
application, including variant arrays, disconnected ADO Recordsets, and objects. Lately many have
started using XML as the data carrier technology in their COM based architecture.

If a business COM component returning an XML string is to be exposed as a Web Service using
ASP.NET, how can the XML be returned from the Web Service? From ASP.NET we can access the
COM component by using COM Interop.

The next question is; how can the XML string be returned from the Web Service? Here we will look at
the following ways of returning the XML string:

❑ Returning the raw XML string as a parameter.

❑ Strongly typing the XML by creating a schema.

Returning the XML String
We are using an XML string in the format we got from our XmlSerializer example earlier. The file is
available in the code download as \ProWebServices\CustomSoap\titles.xml.

<?xml version=“1.0” encoding=“utf-16”?>
<Title xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>
 <title_id>BU7832</title_id>
 <title>Straight Talk About Computers</title>
 <pubdate>1992-06-09T00:00:00.0000000+02:00</pubdate>
 <price>19.99</price>
 <authors>
 <Author>
 <firstname>Dean</firstname>
 <lastname>Straight</lastname>
 </Author>

Custom SOAP Techniques

51

 <Author>
 <firstname>Dean2</firstname>
 <lastname>Straight2</lastname>
 </Author>
 </authors>
</Title>

Returning this from a Web Service as a string is simple. We simply declare the return type from our
web method to be a string. The following example is available in the code download as
XmlService.asmx.cs.

... generated code removed

using System.Xml.Serialization;

namespace DataTypesCS
{
 public class XmlService : System.Web.Services.WebService
 {
 ... generated code removed

 [WebMethod()]
 public string GetXMLString()
 {
 return ReadXmlFile();
 }

 private string ReadXmlFile()
 {
 System.IO.StreamReader reader;

 reader = new System.IO.StreamReader(
 “C:\\inetpub\\wwwroot\\ProWebServices\\CustomSoap\\titles.xml”);

 return reader.ReadToEnd();
 }
 }
}

There are two issues with returning the raw string:

❑ The SOAP message does not actually contain XML. It contains an XML-encoded string.

❑ The WSDL does not indicate the schema of the returned XML. We need to communicate the
schema to the consumers of our Web Service some other way.

To see the first point, we can look at the XML that is sent over the wire:

<?xml version=“1.0” encoding=“utf-8”?>
<soap:Envelope xmlns:soap=“http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>

TE
AM
FL
Y

Team-Fly®

Chapter 6

52

 <soap:Body>
 <GetXMLStringResponse xmlns=“http://tempuri.org/”>
 <GetXMLStringResult><?xml version=“1.0” encoding=“utf-16”?>
<Title xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
 xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>
 <title_id>BU7832</title_id>
 <title>Straight Talk About Computers</title>
... stuff removed
</Title>
</GetXMLStringResult>
 </GetXMLStringResponse>
 </soap:Body>
</soap:Envelope>

As we can see, the XML angle brackets are escaped using < and >. If we look at the WSDL we
see that the schema only defines the return type as a string:

The consumer is able to reconstruct the XML from this string but it is clearly not an optimal way to
send the XML. Nevertheless, returning the XML as a string is simple and all SOAP implementations
should be able to handle a string.

Returning Strongly Typed Data Structures
We may instead create an XML schema for our XML structure and use the schema in our code. We
could write the schema by hand, and in our simple case this should be quite feasible.

The .NET Framework provides a tool that makes this job much easier. The XML Schemas/Datatype
Support utility (xsd.exe) is able to generate schemas from XML files, generate classes from schemas,
generate typed DataSets from schemas, and more.

Custom SOAP Techniques

53

To return strongly typed data structures we will do the following:

❑ Create an XML schema, titles.xsd, from the titles.xml file.

❑ Create a C# class file, titles.cs, from the titles.xsd file.

❑ Use the XmlSerializer class in our Web Service to return the structure.

To start off, we need a sample of our XML structure in an XML file. We use the titles.xml that is
available with the code download. We run the xsd.exe utility on this file:

This generates an XML schema definition for the XML. We then run the xsd.exe tool again, this time
on the XSD file we just generated:

This generates a C# file with classes representing our structure. Here is the code generated:

//--
// <autogenerated>
// This code was generated by a tool.
// Runtime Version: 1.0.2914.16
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </autogenerated>
//--

//
// This source code was auto-generated by xsd, Version=1.0.2914.16.
//
using System.Xml.Serialization;

[System.Xml.Serialization.XmlRootAttribute(Namespace=““, IsNullable=false)]
public class Title {

Chapter 6

54

 [System.Xml.Serialization.XmlElementAttribute(IsNullable=false)]
 public string title_id;

 [System.Xml.Serialization.XmlElementAttribute(IsNullable=false)]
 public string title;

 [System.Xml.Serialization.XmlElementAttribute(IsNullable=false)]
 public string pubdate;

 [System.Xml.Serialization.XmlElementAttribute(IsNullable=false)]
 public string price;

 [System.Xml.Serialization.XmlElementAttribute(“authors”, IsNullable=false)]
 public TitleAuthors[] authors;
}

public class TitleAuthors {

 [System.Xml.Serialization.XmlElementAttribute(“Author”, IsNullable=false)]
 public TitleAuthorsAuthor[] Author;
}

public class TitleAuthorsAuthor {

 [System.Xml.Serialization.XmlElementAttribute(IsNullable=false)]
 public string firstname;

 [System.Xml.Serialization.XmlElementAttribute(IsNullable=false)]
 public string lastname;
}

As we can see, the classes have attributes applied to them so that the XmlSerializer can map
between objects and XML.

Here is a Web Service method that returns an object of the generated type Title. The method is
available in the XmlService.asmx.cs file in the code download:

 [WebMethod()]
 public Title GetXmlTitles()
 {
 XmlSerializer serializer;
 System.IO.StringReader reader;
 Title theTitle;
 string str;

 serializer = new XmlSerializer(typeof(Title));

 str = ReadXmlFile();

 reader = new System.IO.StringReader(str);

 return (Title)serializer.Deserialize(reader);
 }

Custom SOAP Techniques

55

As we can see, no explicit code is required to map from XML to the class. This is all handled by the
XmlSerializer using the attributed class.

Our WSDL file now contains a description of the structure we are returning:

When generating proxy code from this WSDL file, we will get strongly typed access to the structure in the
XML string. This makes the work of programming the client application much easier. If we return the raw
XML string it has to be parsed. Using a strongly typed proxy we can access the fields in the XML string
directly. The WSDL file also serves as documentation for the data returned by the web service.

Using the xsd.exe tool, we can also create a typed data set by typing:

xsd titles.xsd /dataset /language:cs.

By generating a DataSet we get all the flexibility of the DataSet as we saw in the previous section, for
instance binding user interface elements to the DataSet.

Binary Data
We may pass binary data to and from a Web Service. Passing binary data can be used for a variety of
purposes; for passing word documents, PDF files, images etc.

A simple way to pass binary data is to send it as an array of bytes.

The code download contains a simple example that returns an image on the hard disk. The web service
is available in DataTypesCS\BinaryService.asmx.cs.

Chapter 6

56

 [WebMethod()]
 public Byte[] GetImage(string filename)
 {
 // Declare variables
 System.Drawing.Bitmap myBitmap;
 System.IO.MemoryStream stream;

 // Create memory stream to
 stream = new System.IO.MemoryStream();

 try
 {
 // Create Bitmap from file
 myBitmap = new System.Drawing.Bitmap(filename);

 // Save image as JPEG to stream
 myBitmap.Save(stream, System.Drawing.Imaging.ImageFormat.Jpeg);

 // Return array representation
 return stream.ToArray();
 }
 catch (Exception err)
 {
 // If file does not exist, we return an empty array
 return null;
 }
 }

We need to make sure that we have set a reference to the System.Drawing.dll using Project | Add
Reference.

The Bitmap class in the System.Drawing namespace does all the hard work in this method. Calling
Save() on a Bitmap object serializes the data into a memory stream. The memory stream has a
method named ToArray() that writes the entire stream contents to a byte array.

To test this function we create a simple Windows Forms application that takes a filename as a parameter and
displays the image. The test application is available in the directory BinaryClientCS in the code download.

Custom SOAP Techniques

57

The code for the GetImage button callback is simple:

 private void button1_Click(object sender, System.EventArgs e)
 {
 //Declare variables
 localhost.BinaryService service;
 Byte[] bytes;
 System.IO.MemoryStream stream;
 Bitmap image;

 // Create web service proxy
 service = new localhost.BinaryService();

 // Call web service
 bytes = service.GetImage(textBox1.Text);

 //Create image from array
 if (bytes != null)
 {
 stream = new System.IO.MemoryStream(bytes);
 image = new Bitmap(stream);

 //Display image
 pictureBox1.Image = image;
 }
 else
 MessageBox.Show(“No image returned”);
 }

The GetImage() method returns a byte array. A MemoryStream is created from the byte array. Then
we create a Bitmap object and give it the stream in the constructor.

To display the image we use a PictureBox control.

The SOAP message returned contains the byte array. Here is a snippet of the SOAP message.

<?xml version=“1.0” encoding=“utf-8”?>
<soap:Envelope xmlns:soap=“http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>
 <soap:Body>
 <GetImageResponse xmlns=“http://tempuri.org/”>
<GetImageResult>/9j/4AAQSkZJRgABAgAAZABkAAD//gASQWRvYmUgSW1hZ2VSZWFkef/sABFEdWNreQ
ABAAQAAAAuAAD/7gAOQWRvYmUAZMAAAAAB/9sAQwAKBwcHBwcKBwcKDg
... removed lots
kICQ4QDAoKDBATDw8QD//2Q==</GetImageResult>
 </GetImageResponse>
 </soap:Body>
</soap:Envelope>

Chapter 6

58

Summary
This chapter described various ways by which we can get more control over the XML passed to and
from Web Services. The techniques covered are pretty advanced, and in many cases we can create
excellent web services without them.

There are cases when we need to get under the hood and extend and customize the functionality
provided by ASP.NET:

❑ We need to modify the XML in the SOAP messages before it sent and after it is received.

❑ We need to sort out interoperability problems with other SOAP implementations.

With this in mind we looked at:

❑ SOAP Extensions is a powerful mechanism by which we can get access to the SOAP stream
before and after it is serialized. We wrote an extension that writes SOAP messages to the Event
Log. SOAP Extensions can also be used to modify the SOAP message. This can be used for
compression, encryption, and so on. Chapter 16 covers encryption using SOAP extensions.

❑ Ways in which we can shape the XML used in the SOAP message. The XmlSerializer class
is used under the hood of ASP.NET Web Services. Using attributes we can, for instance,
specify that a field should be serialized as an XML attribute instead of as an XML element.

❑ How we can pass complex data types such as DataSets, XML strings, and binary data.

The next chapter will show you how we can expose data from sources such as files, Active Directory,
and other Web Services.

Custom SOAP Techniques

59

Chapter 6

60

Standard Wire Formats and Data
Types

There has been a lot of discussion on the Internet lately about Web Services and how they will
revolutionize the way in which applications and web sites will communicate. Theoretically, the concept of
Web Services will allow a client running on virtually any Operating System to communicate seamlessly
with a Web Service running on a web server hosted by an entirely different OS with an entirely different
set of core technologies. A client can, theoretically, query a server for what Web Services are available,
and then obtain all relevant information required in order to access any of those services.

At a high level, this all seems quite wonderful, but how exactly does it all happen? With all of the hype
surrounding .NET and Web Services, you probably haven't managed to escape the term SOAP (Simple
Object Access Protocol). SOAP is the "wire format" that enables all of this fantastic, language-agnostic
communication to take place for Web Services.

This chapter will give you an introduction to several of the most common wire formats, as well as
discussing what wire formats and protocols are. This chapter will then round out its discussion of wire
formats with a detailed overview of SOAP and how it relates to Web Services. We hope that once you
have finished reading this chapter, you will have been able to take away the following knowledge:

❑ What a wire format is

❑ What some of the most common wire formats are and how they may or may not be related to SOAP

❑ What SOAP is, what SOAP messages look like and how they're used in Web Services

❑ Why SOAP is used for Web Services

❑ Using simple and complex data types with SOAP

5

TE
AM
FL
Y

Team-Fly®

Chapter 5

2

What is a Wire Format?
A Wire Format is the form (you can think of it as a shape if that helps) data takes when transmitted
across the network "wire". The term "wire" is used in quotes because it could just as easily be a cellular
connection, a wireless LAN connection, or a satellite link.

One distinction that many people find confusing is the difference between the Wire Format and the
Transport. Whereas the wire format is the form or shape of the data, the Transport is the method by
which that data is transferred from place to place.

Consider the analogy of a transport truck on a highway. Its cargo can take many shapes and forms, but
the truck itself is still the transport, and as such is responsible for taking its payload from its origination
point to its destination.

There are many ways to represent data, and all of them have their own specific benefits and
disadvantages. Storing data in raw binary format might have the advantage of a compressed structure
and a smaller storage requirement, but it might make things more difficult for the receiver of the binary
data. XML data has a larger storage requirement, but allows for a greater ease of use and flexibility on
the part of the receiver.

Wire Formats
This next section of the chapter will give a brief overview of some of the more common ways in which
data is sent across the "wire" for Internet and/or distributed applications. The overview of wire formats
will conclude with a detailed discussion of SOAP as a wire format.

HTTP GET
The HTTP GET protocol is an industry standard protocol that uses the HTTP (HyperText Transfer
Protocol) verb "GET" for retrieving data from web servers. HTTP GET makes a request of a web server
that consists of a series of HTTP request headers that define things like the client browser and more.
Parameters to the request are sent UUencoded (the process that converts a space into the "%20" character).

Next to SOAP, HTTP-GET and HTTP-POST are the most commonly used transport protocols for Web
Services in the .NET Framework. The limitation of the HTTP GET and POST protocols is that they
have limited support for complex data types.

Because your web browser (such as IE or Netscape) typically hides all of the underlying HTTP details
from you and serves up nicely formatted and colored pages, you are insulated from a lot of what is
going on with the HTTP GET protocol. The following screenshot illustrates some of what is going on in
an HTTP GET request.

Standard Wire Formats and Data Types

3

What we've done is opened up a command prompt on Windows 2000 and typed "telnet localhost 80",
which opens up a raw ASCII TCP/IP connection to our web server. We turned local echo on (by
pulling up the telnet command prompt (hit Ctrl-]) and typing the appropriate echo on command) so you
could see what was happening and issued the following request:

GET /iishelp/iis/misc/default.asp HTTP/1.1

This, followed by the HTTP headers you see in the screenshot and a blank line (you have to hit Enter
twice from the telnet prompt to indicate to the server that you're done sending your request), will issue a
HTTP GET request against the web server for that filename, using the HTTP v1.1 protocol. You can see
that the server issued a response with the standard response code of "200 OK" (I'm sure you're familiar
with the dreaded "404", which indicates a file not found error). It then sent some header information
including the server type and version number, as well as the server date, content length and a request to
set an ASP Session cookie. Once the headers were done, the HTML output began streaming to the
console. Every time you request a web page (or request a Web Service) via the HTTP GET protocol,
this is the interaction that is occurring at a low level.

HTTP POST
HTTP POST is the second half of the standard HTTP GET/POST verbs. HTTP POST parameters are
UUencoded, but sent to the web server directly in the HTTP request message itself. This protocol is
used to transmit information to the web server, such as posting a new message on a forum, clicking
"OK" on a search form, etc.

In terms of Web Services, this protocol also suffers from the inability to carry complex data types to a
Web Service. Complex data types are serializations of complex object graphs such as a DataSet or your
own object. HTTP POST by itself is limited to primitive string types. However, as we'll see later, when
SOAP messages are carried on top of this protocol (HTTP is used as the SOAP transport) this limitation
can be overcome.

Chapter 5

4

BXXP/BEEP
BXXP was an XML-based framework for building application protocols that was used as a starting point
for the IETF's BEEP (Blocks Extensible Exchange Protocol) working group. BEEP can now be found
residing on the website http://www.beepcore.org.

BEEP supports distributed applications that work in peer-to-peer environments as well as client/server
and server-to-server environments. It allows for the carriage of arbitrary MIME (Multipurpose Internet
Mail Extensions) payloads including XML and supports a standard layer for session management. BEEP
is the brainchild of Dr. Marshall Rose and is a relatively new Internet protocol that is in the middle of
the standardization process. There is currently no native .NET Framework support for BEEP
applications, but there is strong Java and Tcl support for the beepcore library available on the
BEEPcore.org website.

ebXML
Electronic Business XML (ebXML) is an XML dialect sponsored by UN/CEFACT and OASIS designed
to replace traditional EDI (Electronic Data Interchange) methodologies with a stronger, more extensible
way of allowing businesses to communicate electronically and automatically. The goals of this protocol
are to provide a system for reliable messaging and error handling, message routing, security, auditing,
platform independence and recovery from interrupted messages and transactions.

ebXML is a modular suite of specifications that enables businesses to conduct business over the
Internet. Anyone who has worked for an Internet-visible business that has needed to exchange
information between other business partners knows the challenge present in communicating information
and processes between businesses. The ebXML protocol provides not only for the exchange of business
information, but messages and business processes as well.

The inner workings of the protocol are far too complex to explain in any detail in this chapter, but there
is plenty of information available at the website for the effort, www.ebXml.org.

GIOP/IIOP
CORBA (Common Object Request Broker Architecture) has a General Purpose Inter-ORB Protocol
(GIOP) that is a general purpose wire protocol for use in CORBA-based distributed application
architectures. There is a TCP/IP specialized version of this protocol available called the Internet Inter-
ORB Protocol (IIOP). Both of these protocols use a binary structure for transferring remote method
invocation information between distributed systems.

XML-RPC
The XML-RPC protocol is probably the wire format that most closely resembles SOAP in goal and
nature. XML-RPC is a protocol that uses HTTP as the transport and XML as the encoding format. The
goal of XML-RPC is to allow remote method invocations and responses between two peers across a
"wire". Again, "wire" should be taken as an abstract and not limited to physically connected devices.

Without getting into too much detail on the inner workings of XML-RPC, let's take a look at how it might
be used. What we're going to do is take a look at the HTTP conversation that might take place if a client
application is attempting to look up the full name that belongs to a specific customer's ID number.

Standard Wire Formats and Data Types

5

Here is the text that is sent to the server:

POST /RPC2 HTTP/1.0
User-Agent: MyApp 1.0 (Windows NT 5.0)
Host: customerlookup.somecompany.com
Content-Type: text/xml
Content-length: 250

<?xml version="1.0"?>
<methodCall>
 <methodName>contactmanager.LookupCustomer</methodName>
 <params>
 <param>
 <value><i4>1852</i4></value>
 </param>
 </params>
</methodCall>

As we can see, the immediate benefit is that the payload carried by this HTTP POST request is human-
readable XML. It should be fairly obvious that we're trying to invoke the LookupCustomer method in
the contactmanager object, and pass it the argument 1852. Assuming the function call on the remote
machine completed properly, an XML-RPC response might look like the following:

<methodResponse>
 <params>
 <param>
 <value><string>John Doe</string></value>
 </param>
 </params>
</methodResponse>

This response is typically received with the HTTP result code of "200 OK".

This looks like a pretty robust implementation, but we should mention that XML-RPC only supports a
few core data types, such as:

❑ 4-byte Signed Integer (represented by the <i4> or <int> tag

❑ Boolean values (represented by the <boolean> tag.

❑ Strings (represented by the <string> tag.

❑ Double-precision, signed floating point numbers (<double>).

❑ ISO 8601 International standard dates e.g. 20010717T12:12:21 (<dateTime.iso8601>)

❑ Base-64 encoded binary data (represented by the <base64> tag)

While the XML-RPC specification (found at www.xmlrpc.com/spec) allows for the extension of these
types by supporting arrays and structures (VB user-defined types or C structs), those arrays and
structures can only have the above-listed basic types as members. This limitation makes this protocol
very impractical for transmitting complex types like ADO.NET DataSets, complex or jagged arrays,
RecordSets and more.

Chapter 5

6

XMLP
XMLP (The XML Protocol) is a rapidly progressing W3C standard. The requirements for this protocol
can be found at www.w3c.org/TR/xmlp-reqs, while the working group on the protocol can be found at
www.w3c.org/2000/XP.

This is an extremely robust protocol whose main goal is to allow two or more peers to communicate in
a distributed environment with XML as the data-encoding format. It sports a layered architecture on top
of an extensible and simple messaging format. This extensible and simple messaging format might look
extremely familiar to those who are familiar with SOAP. In fact, the progression from SOAP to XMLP
is enough to have many people saying that SOAP will eventually be superceded by XMLP.

An XMLP Application is a consumer of services provided by the XMLP Layer. The XMLP Layer
provides services or operations that transfer packages of XMLP Blocks between peer XMLP
Applications with zero or more XMLP Intermediaries. An XMLP Intermediary is an XMLP Receiver
and an XMLP Sender that processes XMLP Blocks and forwards the XMLP Message on to the next
Receiver in the line toward the message's ultimate Receiver or destination.

Obviously, there are a lot of intricate inner workings involved in the XML Protocol. To make things a
bit simpler, we have included a diagram of an XMLP Envelope, which are the basic units of data
transferred in XMLP Messages. This diagram is from the W3C requirements specification:

XP Envelope

XP Block

XP Block

XP Block

XP Header

XP Block

XP Block

SOAP
SOAP (Simple Object Access Protocol) is a protocol that allows not only for remote method invocations
in distributed environments, but it also allows for the transfer of rich and complex data types as well as
messaging of arbitrary payloads. We'll discuss SOAP in detail in the next section of this chapter. SOAP
support is built into the .NET Framework, and it is a key part of the .NET Framework's implementation
of Web Services.

Standard Wire Formats and Data Types

7

An Introduction to SOAP
SOAP is a fairly new protocol being developed as an industry standard. With all of the hype
surrounding the .NET Framework, Microsoft, and SOAP many people think that SOAP is just another
Microsoft acronym. While there has been significant support from Microsoft on the SOAP initiative, the
protocol itself is designed to be vendor and platform independent. SOAP began its life as a request for
standardization some time before the .NET Betas began to surface. In fact, many Microsoft teams were
internally using other technologies when they decided to adopt SOAP in the middle of the process of
building what we now know as .NET.

The goal of SOAP is to allow for a standardized method of exchanging textual information between
clients and applications running on the Internet. It provides for a standard method of encoding data into
a portable format, but (in version 1.1) makes no distinction about how that data is to be transported
from application to application. The original 1.0 specification of SOAP required that SOAP messages be
transmitted using only the HTTP protocol. This has since changed with the acceptance of the 1.1
standard, allowing SOAP messages to be sent using other transports such as FTP and SMTP.

Why SOAP?
The main benefit of SOAP is that it is an incredibly lightweight protocol. That is, it doesn't require an
enormous amount of work on the part of either the sender or the recipient to communicate using the
protocol. In fact, because SOAP uses conformant XML as its data encoding format, any system capable
of parsing XML should be capable of communicating via SOAP.

It's all well and good for us to say how wonderful SOAP is, but to many programmers (myself included),
'seeing is believing'. Before getting into the detail of what SOAP is and how you can build SOAP
messages (the basic unit of communication in SOAP), let's take a look at some of the communication
problems that SOAP attempts to resolve.

Consider the example of a client application (this could be a Windows application or a web site) that
needs to get at data maintained by the website of a business partner. Let's say that the Northwind
Company (we all should be thoroughly sick of them by now) has a business partner that requires access
to their customer list for marketing purposes.

How is this partner supposed to access this information? If the website is worth anything, its database is
tucked securely away behind a firewall, so accessing it directly is out of the question. We could try and
hit an HTML-formatted page containing customer information and try and "scrape" the useful
information off of the web page, but that would be considered a cheap hack at best. The real solution is
to provide a way for the partner to obtain the actual customer list using HTTP so the business partner
doesn't have to worry about firewalls or NT authentication (after all, the partner could be running
Netscape or IE on a system that isn't supported by NT authentication).

The two business partners get together and decide that they'll exchange customer data in the form of
an XML-persisted ADO RecordSet. What they decide on next is to create an ASP page that only that
one business partner can use that will simply place onto the Response stream the XML persisted from
the RecordSet.

Chapter 5

8

Let's take a look at how this all works. The first thing we'll look at is a hypothetical marketing
application written in VB6 that the Northwind partner uses to make annoying phone calls. You can find
this sample application in the XMLHTTP directory in the code downloads. Its associated ASP page is
called Northcustomers.asp, and can also be found in that directory. We'll start with a screenshot of
the VB6 application that "pulls" the information from a fictitious Northwind website.

Nothing too complicated here. We're looking at a ListView control with a couple of column headers and a
"Fetch Customers" button. Let's take a look at the code we execute in response to clicking that button.

Public oRS As ADODB.Recordset

Private Sub Command1_Click()
 Dim oStream As New ADODB.Stream
 Dim oReq As MSXML.XMLHTTPRequest
 Dim strXML As String
 Dim newItem As ListItem

 Set oReq = New MSXML.XMLHTTPRequest

 oReq.Open "POST", "http://localhost/Northcustomers.asp", False
 oReq.send ""

 strXML = oReq.responseText
 Set oRS.ActiveConnection = Nothing
 oRS.CursorLocation = adUseClient
 oStream.Open
 oStream.WriteText strXML, adWriteChar
 oStream.Position = 0
 oRS.Open oStream
 If oRS.State = adStateClosed then
 Do While Not oRS.EOF
 Set newItem = ListView1.ListItems.Add(, , oRS("ContactName").Value, 0, 0)

Standard Wire Formats and Data Types

9

 newItem.ListSubItems.Add , , oRS("ContactTitle").Value, 0, ""
 newItem.ListSubItems.Add , , oRS("CompanyName").Value, 0, ""
 newItem.ListSubItems.Add , , oRS("Phone").Value, 0, ""
 oRS.MoveNext
 Loop
 End If
End Sub

For those of you not familiar with the XMLHTTPRequest object, it's a component found in Microsoft
XML version 2.0 that allows your VB6 application or component to communicate at a low level with an
HTTP server. In our case, as you can see above, we're attempting to open the file
http://localhost/Northcustomers.asp. You can copy the Northcustomers.asp file found in
the XMLHTTP_VB6 directory to your web root to test this sample out. The assumption is that the
response from this ASP page will be a stream of text containing a RecordSet serialized in XML format.
We open the RecordSet based on this stream and then proceed to populate the ListView control. So far
the code looks pretty simple, tight, and is accomplishing a lot of good things… So why is this a
problem? You'll find out shortly.

Now let's look at the source code for the Northcustomers.ASP page:

<%@ LANGUAGE=VBScript %>

<%
 Dim oRS
 Dim oConn

 Set oRS = Server.CreateObject("ADODB.RecordSet")
 Set oConn = Server.CreateObject("ADODB.Connection")
 oConn.ConnectionString = "Driver={SQl Server};Server=localhost;
 Database=Northwind; UID=sa; PWD=password;"

 oConn.Open

 oRS.Open "SELECT * FROM Customers", oConn

 oRS.Save Response, 1
 oRS.Close
%>

It still looks pretty simple. We're just creating a RecordSet and saving it to the Response stream. Because our
ASP page doesn't know the constant value for adPersistXML, we use the real value for it (1).

So we just showed that in an extremely small number of lines of code, we can use XML documents over
the HTTP transport to communicate directly from a web server to any number of clients, including a
Windows application. Sounds pretty cool!

Now for the bad news. How could we extend this sample to be able to transfer an instance of an object?
How would we modify the above example to use the same ASP page to service multiple methods with
complex arguments? How would we pass an array of arbitrary length to a method call hosted by our
ASP page? If something were to go wrong on the server, how would the client learn about it? Now it
sounds a bit more complicated, doesn't it?

Chapter 5

10

While this one small solution may work for a very narrow scope, it isn't viable for anything real-world
that requires scalability or extensibility. This is where SOAP comes to the rescue. SOAP is a protocol
that allows you to pass messages and complex data back and forth between disparate systems in a
distributed architecture enabling remote method invocation.

SOAP provides for the encoding of complex data, messaging, remote method
invocation and error communication in a standardized format readable by any XML
parser.

The SOAP Format
Now that we've taken a brief look at some of the hardships people face when attempting to interface
disparate systems without the benefit of SOAP, let's take a look at what's inside SOAP and how it works.
The following is a diagram of a SOAP Message. The Message is a combination of an Envelope, Header,
and Body. We'll discuss each portion of the Message in some detail.

Envelope

Header

Additional Information Elements

Independent Elements

Body
Method Call Element

Embedded Elements

Every SOAP Message is an XML document. This XML document has a single root (or document)
element that is a SOAP Envelope. Within the envelope is where the rest of the data relevant to the
message is stored.

Keep in mind that unlike some other routed messaging and distributed access protocols (such as RMI,
CORBA's protocol), SOAP provides no means for encoding source and destination information into the
Envelope. The Envelope is simply a neat and tidy package containing information; it is up to the
individual consumer of SOAP at the time to decide where and how that information is to be
transmitted. In the case of the focus of this book, ASP.NET Web Services, the Web Services
infrastructure determines how and where to send the SOAP Messages.

The SOAP Envelope
As we said, the Envelope is the top-most or root element in the XML document that represents a SOAP
Message. Beneath the envelope, there is an optional Header element, and a required Body element.
Let's take a look at an empty SOAP Message to see what the XML looks like:

<SOAP-Env:Envelope>
 <SOAP-Env:Header>
 </SOAP-Env:Header>

Standard Wire Formats and Data Types

11

 <SOAP-Env:Body>
 </SOAP-Env:Body>
</SOAP-Env:Envelope>

We've left out the namespace definitions and the XML header here to keep things simple. However, it is
important to notice that the Envelope, Body, and Header elements are all namespace-qualified to the
SOAP-ENV namespace. It is actually a requirement to qualify the namespace and unlike some other
XML protocols, we cannot leave these in the default namespace.

According to the Envelope's schema, you are allowed to include your own custom attributes on the
Envelope itself, but those must be namespace-qualified. In addition, you can add your own Elements to
the Envelope so long as those are also namespace-qualified and occur after the Body Element in the
document. This flexibility allows you to create your own SOAP handlers to tune your XML Web
Services implementation to your individual needs. Here's an example of a SOAP Envelope that has a
custom attribute in place:

<SOAP-Env:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:CUSTOM="urn:schemas-mycustom-com:custom"
 CUSTOM:somevalue="2150">

 <!-- Header and body Tags -->
</SOAP-Env:Envelope>

The SOAP Header
SOAP allows you to place a payload header in the top of your SOAP Envelope. This allows you to
provide further detailed information describing the payload being carried by the SOAP Body. This is
where naming conventions get slightly confused.

The schema for the optional SOAP Header Element (SOAP-Env:Header) allows for an unlimited
number of child elements to be placed within the header. Each one of these child elements represents
an instance of Microsoft's SoapHeader class. So, the confusion is in that the SOAP specification refers
to the SOAP Header as the Header element, while Microsoft's SoapHeader class considers a SOAP
Header to be a child element within the Header element.

What this allows for is for Web Service clients to place extra data into the header of the message so that
every single method call on that service doesn't have to accept that data as an argument. For example,
you could use the header information to supply credentials to the Web Service. Rather than requiring
every single method call on the Web Service to ask for a username and password, you could simply
stuff that information into the SOAP Header.

For example, a SOAP Envelope sent from a client using the custom header might look like this:

<SOAP-Env:Envelope>
 <SOAP-Env:Header>
 <Custom-App:Credentials
 xmlns:Custom-App="urn:schemas-myapp-com:Credentials">
 <Username>Administrator</Username>

TE
AM
FL
Y

Team-Fly®

Chapter 5

12

 <Password>328309xka4ja8x924la;xj2</Password>
 </Custom-App:Credentials>
 </SOAP-Env:Header>

 <!-- Body of SOAP Message here -->

</SOAP-Env:Envelope>

To make your Web Service aware of the custom header (remember, this is Microsoft's definition of a
Header, which is a child-element of the SOAP-Env:Header Element), all you have to do is create a
class that derives from the SoapHeader class and modify your Web Service to indicate that header is
being used.

The SoapHeader class that you create is really nothing more than a data container that knows how to
be serialized in and out of the SOAP-Env:Header element in a SOAP Message. Let's take a look at how
to use a custom SOAP Header in the real world (well, almost). We'll expand on the SOAP Envelope we
showed earlier with the Username and Password information contained in it.

The first thing we'll do is create a Web Service. To do this, we'll just open up Visual Studio .NET and
create a new C# Web Service project called SOAPHeader. Rename the Service1.asmx file to
HeaderService.asmx. Make sure that you also modify the .asmx file to point to the appropriate class
name. Before we actually get into writing the Web Service, we need to define the derived class for our
custom SOAP Header (put this in AuthHeader.cs, a simple class file added to our project):

using System;
using System.Web.Services.Protocols;

namespace SOAPHeader
{
 public class AuthHeader : SoapHeader
 {
 public string UserName;
 public string Password;
 }
}

Now that we have this defined and part of our Web Service project in Visual Studio .NET, let's take a
look at the source listing. We've cut out the IDE-generated code to keep things easier to read:

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;

namespace SOAPHeader
{
public class HeaderService : System.Web.Services.WebService
{

Standard Wire Formats and Data Types

13

Below we declare a public instance of the custom SoapHeader class that we just defined above in the
AuthHeader.cs file:

 public AuthHeader myHeaderVariable;

In the code below, we use the [WebMethod] custom code attribute here to indicate that this method
will be exposed publicly via our Web Service. Also, we use the SoapHeaderAttribute custom code
attribute to indicate the name of the variable that contains the SoapHeader class that this method is
expecting. Within this method, we can be assured that our SoapHeader class instance will have its
properties set according to the information found in the SOAP-Env:Header Element in the request
issued to the Web Service.

 [WebMethod]
 [SoapHeader("myHeaderVariable")]
 public string HelloWorld()
 {
 return "Hello, " + myHeaderVariable.UserName;
 }

 }
}

The code above defines the standard "Hello World" sample application, but with a twist. Instead of
greeting generically, it returns the name of the user found in the SOAP Header passed from the client
application. The ability to pass custom information, serialized as a standard XML element, is an
invaluable tool in securing, customizing, and extending Web Services to perform the tasks that you
want; how you want them performed.

Let's take a look at the code for the client application that is consuming this Web Service. To create this
client application, we created a C# Console Application from within Visual Studio .NET and called it
SOAPHeaderClient. Then we simply added a Web Reference (right-click the project, click Add Web
Reference) to our HeaderService Web Service. With this accomplished, we were able to enter the
following into our Class1.cs file:

using System;

namespace SOAPHeaderClient
{
 class Class1
 {
 [STAThread]
 static void Main(string[] args)
 {

By default, when we added the Web Reference to the project, it added it in the "localhost"
namespace (defaults to the site name from which the reference was obtained in reverse, therefore a
reference from Microsoft.com would be in the Com.Microsoft namespace). The code listed below
instantiates a new proxy object as well as an instance of the custom SOAP Header class. Note that when
we obtained the Web Reference and Visual Studio .NET created the proxy object for us, it also gave us
a copy of the AuthHeader class in the localhost namespace.

Chapter 5

14

 localhost.HeaderService proxy = new localhost.HeaderService();
 localhost.AuthHeader myHeader = new localhost.AuthHeader();

The next two lines of code populate the <UserName> and <Password> elements in the
<AuthHeader> Element that will be in our SOAP Header.

 myHeader.UserName = "Admin";
 myHeader.Password = "Administrator";

Before we make the actual request of the Web Service, we need to set the value of the
AuthHeaderValue property (this was created by the proxy class generation code to provide a property
of type AuthHeader for the proxy class) to our instance of AuthHeader (myHeader).

 proxy.AuthHeaderValue = myHeader;
 Console.WriteLine(proxy.HelloWorld());
 proxy.Dispose();
 }
 }
}

Now that we've seen how to write an ASP.NET Web Service that expects a custom SOAP Header, and
we've seen how to write a client that consumes such a Web Service, let's see what the output of the
client looks like when we put everything together and run it:

What we've seen here is an incredibly simple example that allowed us to supply some simple text
information in the SOAP Header when communicating between our Console Application client and our
Web Service. The true benefit of the ability to add arbitrary SOAP Headers when communicating with
a Web Service comes into play when you need to secure communications between the client and the
server, allowing you to encrypt data and store it in a SOAP Header as well as store complex, serialized
objects in the header. Please see Chapter 14 for more information on using SOAP for security.

Standard Wire Formats and Data Types

15

SOAP Body
The body of a SOAP Envelope is where the meat of the remote method calls is placed. The SOAP Body
is where the method call information and its related arguments are encoded, it is where the response to
a method call is placed, and it is where error information can be stored. In addition to storing these
three main types of elements, the body can also contain things called independent elements, which are
used in encoding data (we'll discuss that in the next section on Encoding Data Types).

Call Body
When the SOAP Body is used to send a remote method call, that method call and its arguments are
serialized directly into the <SOAP-ENV:Body> element. The outer element of the function call
serialization is an element with the same name as the function being called. Each argument to that
function is then serialized as a child element. Let's consider a standard function prototype that looks
something like this:

int Sum(int OperandA, int OperandB)

It's a fairly standard function that just adds two integers and returns an integer containing the sum of the
two values. Let's take a look at how the SOAP Body might look containing a serialized method call for
the above prototype if we invoke the method in an attempt to add 2 and 2:

<SOAP-ENV:Envelope
 xmlns:xsi="http://www.w3c.org/1999/XMLSchema/instance"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body xmlns:adder="urn:schemas-mysite-com:adder">
 <adder:sum>
 <OperandA xsi:type="int">2</OperandA>
 <OperandB xsi:type="int">2</OperandB>
 </adder:sum>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

It is possible to transmit complex data types as method arguments, but we will cover that in the section
on Encoding Data Types.

The method element is always the first child element of the Body element, and is
always namespace qualified. The method arguments, however, do not need to be
namespace-qualified as it is assumed they are part of the same namespace as the
method element.

Response Body
Again, it is worth reminding you that SOAP makes no provisions for transport, and is on its own simply a
protocol for data being encoded onto the wire. It is up to the supporting infrastructure (in our case XML
Web Services) to provide the means by which the SOAP Messages are transmitted between systems.

Chapter 5

16

Once a SOAP Message containing a call body (a method element and serialized arguments in the body)
has been sent, it is reasonable for us to expect that we will receive another SOAP Message in response,
one containing a Body element that somehow contains the results of our remote method call. In the case
of SOAP over HTTP, a message containing the response body will be sent as text in response to an
HTTP-POST of the message containing the call body.

By convention, not by requirements in the specification, the response body's first child element is an
element of the same name as the method name with a suffix of "Response" appended. Following our
example above, the response to a method call for the "sum" method would be an element named
sumResponse, also namespace-qualified. As the child element of the method response element, the
return element is used to contain the method's return value. If the method call had parameters defined
as [out] or [in,out] (COM definition, VB programmers would consider these ByRef parameters)
those parameters would be contained as embedded elements within the method response element.

Let's take a look at a sample response Envelope from the above function call (keep in mind that these
are sample envelopes and may contain slightly more or less detail than something automatically
generated for you by the .NET Framework depending on circumstances):

<SOAP-ENV:Envelope
 xmlns:xsi="http://www.w3c.orc/1999/XMLSchema/instance"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body xmlns:adder="urn:schemas-mysite-com:adder">
 <adder:sumResponse>
 <return>4</return>
 </adder:sumResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Again, just as with the call body, the method response element is namespace-qualified, and is the first
child of the Body element (we'll see later an example of more than one child element in the Body).
Also, the return element does not need to be namespace-qualified.

By convention, the method response element is named the same as the method with the
"Response" suffix. This response element is the first child of the Body element and
must be namespace qualified.

Fault Body
If your infrastructure tries to send a SOAP Message, and there is a network failure, then you should
receive the appropriate network error message. In the case of sending a SOAP Message over HTTP,
you should receive a timeout or similar error. However, if when processing your SOAP Message, some
error occurs, then you might be likely to receive a SOAP Message in response whose Body element
contains the Fault element.

Thankfully, when you are using the XML Web Services infrastructure provided by the .NET
Framework, the interpretation of SOAP Faults is done automatically for you. If the system sees a SOAP
Message containing a Fault in response, then a new exception is thrown on the client end containing the
details of the Fault element. This allows a function call on a server to throw an exception that can be
trapped, extracted, and interpreted in a user-friendly manner on the client.

Standard Wire Formats and Data Types

17

The Fault element can contain a lot of information, but in general the Fault element contains a
faultcode element, a faultstring element, and an optional detail element, which can be used to
store additional information about the error that occurred. We won't go into too much detail on the
operations of the Fault element, as most of the work is being done for you. However, it is helpful to
know what kind of information is being transferred when errors occur. Let's take a look at a sample
Fault body that might have occurred with some problem with our "sum" method:

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <faultcode>SOAP-ENV:Server</faultcode>
 <faultstring>Error</faultstring>
 <detail>
 <!-- additional method-specific detail information -->
 </detail>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

When an error occurs on the other end of a SOAP Message exchange (such as a client call to a Web
Service) then that error is returned as an instance of the SoapException class. This class has properties
and methods that relate very closely to its SOAP XML format shown above. It contains a property that
allows access to the detail element, the Message (faultstring), etc.

For your reference, the following is a list of the possible values for the <faultcode> element, all of
which should be namespace-qualified as part of the SOAP-ENV namespace.

Value Description

VersionMismatch Indicates that there was a bad or mismatched namespace in the
conversation. Namespaces are used to version SOAP Envelopes,
therefore a namespace mismatch is considered a version mismatch.

mustUnderstand A mustUnderstand attribute in the SOAP Header indicates that
some custom value in the header must be recognized. This error
occurs when the custom information is not recognized.

DataEncodingUnknown This fault indicates that the encoding format used in the body was
not a format known to the message decoder.

Client Covers the broad range of client-side SOAP faults.

Server Covers the broad range of server-side SOAP faults.

Before we move on to encoding data types, let's take a look at what it looks like when we throw an
Exception from inside a Web Service and capture it on the client. As we discussed above, this is made
possible by the SOAP Fault in the body of the Envelope. Under the hood, when we throw an Exception
within a Web Service, it is then wrapped up by a new SoapException instance, which as we just
learned, can be stuffed into a SOAP Envelope and sent back to the client.

Chapter 5

18

The first thing we'll do is create a simple Web Service (you can find the full code for this in the
SOAPFault directory created by the installer for this chapter's code). We'll skip out some of the details
and just show the WebMethod for our service that is going to throw this exception in the
ErrorService.asmx.cs file:

[WebMethod]
public string HelloWorld()
{
 throw new Exception("This is a really big error!");
 return "Hello World";
}

As you can see, its pretty straightforward. The first thing we do once we get into this method is throw an
Exception. One really big benefit here is that we're not doing anything that is at all related to XML,
SOAP, HTTP, TCP/IP or anything else for that matter, we're simply throwing an Exception. The
Web Services infrastructure sees this, wraps it in a SoapException (which we know is responsible for
building the SOAP Fault) and then sends it on back to the client.

Let's take a look at the client method call that invokes this Web Service. Again, we'll skip some of the
mundane details of setting this up and jump right to the method call. The full code for the client can be
found in the ErrorServiceClient directory created by the code installer for this chapter:

static void Main(string[] args)
{
 localhost.ErrorService proxy = new localhost.ErrorService();

 try
 {
 Console.WriteLine(proxy.HelloWorld());
 }
 catch (Exception e)
 {
 Console.WriteLine("An error occurred in accessing the Web Service in: {0}",
 e.Source);
 Console.WriteLine();
 Console.WriteLine(e.Message);
 }
}

Again, pay special attention to the fact that we're trapping a standard exception, just like we would trap
any other exception generated by any other kind of code in the .NET Framework. Think back to the
beginning of the chapter when we discussed how to "roll our own" XML-over-HTTP implementation of
client-server communications. Can you imagine trying to hand-code into that implementation the ability
to pass exceptions back and forth automatically? I didn't think so. Because SoapException derives
from Exception, we can catch SoapExceptions just like any other thrown exception. Here's a
screenshot of the command prompt when executing our client application:

Standard Wire Formats and Data Types

19

We can see pretty clearly that the outermost exception is a SoapException that has wrapped in it the
text and information from the Exception we threw on the server.

When exceptions are thrown during a SOAP conversation, those exceptions are passed
as SoapException instances, which can be serialized directly into the Body element
of a SOAP Message.

Encoding Data Types
In our discussion of various other wire formats at the beginning of this chapter, we mentioned that a
limitation some of the other formats have is a limited ability to encode data types. For example, the
XML-RPC protocol only supports a few basic data types. SOAP is far more flexible, allowing a greater
range of data types. In general, a good rule of thumb to follow is that if a particular data type can be
represented with an XML Schema (XSD), then it can be serialized or encoded into a SOAP Message.

Default Data Types
The SOAP specification indicates that there are a number of data types already built into the
specification that can be considered default. These data types are the same data types that are considered
built-in data types from the XML Schema specification, Part 2: Data Types. Some of these data types are
listed below:

Data Type Description

string Simple character strings

boolean Represent true or false values

decimal Arbitrary precision numbers

Table continued on following page

Chapter 5

20

Data Type Description

float Single-precision, 32-bit floating point numbers

double Double-precision, 64-bit floating point numbers

duration Represents a duration of time

dateTime Represents a specific instant in time

time Represents an instant in time that occurs daily

date Represents a single calendar date

There are two main types of data that can be encoded into a SOAP Message, simple types and
compound types. A simple type is a type that represents a value that has no named parts. The simple
types are those that are defined as the built-in types in the XSD specification. A compound type is
defined to be an aggregate of relations to other values. In other words, a compound type contains, in
some form, a set of simple types that are related and distinguished in some way. Arrays and Structs are
examples of compound types.

Compound types are aggregates of related simple types that can be arrays or
structures of simple or compound types.

Single and Multiple Reference Values
Before we go on to talk about encoding complex data, and how the .NET Framework provides
serialization support for the SOAP Message format, there is one other facet to storing information in a
SOAP Message that we should take a look at.

Those of us who were forced to endure formal programming training early on in our careers may
remember the first discussions on how data is stored in variables. Those of us with C training probably
remember the lengthy discussions about how a variable is really just a symbol that represents a memory
location, and so on. This would lead to a discussion about pointers to data and actual data.

We have a similar ability when encoding data in SOAP. Let's say, for example, that we want to call a
function with two string arguments:

result = StringFunction("Hello World", "Goodbye World");

It looks pretty straightforward. We know from our previous exposure to the SOAP Envelope, that this
method call might be encoded as follows:

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <stringroutines:StringFunction
 xmlns:stringroutines="urn:schemas-mysite-com:stringroutines">
 <String1>Hello World</String1>
 <String2>Goodbye World</String2>

Standard Wire Formats and Data Types

21

 </stringroutines:StringFunction>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This method of placing the values for the arguments embedded within the structure is called single-
reference. This means that there is one and only one reference to the literal string "Hello World" and
one and only one reference to the literal string "Goodbye World". You can think of them as being
similar to constants, or in terms of Visual Basic, being passed as ByVal arguments.

However, what happens if we want two arguments to refer to the same exact string? In other words, two
arguments will both be passed a reference to the actual string. C programmers can consider this
analogous to passing a pointer to a value as an argument, and VB programmers can continue with the
ByRef analogy. Let's say our client code is changed to look like this:

string HelloAndGoodbye = "Hello World, Goodbye World";
result = StringFunction(HelloAndGoodbye, HelloAndGoodbye);

The great thing here is that you can be assured that the plumbing underneath the .NET Framework will
appropriately handle this, and realize that you're actually passing a reference to the value and not the
value itself. This is accomplished in the XML world with the href attribute. The parameter data is
moved out of the method element and becomes an independent element with an id attribute. Let's take
a look at the SOAP that would be appropriate for our new method call:

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body xmlns:stringroutines="urn:schemas-mysite-com:stringroutines">
 <stringroutines:StringFunction
 <String1 href="#thestring"/>
 <String2 href="#thestring"/>
 </stringroutines:StringFunction>
 <stringroutines:String1 id="thestring" xsi:type="string">
 Hello World, Goodbye World
 </stringroutines:String1>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Now what we have is the string we passed to the method being contained in an independent element
outside the scope of the method element (though it is part of the same namespace, by requirement).
Then we look and see that the embedded elements String1 and String2 now simply contain href
attributes pointing to the same element. This provides us with the facility of maintaining reference even
when the value is returned. For example, if the method on the server modifies the value in the String1
argument, that value will be carried across in the independent element, also reflecting itself in the
String2 argument, which is what you would expect when passing data by reference.

Complex Data Types
So far in this section on SOAP, we've seen the benefit of its very simple and extensible architecture, and
you've been told that you can encode virtually any data type into a SOAP Message so long as the type
can be represented by an XML Schema. Let's put that to the test and try and encode some complex
pieces of data.

TE
AM
FL
Y

Team-Fly®

Chapter 5

22

Two of the most common types of complex data that people will be serializing in and out of SOAP
messages are object instances and DataSets, which are an extremely useful source of portable,
disconnected, serializable data.

For our first example, we're going to look at putting SOAP to the e-commerce test by creating a class
that represents a customer's order. Not only does this class have its own set of properties, but it also
maintains an ArrayList of Order Items, which are actually instances of the OrderItem class. This is
where SOAP's XML nature becomes really beneficial.

Let's take a look at our Order class (you can find all of the code for this sample in the SOAPObject directory
in the code downloads for this chapter, which contains all of the code needed for this Console Application):

using System;
using System.Collections;

namespace Wrox.ASPWebServices.SOAPObject
{

The key to being able to take this object and serialize it into the body of a SOAP Envelope is the
Serializable attribute. Unless this attribute is here (or the object implements the ISerializable
interface), the SOAP formatter will not serialize it for us.

[Serializable()]
public class Order: Object
{

Here are our private member variables, all strings except for the ArrayList containing the instances of
OrderItem classes.

 private string _OrderID;
 private string _CustomerID;
 private string _FirstName;
 private string _LastName;
 private string _EmailAddress;
 private ArrayList _OrderItems;

 public Order()
 {
 _OrderItems = new ArrayList();
 }

 public Order(string OrderID)
 {
 _OrderItems = new ArrayList();
 _OrderID = OrderID;
 }

Just to round the class out, we've added a utility function below to speed up the process of adding new
order items to an instance of the Order class.

Standard Wire Formats and Data Types

23

 public void AddItem(int Quantity, float Price, string SKU)
 {
 OrderItem Itm = new OrderItem(_OrderID, Quantity, Price, SKU);
 _OrderItems.Add(Itm);
 }
}
}

For clarity and ease of reading, we've cut out all of the property definitions and a few of the methods.
The full source code is available with the download. However, our purpose here is to show how
complex classes can be serialized into a SOAP Envelope, not to demonstrate our nifty Order class.

The OrderItem class is pretty straightforward. It has a constructor that allows it to take an OrderID, a
Quantity, a Price, and an SKU ("Stock Keeping Unit", a simple unique inventory tag for a given item) at
instantiation time and it contains some private member variables and some straightforward properties for
those members. Again, you can find all of this source code available for download from the Wrox web site.

Without trying to create a Web Service that accepts as method arguments an object of type Order, what
we'll do is create a Console application (C#) that uses the SoapFormatter to create a SOAP
serialization of this object for us and store that on disk so we can look at the underlying XML. Here is
the source code to that Console application:

using System;
using System.IO;
using System.Runtime.Serialization.Formatters.Soap;

namespace Wrox.ASPWebServices.SOAPObject
{
 class Class1
 {
 [STAThread]
 static void Main(string[] args)
 {

The code below instantiates us a nice new Order object. We set up some dummy information about the
customer requesting the order, as well as call the AddItem method a few times to add some
merchandise (and complexity) to the order.

 Order NewOrder = new Order("ORDER1");

 NewOrder.CustomerID = "JDOE";
 NewOrder.FirstName = "John";
 NewOrder.LastName = "Doe";
 NewOrder.EmailAddress = "jdoe@somewhere.over.there.com";
 NewOrder.AddItem(8, 12.99f, "BOX12");
 NewOrder.AddItem(12, 15.99f, "ITEM1");
 NewOrder.AddItem(9, 6.99f, "ITEM5");

The SoapFormatter class is used throughout the .NET Framework and the Web Services system for
SOAP serialization and related tasks. We're going to use it here to serialize our object onto a stream,
which is actually a file on disk.

Chapter 5

24

 SoapFormatter sf = new SoapFormatter();
 FileStream fs = new FileStream("SOAPorder.soap", FileMode.Create,
 FileAccess.ReadWrite);
 sf.Serialize(fs, NewOrder);
 fs.Close();

Because we're the type of people that don't believe it until we see it, we've added some code below that
will attempt to instantiate a new Order object. This time, however, instead of building it by hand, we're
building it by de-serializing it from our SOAP-formatted disk file. We write out to the console a couple
of properties to verify that the data is indeed identical.

 FileStream fs2 = new FileStream("SOAPorder.soap", FileMode.Open,
 FileAccess.Read);
 Order DSOrder;
 DSOrder = (Order)sf.Deserialize(fs2);
 Console.WriteLine("Deserialized Order for {0} {1} Contains {2} Items.",
 DSOrder.FirstName, DSOrder.LastName, DSOrder.Items.Count);

 }
 }
}

The end result of running this program is just a simple regurgitation of some of the data we placed into
the Order instance to begin with. However, the good stuff is sitting in a disk file called
SOAPorder.soap, (in the SOAPObject\obj\debug directory beneath the directory you installed the
code samples (C:\Program Files\Wrox Press\SOAPChapter for example)) the contents of which
we have displayed below:

<SOAP-ENV:Envelope
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:clr="http://schemas.microsoft.com/soap/encoding/clr/1.0"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

As we said in our samples earlier, we were leaving out some details that the .NET Framework supplies
for you, such as the various namespace declarations above in the Envelope tag. You can see that it is
providing namespace qualifiers for encoding, the envelope itself, and even a namespace for the
Common Language Runtime to indicate CLR-native data types.

 <SOAP-ENV:Body>
 <a1:Order id="ref-1"
xmlns:a1="http://schemas.microsoft.com/clr/nsassem/SOAPObject/SOAPObject%2C%20Vers
ion%3D1.0.641.28863%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3Dnull">
 <_OrderID id="ref-3">ORDER1</_OrderID>
 <_CustomerID id="ref-4">JDOE</_CustomerID>
 <_FirstName id="ref-5">John</_FirstName>
 <_LastName id="ref-6">Doe</_LastName>
 <_EmailAddress id="ref-7"> jdoe@somewhere.over.there.com</_EmailAddress>
 <_OrderItems href="#ref-8"/>
 </a1:Order>

Standard Wire Formats and Data Types

25

In the a1:Order element above, we see that all of the private member variables have been given IDs in
order to distinguish them from other members. Also, make special note of the href attribute in the
_OrderItems element. It is pointing at another independent element (shown immediately below) with
an ID of ref-8. That next element below is an ArrayList element. SOAP allows for only certain
kinds of compound types, including arrays and structs. The SOAP Formatter has done a lot of work for
us by reducing the ArrayList into a set of related structures (multi-level XML elements). Note that the
_items element in the structure below points at yet another element with an ID of ref-9.

 <a2:ArrayList id="ref-8"
 xmlns:a2="http://schemas.microsoft.com/clr/ns/System.Collections">
 <_items href="#ref-9"/>
 <_size>3</_size>
 <_version>3</_version>
 </a2:ArrayList>

In the section below, the ArrayList _items element has been reduced to a simple SOAP array
(indicated by the SOAP-ENC namespace). Because each of the OrderItem elements is actually an
instance of a class on its own, each of the items in this list has also been further referenced out into a
structure. Again, keep in mind that every compound type in SOAP must be represented by an aggregate
of related simple types in either array or structure form.

 <SOAP-ENC:Array id="ref-9" SOAP-ENC:arrayType="xsd:anyType[16]">
 <item href="#ref-10"/>
 <item href="#ref-11"/>
 <item href="#ref-12"/>
 </SOAP-ENC:Array>

The XML below has created independent elements for the serialization of each OrderItem instance,
turning that instance into a structure usable within SOAP. Note the lengthy namespace of this item
pointing to a CLR-specific item. It contains the version, culture and public key token for the assembly
containing the data type.

 <a1:OrderItem id="ref-10"
xmlns:a1="http://schemas.microsoft.com/clr/nsassem/SOAPObject/SOAPObject%2C%20Vers
ion%3D1.0.641.28863%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3Dnull">
 <_OrderID href="#ref-3"/>
 <_Quantity>8</_Quantity>
 <_Price>12.99</_Price>
 <_SKU id="ref-13">BOX12</_SKU>
 </a1:OrderItem>

 <a1:OrderItem id="ref-11"
xmlns:a1="http://schemas.microsoft.com/clr/nsassem/SOAPObject/SOAPObject%2C%20Vers
ion%3D1.0.641.28863%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3Dnull">
 <_OrderID href="#ref-3"/>
 <_Quantity>12</_Quantity>
 <_Price>15.99</_Price>
 <_SKU id="ref-14">ITEM1</_SKU>
 </a1:OrderItem>

 <a1:OrderItem id="ref-12"
xmlns:a1="http://schemas.microsoft.com/clr/nsassem/SOAPObject/SOAPObject%2C%20Vers
ion%3D1.0.641.28863%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3Dnull">
 <_OrderID href="#ref-3"/>

Chapter 5

26

 <_Quantity>9</_Quantity>
 <_Price>6.99</_Price>
 <_SKU id="ref-15">ITEM5</_SKU>
 </a1:OrderItem>

 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

So now that we've seen how to use the SOAP Formatter to serialize an object instance in SOAP
standard format rather than simple XML, let's take a look at using some object instance passing using
Web Services.

For our example, we're going to write a Web Service that takes a complex struct (doesn't rely on
method invocations for being de-serialized properly at the other end of the wire) as an argument and
builds a DataSet based on the data in the struct. This DataSet is then sent back to the client as a return
value from the Web Service. Just to make sure that the data has been preserved throughout the entire
conversation, we then bind the resulting DataSet to a DataGrid in a Windows Forms application.

Let's start with the code to our Web Service (you can find this code in the SOAPComplex directory in
the download for this chapter, make sure you've gone into IIS and turned the simple directory into an
Application before trying this). The code listing below is the listing for the code-behind class for our
Web Service (ComplexService.asmx.cs):

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;

namespace Wrox.ASPWebServices.SOAPComplex
{

The struct below is the struct that defines an "Order". Earlier on in the chapter we saw a class that
maintained a similar structure. One thing to keep in mind is that Web Services is an architecture best
suited for messaging conversations. If you are truly looking for pure RPC over HTTP or TCP where
you can expect to remotely invoke instances of remote objects, then the Remoting infrastructure is your
best bet. For Web Services, the architecture works best when presented with pure data that can be
marshaled by value. We've used strings here for everything just to make the sample as easy as possible,
to match Northwind we should've made OrderID an int.

public struct OrderStruct
{
 public string OrderID;
 public string CustomerID;
 public string FirstName;
 public string LastName;
 public string EmailAddress;
 public OrderItemStruct[] OrderItems;
}

public struct OrderItemStruct
{

Standard Wire Formats and Data Types

27

 public string OrderID;
 public int Quantity;
 public float Price;
 public string SKU;
}

public class ComplexService : System.Web.Services.WebService
{

In order to get closer to the point (and avoid boring you to tears) we've cut out some of the
housecleaning code that Visual Studio .NET puts into the empty Web Service class for us. As we can
see, the WebMethod below takes a filled-in OrderStruct as an argument and returns a populated
DataSet that contains the information previously contained in the OrderStruct.

[WebMethod]
public DataSet BuildOrderDS(OrderStruct CustomerOrder)
{
 DataSet DS = new DataSet();
 DataTable Orders = new DataTable("Orders");
 Orders.Columns.Add(new DataColumn("OrderID", typeof(string)));
 Orders.Columns.Add(new DataColumn("CustomerID", typeof(string)));
 Orders.Columns.Add(new DataColumn("EmailAddress", typeof(string)));
 Orders.Columns.Add(new DataColumn("FirstName", typeof(string)));
 Orders.Columns.Add(new DataColumn("LastName", typeof(string)));
 DS.Tables.Add(Orders);

 DataTable OrderItems = new DataTable("OrderItems");
 OrderItems.Columns.Add(new DataColumn("OrderID", typeof(string)));
 OrderItems.Columns.Add(new DataColumn("Price", typeof(float)));
 OrderItems.Columns.Add(new DataColumn("Quantity", typeof(int)));
 OrderItems.Columns.Add(new DataColumn("SKU", typeof(string)));
 DS.Tables.Add(OrderItems);

 DataColumn ParentOrderID;
 DataColumn ChildOrderID;

 ParentOrderID = Orders.Columns["OrderID"];
 ChildOrderID = OrderItems.Columns["OrderID"];
 DS.Relations.Add(new DataRelation("OrderItems", ParentOrderID, ChildOrderID,
 true));

 DataRow Order = Orders.NewRow();
 Order["CustomerID"] = CustomerOrder.CustomerID;
 Order["FirstName"] = CustomerOrder.FirstName;
 Order["LastName"] = CustomerOrder.LastName;
 Order["EmailAddress"] = CustomerOrder.EmailAddress;
 Order["OrderID"] = CustomerOrder.OrderID;
 Orders.Rows.Add(Order);

 foreach (OrderItemStruct Item in CustomerOrder.OrderItems)
 {
 DataRow ItemRow = OrderItems.NewRow();
 ItemRow["OrderID"] = Item.OrderID;

Chapter 5

28

 ItemRow["Quantity"] =Item.Quantity;
 ItemRow["Price"] = Item.Price;
 ItemRow["SKU"] = Item.SKU;
 OrderItems.Rows.Add(ItemRow);
 }
 return DS;
}

}
}

With all of this code entered, we should then be able to build our Web Service and compile the
appropriate DLL into the bin directory. Before we look at writing the client application, let's take a
look at a sample of the SOAP involved here. Microsoft was kind enough to present us with sample
SOAP message conversations when we view the .asmx page in our browser. If we browse over to our
Web Service's page (http://localhost/SOAPComplex/ComplexService.asmx) we'll see that it has
generated some sample SOAP to illustrate a potential request/response pair for us (after we've invoked
the method once):

POST /SOAPcomplex/complexservice.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://tempuri.org/BuildOrderDS"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <BuildOrderDS xmlns="http://tempuri.org/">
 <CustomerOrder>
 <OrderID>string</OrderID>
 <CustomerID>string</CustomerID>
 <FirstName>string</FirstName>
 <LastName>string</LastName>
 <EmailAddress>string</EmailAddress>
 <OrderItems>
 <OrderItemStruct>
 <OrderID>string</OrderID>
 <Quantity>int</Quantity>
 <Price>float</Price>
 <SKU>string</SKU>
 </OrderItemStruct>
 <OrderItemStruct>
 <OrderID>string</OrderID>
 <Quantity>int</Quantity>
 <Price>float</Price>
 <SKU>string</SKU>
 </OrderItemStruct>
 </OrderItems>
 </CustomerOrder>
 </BuildOrderDS>
 </soap:Body>
</soap:Envelope>

Standard Wire Formats and Data Types

29

We see that in the sample SOAP Envelope above, the structure of the potential envelope is laid out for
us, including two sample order items illustrating the parent-child relationship that our struct conveys. In
the example response below, we see that we're receiving a complex type defined by an XML Schema.
There is an element placeholder for the schema as well as for the associated data.

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <BuildOrderDSResponse xmlns="http://tempuri.org/">
 <BuildOrderDSResult>
 <xsd:schema>schema</xsd:schema>xml</BuildOrderDSResult>
 </BuildOrderDSResponse>
 </soap:Body>
</soap:Envelope>

This web page allows people developing XML Web Services outside the realm of the .NET Framework
to examine the format of the SOAP Envelope responses and requests and use this information to build a
consumer for this Web Service on another platform such as Unix, etc.

Now let's take a look at our Visual Studio .NET C# Windows Forms consumer for this Web Service (a
project in the code downloads called SOAPComplexClient). We've created a Windows Forms
application and placed a DataGrid onto the main form. From there, we've added a button with some
text ("Build Order DS") that will populate an OrderStruct, send it to the Web Service, and then bind
our DataGrid to the resulting DataSet.

To do all of this, the first thing we do after setting up our form is to add a Web Reference to our
recently created ComplexService. After we've done this, we should notice that nested within the
"localhost" namespace, in addition to seeing the proxy class for our Web Service, there is also a copy
of the OrderStruct and OrderItemStruct structs. This is because Visual Studio .NET automatically
downloads any pertinent data types when importing information from a Web Service.

Here is the code that is executed in response to our button's click event:

private void button1_Click(object sender, System.EventArgs e)
{
 DataSet myDS;

This next section of code is just some simple struct populating. We populate the fields of the OrderStruct
instance, and then we create an array of OrderItemStruct items and place that in the OrderItems field
of the OrderStruct instance. This gets the data complete and ready to send to the Web Service.

 localhost.OrderStruct myOrder = new localhost.OrderStruct();
 myOrder.OrderID = "ORDER1";
 myOrder.CustomerID = "JDOE";
 myOrder.EmailAddress = "jdoe@somewhere.out.there.com";

Chapter 5

30

 myOrder.LastName = "Doe";
 myOrder.FirstName = "John";
 myOrder.OrderItems = new localhost.OrderItemStruct[1];
 myOrder.OrderItems[0] = new localhost.OrderItemStruct();
 myOrder.OrderItems[0].OrderID = "ORDER1";
 myOrder.OrderItems[0].Price = 12.99f;
 myOrder.OrderItems[0].Quantity = 15;
 myOrder.OrderItems[0].SKU = "ITEM1";

The next few remarkably simple lines of code are the ones responsible for actually calling the Web
Service and sending the data. We set the result of the BuildOrderDS method to be stored in the myDS
DataSet variable, which we then immediately bind to our DataGrid.

 localhost.ComplexService proxy = new localhost.ComplexService();
 myDS = proxy.BuildOrderDS(myOrder);
 dataGrid1.DataSource = myDS.Tables["Orders"];
 dataGrid1.Refresh();

}

There's actually an enormous amount of work going on here. First, the BuildOrderDS method is being
serialized into the Body element of a SOAP Envelope. Then, the myOrder instance is serialized into the
SOAP Message. After that, the Web Services infrastructure takes over and places the entire envelope
into an HTTP-POST to the /localhost/SOAPComplex/ComplexService.asmx file. Then, it waits
for a response. This response is then taken in the form of an HTTP 200 OK response; the body of the
HTTP response is a new SOAP Envelope, which is then opened. Once opened, the DataSet schema is
loaded into a new DataSet instance to reconstitute the data structure. Then, the XML from the response
envelope is loaded into the DataSet for you. Now, aren't you glad all of this is being done for you
automatically when all you've had to do is enter the following line of code?

 myDS = proxy.BuildOrderDS(myOrder);

Let's take a look at the DataGrid after it has been bound to the DataSet we received from our Web
Service, and we've drilled down through the OrderItems relation to examine the child data:

Standard Wire Formats and Data Types

31

Summary
This chapter's focus has been on wire formats, with the SOAP protocol being the main attraction. SOAP
is an incredibly extensible, powerful, and lightweight protocol that allows for a great many possibilities
when used in combination with XML Web Services. Throughout the chapter we showed various
examples of other wire formats, as well as samples of SOAP in action. Hopefully you will be able to
take away with you the following knowledge after having read this chapter:

❑ What a wire format is

❑ What some of the most common wire formats are and how they may or may not be related to SOAP

❑ What SOAP is, what SOAP messages look like and how they're used in Web Services

❑ Why SOAP is used for Web Services

❑ Using simple and complex data types with SOAP

TE
AM
FL
Y

Team-Fly®

Chapter 5

32

Web Service Description
Language

This chapter contains two sections: the first describes the basic usage of the Web Service Description
Language (WSDL) with ASP.NET, Visual Studio .NET, and how to expose COM objects to WSDL files
with SOAP 2.0 Toolkit. The second section contains a look at the structure of a WSDL file.

The chapter is broken down so that the first part covers the functional steps necessary to generate
WSDL files and the second section contains a breakdown of the meaning of the different elements in a
WSDL file. The second section will also look at some of the more advanced topics in WSDL. This
section is not as cut and dry as the first section, as WSDL is a somewhat complicated and extensible
specification. Here are some of the main points that will be covered in this chapter:

❑ How to use the SOAP 2.0 Toolkit to create WSDL files to expose COM objects.

❑ How to access WSDL documents in .NET with Visual Studio .NET.

❑ A Sample ASP.NET Web Service and the Web Method attributes used to configure a Web
Service.

❑ Detailed view of a WSDL document and its components.

❑ A brief description of how WSDL is extended for SOAP, HTTP GET/POST, and MIME

❑ An example of the flexibility of WSDL using a screen scrape example that shows how WSDL
files can be used with standard HTML forms.

4

Chapter 4

2

By the end of this chapter, you will have a solid understanding of what WSDL is; you will know how to
create WSDL files in the SOAP 2.0 Toolkit to expose COM objects as Web Services; and you will know
how to access WSDL files in Visual Studio .NET. If you have not already taken the time to learn about
WSDL, you'll see that WSDL offers a lot of potential, which is well worth getting a handle on.

As far as some of the more complicated aspects of WSDL are concerned, this chapter will not provide
every detail, or complete explanations of the WSDL specifications, as the specifications are too new,
changing, and too vast and extensible to provide absolute precise definitions. What this chapter will do
is present an accurate introductory discussion of the language, which will leave you with a working
knowledge and insight into its essence and implementation.

What is WSDL?
Web Service Description Language (WSDL) is an XML-based language used to describe Web Services
or network endpoints. A WSDL contract describes the messaging between Web Services, the location of
Web Services, and the protocols available to communicate with Web Services.

WSDL works in conjunction with SOAP and UDDI to enable Web Services to interact with other Web
Services, applications, and devices across the Internet. Essentially, UDDI provides the ability to publish
and locate a Web Service; WSDL describes the Web Service; and SOAP provides transport information
for the Web Service. WSDL describes a Web Service or network endpoint to the extent that it can be
accessed by other services over the network without any human intervention. A WSDL document
describes a Web Service very much like a type library describes a COM object.

The combination of SOAP and UDDI provides the ability to locate, publish, and send messages
between Web Services. Without WSDL, this messaging interface would have to be created manually.
For example, after locating a stock quote service, it would be necessary to understand the method map
information, parameters, and the protocols supported by the service and then handcraft the SOAP
request and response messages. However, if each time a new service has to be accessed, human
intervention is required, the move towards Web Services would certainly be inhibited. The power of
WSDL is that it is truly platform and object model agnostic. It is an XML grammar that provides an
interface to Web Services across all platforms.

Here is a scenario of how an application would locate a freight calculation service via UDDI and would
then analyze the WSDL and create a Proxy file from it, enabling the application to access the freight
calculation service:

1. Search a UDDI directory for a service that provides the functionality you need; i.e., a
freight calculation service.

2. Once the service is located, request the WSDL contract and extract the location or URI,
the method map information, and the protocols supported.

3. Create a Proxy file that provides this information, the SOAP request, and response
messages so that the remote service or application can be accessed.

Web Service Description Language

3

WSDL is a W3C submitted specification (at the time of writing it is not yet a W3C standard) supported
by a number of industry leaders, including Microsoft and IBM. WSDL is based on the combination
Software Definition Language (SDL) from Microsoft and Network Accessible Services Specification
Language (NASSL) from IBM. IBM turned over development of NASSL to Apache so that there could
be a standard way to create WSDL documents in the Java world. More information is available on the
Apache SOAP and WSDL implementation can be found at http://xml.apache.org/soap/index.html. The
Apache Software Foundation handles a number of open source development initiatives. They will work
to make this available to the Java world so that, along with Microsofts initiative, WSDL should be
available ubiquitously.

It is necessary that WSDL be available across platforms for it to fulfill its promise of platform and object
model agnostic Web Services interacting with each other across the Internet. That said, this is an ASP.NET
Web Service book, so we will cover using WSDL documents with Microsoft technologies here.

Why Is It Necessary to Understand WSDL?
One question many of you are probably asking is, if WSDL files can be created by tools on all of the
major platforms, why should I take the time to understand them? WSDL documents are new enough
that learning how they work under the hood is probably wise as the bullets below explain. As Web
Services become more ubiquitous, it will become more apparent how often it is necessary to understand
and or to tweak WSDL documents.

❑ The promise of complete automation in creating WSDL files is very compelling. However, Web
Service standards are very new, and only time will tell how precisely they are able to
automatically create the proper SOAP request and response messages based on a WSDL
contract. Tweaking may be necessary to fix small bugs between platforms or versions, or it may
be necessary to optimize the SOAP request and response messages. It is very common that tools
create standard code that is not optimized to specific environments and situations. There are also
so many standards, including the WSDL, SOAP, and UDDI schemas, that it seems there will be
times when different vendors will support different versions of these standards.

❑ As Web Services become more ubiquitous, it will become beneficial to be able to examine a
WSDL document for a specific Web Service and to be able to understand it. Understanding
WSDL provides a way to read the functionality across the Web, as the functionality becomes
more reliant on Web Services.

❑ In some cases it may be appropriate to create WSDL files first, so that a method contract is
available before coding starts. This is similar to what is done with COM components, when
IDL interfaces with method contracts are laid out before the programming begins.

❑ It is always helpful to understand how things work under the hood. Not only for tinkering, as
mentioned above, but, in general, developers who have a solid grasp of the underpinning
technologies can write code that takes advantage of the technology. This understanding helps
us to understand the capabilities of Web Services.

❑ There is an Import statement feature supported in WSDL documents. The fact that this is in
the standard means that there is some thought that WSDL documents will be created from
source libraries and not on the fly for every Web Service created. One possible option is to
define all the methods and data types ahead of time. This would enable the functionality to be
created and stored in WSDL library files that could be mapped to specific protocol
information later. This point will become clearer when we walk through the different sections
of the WSDL documents below.

Chapter 4

4

❑ The WSDL document was created manually for the screen scrape example at the end of this
chapter. It is possible that there are other rare occasions when creating WSDL documents
manually will be necessary, although having to modify them is more likely than having to
create them.

How to Create WSDL files in .NET and COM
First we will cover how to create WSDL files to work with COM objects, using the SOAP 2.0 Toolkit, and
then move on to WSDL file usage with ASP.NET and Visual Studio .NET. There is more material to cover
on creating WSDL files with the SOAP 2.0 Toolkit because WSDL files are automatically created with
.NET. Creating WSDL files with the SOAP 2.0 Toolkit involves using the toolkit to create a Web Service
Meta Language (WSML) file that is used to map a COM object to a WSDL file. That said, it is not difficult
to use the SOAP 2.0 Toolkit as it provides an easy-to-use interface. Those of you who do not have any
need to expose COM objects, can skip to the Creating WSDL files in the .NET section.

WSDL Documents and COM Objects
This section relies on the SOAP 2.0 Toolkit, which can be downloaded from Microsoft at
http://msdn.microsoft.com/downloads/default.asp?URL=/code/sample.asp?url=/msdn-
files/027/001/580/msdncompositedoc.xml. In order to use the SOAP 2.0 Toolkit, you must have Visual
Basic 6.0 or Visual Studio installed. In order to use WSDLGEN (the graphical component of the SOAP
2.0 Toolkit used below) to expose the COM object you create as a Web Service, you must have
Windows 2000 or NT installed. There is a utility called wsdlstb.exe that can be used instead of
WSDLGEN. It can be accessed from the command line or from within scripts. We will not cover the
wsdlstb.exe utility in this chapter, as it is not directly relevant to the topic in hand.

The SOAP 2.0 toolkit is WSDL 1.1 compliant. WSDL and WSML files that were created with the SOAP
1.0 Toolkit are not compatible and must be recreated in the SOAP 2.0 Toolkit. The SOAP 2.0 Toolkit is
supported by Microsoft technical support, whereas the 1.0 version is not.

The service names and other components in the SOAP 2.0 Toolkit are case sensitive. Be precise and
consistent with respect to the case used when naming files.

Using the SOAP 2.0 Toolkit
It is not required that the SOAP 2.0 Toolkit be used to expose COM objects as Web Services. However, it
is a neat utility that does almost all the work for you. Therefore, unless you really like to or have a reason
to create WSDL, WSML, and SOAP listener files by hand, it is a good idea to use the SOAP 2.0 Toolkit.

In order to expose COM objects as Web Services, Microsoft has built specific utilities into the SOAP
2.0 Toolkit. The process basically works by selecting a COM object and a WSDL file. A Web Service
Meta Language File (WSML) and an ASP or ISAPI SOAP listener file is then created for the selected
COM object. The WSDL file is a standard WSDL file. The WSML file maps the COM methods to the
WSDL file, and the ASP, ISAPI listener file, or SOAP server file provides an interface to be called from
the outside world.

Let's fill out this basic process by actually creating a COM object and exposing it as a Web Service.
Over the next few steps we will create the following files:

Web Service Description Language

5

❑ Script File – a VB Script file that we can use to access the COM exposed Web Service we will
be creating

❑ DLL file – a Visual Basic 6 COM object that will have one method to multiply numbers and one
to add numbers. We will use the SOAP 2.0 Toolkit to expose this COM object as a Web Service

❑ WSDL File – generated by the SOAP 2.0 Toolkit

❑ WSML File - generated by the SOAP 2.0 Toolkit. WSML files are specific to the SOAP 2.0
Toolkit implementation and provide an interface between COM objects and WSDL files

❑ ASP File - we will use the SOAP 2.0 Toolkit to create an ASP SOAP Server file

After creating these files, we will place all of them, with the exception of the script and DLL file, in a
virtual directory and run the script file. Running the script file will execute the Web Service. It is
important to create the virtual directory ahead of time when using the SOAP 2.0 Toolkit because the file
locations and names are placed in the WSDL, WSDML, and ASP files created below.

Now we can create the Arithmetic COM object, which contains one method for adding numbers and
one for multiplying numbers. The code is shown below. If you prefer, you can download the
ArithmeticCOMProject.dll file from the source for this chapter and register it with the regsrvr32
tool. Type regsrvr32 ArithmeticCOMProject.dll from the command prompt to do this.

The WSML file generated by WSDL/WSML Generator contains the dispatch IDs of the methods
corresponding to each operation. If you use Visual Basic to create the dll, dispatch IDs are based on
the order of methods in the dll. If you change the order of methods in the dll, the dispatch IDs will
reflect the change. In this case the WSML file must be updated accordingly.

In order to create the files necessary follow the steps below. If you want to download the files instead of
creating them, skip to the download files section directly below.

To create the COM object in Visual Basic:

4. Create a directory named /ProWebServices/WSDL/ArithmeticCOM/ in the root directory of the
Web server. Go into Internet Information Server and mark this directory as a virtual directory.

5. Create a new Visual Basic ActiveX DLL project

6. Change the project name to ArithmeticCOMProject

7. Change the Class name to ArithmeticCOM

8. In the class, enter the code below:

Public Function multiplyNumbers(ByVal NumberOne As Double, ByVal NumberTwo As�
 Double) As Double
 multiplyNumbers = NumberOne * NumberTwo
End Function

Chapter 4

6

Public Function addNumbers(ByVal NumberOne As Double, ByVal NumberTwo As Double)�
 As Double
 addNumbers = NumberOne + NumberTwo
End Function

9. Save the project

10.Chose Make ArithmeticCOMProject.dll form the file menu

In order to download the files follow the steps below.

Here is a list of the files that need to be downloaded:

❑ ClientArithmeticCOM.vbs – This is a VB Script file that will be used to access the COM
exposed Web Service we will download and register.

❑ ArithmeticCOMProject.dll – This is the COM object that uses the SOAP 2.0 Toolkit to
enable itself to be exposed as a COM object.

❑ ArithmeticCOM.wsdl – This is the WSDL file that was generated by the SOAP 2.0 Toolkit.

❑ ArithmeticCOM.wsml – This is the WSML file that was generated by the SOAP 2.0 Toolkit.

❑ ArithmeticCOM.asp – This is the ASP SOAP Server file that was generated by the SOAP
2.0 Toolkit.

Here are the steps necessary to download and install the sample files.

1. Download the source code for this book from www.wrox.com.

2. Create a directory named ProWebServices/WSDL/ArithmeticCOM in the root directory
of the Web server. Go into Internet Information Server and mark this directory as a
virtual directory.

3. Copy all of the files with the exception of the script file into this directory.

4. Register the DLL file by typing regsvr32
c:\inetpub\wwwroot\ProWebServices\WSDL\ArithmeticCOM\ArithmeticCOM.dll from
the command prompt. A dialogue box, stating successful registration should be displayed.

5. Copy the script file into any other directory on your system.

6. Shell to the command line and from the directory containing the script file, type cscript
ClientArithmeticCOM.vbs.

NOTE: If you create a different directory structure than recommended above, you will need to
manually modify the WSDL file.

The COM object has to be registered in for the SOAP 2.0 Toolkit utilities to be able to
work with it.

Web Service Description Language

7

Now it is time to create the files necessary to expose the COM object as a Web Service. If you
downloaded the files, you do not need to do this, but it would still be worth looking through the screens
to see how to use the SOAP 2 Toolkit.

To use the Wizard, select the
WSDL Generator from the
SOAP 2.0 Toolkit or type
wsdlgen.exe from the
command prompt. You will see
that the Welcome to the SOAP
Toolkit 2.0 Wizard screen is
displayed:

Click Next to begin the
configuration. We provide a
name for service and a path to
our COM object on this next
screen:

Chapter 4

8

Name the WSDL and WSML files ArithmeticCOM, and in the Local path box, insert the path to the
DLL on your system, and click Next.

Here, we select the services
we would like to expose:

We need to select both the
addNumbers and
multiplyNumbers methods, as
we want to expose both of
them. On the following screen,
we provide the SOAP listener
URI, listener type, and XSD
Schema Namespace:

The Listener URI section requires the URI of the virtual folder you created earlier. This should be
http://localhost/ProWebServices/WSDL/ArithmeticCOM. Select ASP for the Listener type, and 2001
for the XSD Schema Namespace. Older schemas can be used if necessary for backwards compatibility.

Web Service Description Language

9

Our final task here is to choose the WSDL file character set and the destination of where the WSDL,
WSML, and SOAP Server ASP files are to be stored:

Where would you like to store the new files? Select the directory created above for the virtual root.
Click Next and then Finish to complete the Wizard.

We are done creating or WSDL, WSML, and SOAP server files. Now lets take a look at them.

The SOAPServer or Listener file
We created an ASP listener file by choosing the ASP option as the listener type on the SOAP listener
information screen. Where ISAPI provides better performance, ASP is easer to modify. Choose the
appropriate listener type, based on your requirements.

The code for the SOAP listener was generated by the WSDLGEN utility. This file serves as the network
endpoint. It is similar in function to Proxy files that are created for .NET Web Services. It handles the
SOAP communication on the wire, between the Web Service and the application, device, or service
calling the endpoint.

The code is displayed here:

<%@ LANGUAGE=VBScript %>
<%
Option Explicit
On Error Resume Next
Response.ContentType = "text/xml"
Dim SoapServer
If Not Application("ArithmeticCOMInitialized") Then

TE
AM
FL
Y

Team-Fly®

Chapter 4

10

 Application.Lock
 If Not Application("ArithmeticCOMInitialized") Then
 Dim WSDLFilePath
 Dim WSMLFilePath
 WSDLFilePath = Server.MapPath("ArithmeticCOM.wsdl")
 WSMLFilePath = Server.MapPath("ArithmeticCOM.wsml")
 Set SoapServer = Server.CreateObject("MSSOAP.SoapServer")
 If Err Then SendFault "Cannot create SoapServer object. " & Err.Description
 SoapServer.Init WSDLFilePath, WSMLFilePath
 If Err Then SendFault "SoapServer.Init failed. " & Err.Description
 Set Application("ArithmeticCOMServer") = SoapServer
 Application("ArithmeticCOMInitialized") = True
 End If
 Application.UnLock
End If
Set SoapServer = Application("ArithmeticCOMServer")
SoapServer.SoapInvoke Request, Response, ""
If Err Then SendFault "SoapServer.SoapInvoke failed. " & Err.Description
Sub SendFault(ByVal LogMessage)
 Dim Serializer
 On Error Resume Next
 ' "URI Query" logging must be enabled for AppendToLog to work
 Response.AppendToLog " SOAP ERROR: " & LogMessage
 Set Serializer = Server.CreateObject("MSSOAP.SoapSerializer")
 If Err Then

 Response.AppendToLog "Could not create SoapSerializer object. " & �
 Err.Description
 Response.Status = "500 Internal Server Error"
 Else
 Serializer.Init Response
 If Err Then
 Response.AppendToLog "SoapSerializer.Init failed. " & Err.Description
 Response.Status = "500 Internal Server Error"
 Else
 Serializer.startEnvelope
 Serializer.startBody

 Serializer.startFault "Server", "The request could not be processed due �

 to a problem in the server. Please contact �
 the system admistrator. " & LogMessage
 Serializer.endFault
 Serializer.endBody
 Serializer.endEnvelope
 If Err Then
 Response.AppendToLog "SoapSerializer failed. " & Err.Description
 Response.Status = "500 Internal Server Error"
 End If
 End If
 End If
 Response.End
End Sub
%>

Web Service Description Language

11

Looking through the code, the first key point is the SoapServer object, which is invoked with the paths
of the WSDL and WSDML files. It is then set to the name of our application ArithmeticCOM with the
word server appended. The second significant creation is that of the XML Serializer object, created
to handle the SOAP messaging for the different sections of a SOAP message. Most of the rest of the
code is error handling.

The WSML file
This file acts as a bridge between the COM object and the WSDL file and is specific to the SOAP 2.0
Toolkit. It maps the methods in the COM object to the WSDL file. When we went through the
WSDLGEN utility above, we selected both of our methods, and thus, both of them were mapped. The
code is as follows:

<?xml version='1.0' encoding='UTF-8' ?>
 <!-- Generated 10/16/01 by Microsoft SOAP Toolkit WSDL File Generator, Version
1.02.813.0 -->
<servicemapping name='ArithmeticCOM'>
 <service name='ArithmeticCOM'>

 <using PROGID='ArithmeticCOMProject.ArithmeticCOM' cachable='0' �
 ID='ArithmeticCOMObject' />
 <port name='ArithmeticCOMSoapPort'>
 <operation name='multiplyNumbers'>

 <execute uses='ArithmeticCOMObject' method='multiplyNumbers' �
 dispID='1610809344'>
 <parameter callIndex='1' name='NumberOne' elementName='NumberOne' />
 <parameter callIndex='2' name='NumberTwo' elementName='NumberTwo' />
 <parameter callIndex='-1' name='retval' elementName='Result' />
 </execute>
 </operation>
 <operation name='addNumbers'>

 <execute uses='ArithmeticCOMObject' method='addNumbers' �
 dispID='1610809345'>
 <parameter callIndex='1' name='NumberOne' elementName='NumberOne' />
 <parameter callIndex='2' name='NumberTwo' elementName='NumberTwo' />
 <parameter callIndex='-1' name='retval' elementName='Result' />
 </execute>
 </operation>
 </port>
 </service>
</servicemapping>

Unlike WSDL files that are rather long and somewhat complicated, WSML files are fairly simple. The
root level of a WSML file is the <servicemapping> element. The <servicemapping> element
contains the mapping to the <service> element in the WSDL file. The <service> element is the link
between the WSML and WSDL file, and the <servicemapping> element can have one or more of
these elements.

The <service> element, in turn, can have one or more <using> and <port> elements. Furthermore,
each <port> element can have one or more <operation> elements.

Chapter 4

12

The <port> element contains the mapping of the methods and their associated properties in the COM
object to the <portType> element in the WSDL file. The <portType> element in a WSDL file groups
the operations based on the protocols or binding to be used on the wire. For practical purposes, this
groups the messages under a SOAP port that is mapped to a location in the <service> element. The
<operation> element contains the names of the methods. <execute> uses elements that provide
specific information to access the methods. The <parameter> element contains the parameter names
and properties. A callIndex value of –1 signifies that this is the return value.

The PROGID attribute contains the fully qualified class name. This is the only place that the project
name is referenced in any of the files.

The Boolean cacheable attribute specifies whether the object stays in memory as long as the
soapServer object is in memory. When it is set to 0, the object is not cacheable.

The final point to note here is that the ID attribute contains the ID that refers to the COM object.

The WSDL file
The WSDL file itself (displayed below) is typical of a WSDL file generated with the SOAP 2.0 Toolkit.
The major difference between this WSDL file and the one generated with ASP.NET is the message
section. In .NET, the parameters of the message are defined in the definition section and referenced in
the message section. In the SOAP 2.0 version, the message is defined in the message section:

<?xml version='1.0' encoding='UTF-8' ?>
 <!-- Generated 10/16/01 by Microsoft SOAP Toolkit WSDL File Generator, Version
1.02.813.0 -->
<definitions name ='ArithmeticCOM' targetNamespace = 'http://tempuri.org/wsdl/'

 xmlns:wsdlns='http://tempuri.org/wsdl/'
 xmlns:typens='http://tempuri.org/type'
 xmlns:soap='http://schemas.xmlsoap.org/wsdl/soap/'
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 xmlns:stk='http://schemas.microsoft.com/soap-toolkit/wsdl-extension'
 xmlns='http://schemas.xmlsoap.org/wsdl/'>

 <types>
 <schema targetNamespace='http://tempuri.org/type'
 xmlns='http://www.w3.org/2001/XMLSchema'
 xmlns:SOAP-ENC='http://schemas.xmlsoap.org/soap/encoding/'
 xmlns:wsdl='http://schemas.xmlsoap.org/wsdl/'
 elementFormDefault='qualified'>
 </schema>
 </types>
 <message name='ArithmeticCOM.multiplyNumbers'>
 <part name='NumberOne' type='xsd:double'/>
 <part name='NumberTwo' type='xsd:double'/>
 </message>
 <message name='ArithmeticCOM.multiplyNumbersResponse'>
 <part name='Result' type='xsd:double'/>
 </message>
 <message name='ArithmeticCOM.addNumbers'>
 <part name='NumberOne' type='xsd:double'/>
 <part name='NumberTwo' type='xsd:double'/>
 </message>
 <message name='ArithmeticCOM.addNumbersResponse'>

Web Service Description Language

13

 <part name='Result' type='xsd:double'/>
 </message>
 <portType name='ArithmeticCOMSoapPort'>
 <operation name='multiplyNumbers' parameterOrder='NumberOne NumberTwo'>
 <input message='wsdlns:ArithmeticCOM.multiplyNumbers' />
 <output message='wsdlns:ArithmeticCOM.multiplyNumbersResponse' />
 </operation>
 <operation name='addNumbers' parameterOrder='NumberOne NumberTwo'>
 <input message='wsdlns:ArithmeticCOM.addNumbers' />
 <output message='wsdlns:ArithmeticCOM.addNumbersResponse' />
 </operation>
 </portType>
 <binding name='ArithmeticCOMSoapBinding' type='wsdlns:ArithmeticCOMSoapPort' >
 <stk:binding preferredEncoding='UTF-8'/>
 <soap:binding style='rpc' transport='http://schemas.xmlsoap.org/soap/http' />
 <operation name='multiplyNumbers' >

 <soap:operation �
 soapAction='http://tempuri.org/action/ArithmeticCOM.multiplyNumbers' />
 <input>

 <soap:body use='encoded' namespace='http://tempuri.org/message/'�
 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/' />

 </input>
 <output>

 <soap:body use='encoded' namespace='http://tempuri.org/message/'�
 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/' />

 </output>
 </operation>
 <operation name='addNumbers' >

 <soap:operation �
 soapAction='http://tempuri.org/action/ArithmeticCOM.addNumbers' />
 <input>

 <soap:body use='encoded' namespace='http://tempuri.org/message/'�
 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/' />

 </input>
 <output>

 <soap:body use='encoded' namespace='http://tempuri.org/message/'�
 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/' />

 </output>
 </operation>
 </binding>
 <service name='ArithmeticCOM' >
 <port name='ArithmeticCOMSoapPort' binding='wsdlns:ArithmeticCOMSoapBinding' >

 <soap:address �
 location='http://localhost/ProWebServices/WSDL/Arithmetic/ArithmeticCOM.ASP' />
 </port>
 </service>
</definitions>

The sections of the WSDL file will be covered extensively in the next section of the chapter.

Chapter 4

14

Client Script file
In our example, we are going to use a VB Script file to access the Web Service. Create this script file in
Notepad and name it clientArithmeticCOM.vbs:

Option Explicit

Dim soapClient
set soapclient = CreateObject("MSSOAP.SoapClient")
On Error Resume Next
Call
soapclient.mssoapinit("http://localhost/ProWebServices/WSDL/ArithmeticCOM/Arithmet
icCOM.wsdl", "ArithmeticCOM", "ArithmeticCOMSoapPort")
if err <> 0 then
 wscript.echo "initialization failed " + err.description
 wscript.echo 1111
end if

wscript.echo soapclient.multiplyNumbers(2, 3)
wscript.echo soapclient.addNumbers(2, 3)

The first thing the script does is to create the soapClient object. The mssoapinit method is then
called with the following parameters:

1. The Web Server location. This is the URI of the SOAP listener we entered on the SOAP
listener screen above, with the name of the WSDL file appended. This reflects a network
endpoint or port.

2. The name of our class or service (not the project name but the class name) is used to
name the service in the WSDL and WSML file.

3. The SOAP Port name. By default this is the service name with the SoapPort appended to it.

Now for the fun part, let's run the application. Shell to the command prompt and type cscript
clientArithmeticCOM.vbs and two numbers (6 and 5) should be displayed.

This section represents a brief assessment of the SOAP 2.0 Toolkit. It would be nice if the SOAP 2.0
Toolkit was more integrated with Visual Studio .NET. I am not sure why we cannot add a reference to a
COM object with Visual Studio .NET, just as we do with .NET Web Services, for example.

There is a lot of functionality in the SOAP 2.0 Toolkit that is useful when we have specific
requirements. However, when we just want to expose a COM object, it would be nice to be able to add
a reference. This is similar to what happens in .NET, where we can create Proxy files by adding a
reference in Visual Studio.NET or use the wsdl.exe utility when we have specific requirements.

Microsoft has an FAQ document on the SOAP 2.0 Toolkit that provides some good pointers on
installation on client machines and other useful information. It can be found at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnsoap/html/soap_faq.asp?frame=true.

Web Service Description Language

15

WSDL Documents and .NET
For our .NET example, we have a Web Service that also exposes two methods: one to multiply numbers
and one to add numbers. It is the same as the COM object we created above. The major difference is
that we use the Web Service and Web Method attributes to set the name, description, and namespace
URI of the Web Service.

Let's take a look at the Arithmetic class in the ASP.NET Web Service that we are going to use as the
basis of the WSDL document detailed throughout the next few sections of this chapter. Remember the
WSDL document created with Visual Studio.NET is slightly different than the WSDL document we
generated with the SOAP 2.0 Toolkit. The main differences are the <types> and <message> elements
– we will elaborate further when explaining these elements.

The Arithmetic.asmx Web Service contains two methods: MultiplyNumbers and AddNumbers.
They both take two parameters and return the results as one parameter. Part of the reason we included
two methods is because there are places in the WSDL file where having two methods better
demonstrates what elements are at the method level and what elements are at the Web Service level.
The WebService and WebMethod attribute lines have been highlighted in the code below (See Chapter
2 for a more detailed explanation of the WebService and WebMethod attributes). The WebService
attribute has had its Namespace and Description changed from the default Visual Studio.NET
values. The WebMethod Description attribute has been set for both methods in our Web Service.

All of the changes are cosmetic and simply provide documentation elements in the WSDL file. The one
change that is more than cosmetic is the WebService Namespace change. This changes the default
ASP.NET Web Service namespace from http://tempuri.org to a domain name in our system. In this case
that would be http://reassociates.net/. The code shown below is the arithmetic.asmx.cs code
behind file in the download specified for this chapter.

In order to create the files necessary follow these steps. If you want to download the files instead of
creating them, skip to the download files section directly below.

To create the Web Service in C#:

1. Create a new C# project in Visual Studio .NET, and select the ASP.NET Web Service template.

2. Name the Web Service Arithmetic, and place it in http://localhost/

3. Change the name of the service.asmx class to Arithmetic.asmx in the Project explorer.

4. Press F7 to change to the code view.

5. Replace the code in the code window with the code from below:

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;

Chapter 4

16

using System.Web.Services;

namespace WSDL3
{
 [WebService(Namespace="http://reassociates.net/", Description="Class with "
 + "one method to add numbers and one to multiply numbers",
 Name="Arithmetic")]

 public class Arithmetic : System.Web.Services.WebService
 {
 public Arithmetic();

 [WebMethod (Description="Method that multiplies two numbers")]
 public int MultiplyNumbers(int mnum1, int mnum2)
 {
 return mnum1 * mnum2;
 }

 [WebMethod (Description="Method that adds two numbers")]
 public int AddNumbers(int anum1, int anum2)
 {
 return anum1 + anum2;
 }
 }
}

6. Save the project.

Alternatively, you can set up this example from the code download:

1. Create a new C# project in Visual Studio .NET, and select the ASP.NET Web Service
template.

2. Name the Web Service Arithmetic, and place it in the
http://localhost/ProWebServices/WSDL location.

3. Select Arithmetic.asmx and Arithmetic.ASMX.cs from the code download and place
them in the directory you specified above.

4. From the project menu select Add Existing files and select the files one at a time.

How to create WSDL files in .NET
ASP.NET programmers do not generally have to create or modify WSDL documents by hand. There are
three ways to generate WSDL documents in ASP.NET. The first way is to request the Web Service in a
browser and append ?WSDL to the file name (Arithmetic.asmx) when we type in the URL. The second
way is to click on the Service Description link on the Web Service Description Help Page. (The page that is
displayed when we browse to the .asmx file) This also appends the ?WSDL to the Web Service name in the
requested URL. The third way is to create the WSDL documents manually or through Import statements and
other advanced features that will be described in detail later in this chapter.

Web Service Description Language

17

The Web Service Description Help Page was explained in Chapter 2. Here we will focus on the aspects
that relate to WSDL and SOAP. When accessing the Web Service Description Help page for our
Arithmetic class, there are three links: Service Description, MultiplyNumbers and AddNumbers.

❑ Service Description – Clicking on this link brings up the WSDL document for the Arithmetic
service. Notice that we did not have to add a reference through Visual Studio .NET, nor did
we use the wsdl.exe tool. That is because the preceding two items are used to create Proxy
files and not WSDL files. It is easy to confuse WSDL files with Proxy files when dealing with
.NET Web Services, because WSDL documents are displayed when referencing Web Services
in Visual Studio.NET and the command line tool is called wsdl.exe and not Proxy.exe.
The Web Service Description Help page is an ASPX page called
DefaultWsdlHelpGenerator.aspx and is located in the
\WinNt\Microsoft.NET\Framework\[version] directory. Because it is an ASPX page it can be
customized.

❑ MultiplyNumbers – Clicking on this link brings up a screen that enables you to input the two
method parameters. It also contains the SOAP and HTTP GET request and response message
data for the method. This is a very good place to go and view the SOAP that is sent across the
wires and to trace it to its origins in the WSDL files.

❑ AddNumbers - Clicking on this link brings up a screen that enables you to input the two
method parameters and also contains the SOAP and HTTP GET request and response
message data for the method. Again, this is a good place view the SOAP that is sent across the
wires and to trace it to its origins in the WSDL files.

Here is a collapsed version of the WSDL document that appears after clicking on the service
description link.

Chapter 4

18

An Advanced look at WSDL
Now that we know how to create and access WSDL files with the SOAP 2.0 Toolkit and with Visual
Studio .NET, it is time to look into some of the details, structure, and inner workings of WSDL
documents.

WSDL provides a way of describing Web Services in enough detail that they can be accessed by
endpoints across the network. WSDL documents consist of five main elements that combine to describe
a Web Service. The first three of these are abstract and define the messaging. The last two are concrete
and define the protocol and address information.

The WSDL 1.1 specification classifies messaging related items as abstract and protocol and location
related items as concrete. Not all programmers agree with this, but I will use their terminology.

The three abstract elements, the <types>, <message>, and <portType> elements combine to define
the interface of the Web Service. They define the methods, parameters, and the properties of a Web
Service. The two concrete elements, the <binding> element and the <port> element, combine to
provide the protocol (SOAP over HTTP) and address information (URI of the service) of a Web
Service. Separating the message definition elements from the location and protocol information
provides the flexibility to reuse a common set of messages and data types within different protocols.
This architecture increases the likelihood of more advanced protocols being utilized by decreasing the
legacy burden. It also provides the flexibility to define a set of messages and protocols that represent
business logic once, and to reuse the same set of business logic multiple times with varying protocols.

The WSDL 1.1 specification comes with SOAP, HTTP GET/POST, and MIME extensions layered on
top of the base specification. The base specification is referred to as the core definition framework.
ASP.NET primarily supports the HTTP GET/POST operations for ASP applications that accepted
parameters either from FORM GET or POST mechanism. Unlike the WSDL 1.1 specification,
ASP.NET does not support the MIME extension. There is nothing prohibiting the specification from
being extended to support other protocols, however, as it is designed so that other protocols can be
added and bound to the core specification without affecting it.

Since WSDL is most commonly implemented utilizing SOAP over HTTP and since that is the default in
ASP.NET, this chapter will focus on WSDL in relation to SOAP and HTTP. SOAP is really dominant
and there seems to be no real competitor to it at this point. Microsoft seems to be more interested in
supporting raw SOAP over TCP, a transfer protocol known as Direct Internet Message Encapsulation
(DIME), and building work abounds to the HTTP request response structure, than they are in
supporting MIME.

The way that WSDL works is that it defines a core service definition framework that defines the five
major elements of a WSDL document. This framework is currently extended by three binding
specifications: SOAP, HTTP, and MIME. The abstract elements are largely defined within the WSDL
core service definition framework. The concrete ones, especially the <binding> element, largely
constitute a structure that is made available for a binding extension. The WSDL document we will go
through in this section utilizes the SOAP binding extension. Elements that use the SOAP binding
extension as we go through the document will be pointed out. I will also include a brief section on
HTTP GET/POST binding following this section. I will not cover MIME because it is not supported by
ASP.NET.

Web Service Description Language

19

The WSDL, the SOAP binding extension, the HTTP binding extension, and the MIME binding
extensions schemas are also included in the WSDL 1.1 specification, which is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/wsdl.asp.

Here is an overview of the five main elements of a WSDL document:

❑ Types – embedded XML schema where the data types are defined. Other type systems can be
used through extensibility

❑ Messages – provides details of the messages and the message parameters

❑ PortType – groups messages in input output message fashion and provides a bridge to
concrete protocols and addressing

❑ Binding – provides protocol information for the <portType> element or the operations

❑ Service – provides URI address information for a service

When searching for Web Service across the Internet, it is a good idea to look it up in a
UDDI registry. This will ensure that you use the correct WSDL document for the
service. I point this out because if a custom WSDL document is created and the Web
Service is queried, i.e., Aitthmetic.ASMX?WSDL, the default WSDL document will be
created. It is not very useful to get the wrong service contract or WSDL document.
The UDDI registry is the standard now; thus it should be used. UDDI registries can
hold a WSDL document.

Sample WSDL Document
Here is the WSDL document that was generated by ASP.NET for the Arithmetic class above. You
can view it in your browser if you request the Arithmetic.asmx and append ?WSDL to the URL. We
will go over it section-by-section below. We have included the whole file here, so that you can review it
first and reference it throughout the chapter whenever you would like to see the whole file
unobstructed. The parts of the file that reference HTTP POST and HTTP GET have been removed for
clarity. WSDL documents are busy enough and can be difficult to follow, so removing the parts of the
document that contain the extra protocols make it easier to follow.

This WSDL document was automatically generated by ASP.NET. WSDL documents
generated by other tools may vary slightly, as we saw above with the WSDL document
created with the SOAP 2.0 Toolkit, but the principles are the same.

<?xml version="1.0" encoding="utf-8"?>
<definitions xmlns:s="http://www.w3.org/2001/XMLSchema"
 xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:s0="http://reassociates.net/"
 targetNamespace="http://reassociates.net/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <s:schema attributeFormDefault="qualified"

TE
AM
FL
Y

Team-Fly®

Chapter 4

20

 elementFormDefault="qualified"
 targetNamespace="http://reassociates.net/">
 <s:element name="MultiplyNumbers">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="mnum1" type="s:int" />
 <s:element minOccurs="1" maxOccurs="1" name="mnum2" type="s:int" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="MultiplyNumbersResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1"
 maxOccurs="1"
 name="MultiplyNumbersResult"
 type="s:int" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="AddNumbers">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="anum1" type="s:int" />
 <s:element minOccurs="1" maxOccurs="1" name="anum2" type="s:int" />
 <s:element minOccurs="1" maxOccurs="1" name="anum3" type="s:int" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="AddNumbersResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1"
 maxOccurs="1"
 name="AddNumbersResult"
 type="s:int" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="int" type="s:int" />
 </s:schema>
 </types>
 <message name="MultiplyNumbersSoapIn">
 <part name="parameters" element="s0:MultiplyNumbers" />
 </message>
 <message name="MultiplyNumbersSoapOut">
 <part name="parameters" element="s0:MultiplyNumbersResponse" />
 </message>
 <message name="AddNumbersSoapIn">
 <part name="parameters" element="s0:AddNumbers" />
 </message>
 <message name="AddNumbersSoapOut">
 <part name="parameters" element="s0:AddNumbersResponse" />
 </message>
 <portType name="ArithmeticSoap">
 <operation name="MultiplyNumbers">
 <documentation>Method that multiplies two numbers</documentation>
 <input message="s0:MultiplyNumbersSoapIn" />
 <output message="s0:MultiplyNumbersSoapOut" />
 </operation>

Web Service Description Language

21

 <operation name="AddNumbers">
 <documentation>Method that adds two numbers</documentation>
 <input message="s0:AddNumbersSoapIn" />
 <output message="s0:AddNumbersSoapOut" />
 </operation>
 </portType>
 <binding name="ArithmeticSoap" type="s0:ArithmeticSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
 style="document" />
 <operation name="MultiplyNumbers">
 <soap:operation soapAction="http://reassociates.net/MultiplyNumbers"
 style="document" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 <operation name="AddNumbers">
 <soap:operation soapAction="http://reassociates.net/AddNumbers"
 style="document" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 </binding>
 <service name="Arithmetic">
 <documentation>Class with one method to add numbers and one to multiply
 numbers</documentation>
 <port name="ArithmeticSoap" binding="s0:ArithmeticSoap">
 <soap:address
 location="http://localhost/ProWebServices/WSDL/Arithmetic.asmx" />
 </port>
 </service>
</definitions>

Section-By-Section Overview
We will now go through each section of the file in detail, beginning with the <definitions> section.

Definitions Section
The <definitions> element is the root element of a WSDL document. It is where most of the
namespaces are defined. Other namespaces that are specific to a section may be specified in that section
instead. They will remain in scope for the duration of the section they are defined in. Namespaces are
used to uniquely identify elements in an XML document by using a Uniform Resource Identifier (URI),
thus avoiding naming conflicts. They can also work with XML Schemas to ensure that the element,
attribute names, and characteristics are valid, as database tables would be prefixed to reference the
correct field name, and the data structure would validate the characteristics of the fields being used.

All WSDL elements belong to the WSDL namespace, which is defined as:
http://schemas.xmlsoap.org/wsdl/.

Chapter 4

22

The table below lists the namespaces that appear in a WSDL document. The Prefix column identifies
the prefix used to reference the namespace throughout the document. For example, the first row
contains "s:" for the URI http://www.w3.org/2001/XMLSchema. This means that all elements that are
part of the XMLSchema namespace are prefixed with "s:". The prefixes are shorthand convention for
working with XML documents.

Prefix URI Description

s: http://www.w3.org/2001/XMLSchema XMLSchema
namespace. The
default typing system
in WSDL
documents.

tm: http://microsoft.com/wsdl/mime/textMatching
/

Microsoft-only text
matching the schema
namespace.

soap: http://schemas/xmlsoap.org/wsdl/soap/ WSDL namespace
for WSDL SOAP
binding.

Soapenc: http://schemas.xmlsoap.org/soap/encoding/ Encoding
namespace as
defined by SOAP
1.1.

s0: http://reassociates.net/ Namespace of the
sample Web Service.

http://schemas.xmlsoap.org/wsdl/ WSDL namespace for
WSDL framework.
Because there is no
prefix, this is the
default namespace
for the document.

targetNamespace: http://reassociates.net/ The namespace of
the XML data that is
described or
validated by this
module. It lets us
define the
namespace of the
schema we are
creating.
Independently of
other namespace
declarations being
used.

Web Service Description Language

23

The URI of the sample Web Service is http://reassociates.net/ and not
http://tempuri.org, which is the default. This is because we changed the Web Service
attribute name in our class, as detailed in the Sample ASP.NET Web Service section above.

The <definitions> element contains support for the following attributes:

❑ Name – to name the document

❑ Definitions – to define the namespaces

❑ targetNamespace – to define the targetNamespace

Here are the parts of the WSDL document that relate to this section. You can see the definitions
and targetNamespace attributes being defined:

<?xml version="1.0" encoding="utf-8"?>
<definitions xmlns:s="http://www.w3.org/2001/XMLSchema"
 xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:s0="http://reassociates.net/"
 targetNamespace="http://reassociates.net/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

Types Section
The Types section of a WSDL document is where the data types are defined. The <types> element is
actually an embedded XML Schema, and all XML Schema data types are valid. Other type systems can
be added through extensibility if required. As the specification states, XSD is the current preferred
choice, but it is unreasonable to expect that one types system will be able to express all types in the
present and in the future. It is also possible to define complex types, such as defining a customer by
using standard XML Schema syntax as follows:

<types>
 <schema . targetNamsspace="someNamespace" xmlns:typens="someNamespace">
 <xsd:complexType name="CUSTOMER">
 <xsd:sequence>
 <xsd:element customer="companyName type="xsd:string"/>
 <xsd:element customer="firstName type="xsd:string"/>
 <xsd:element customer="lastName type="xsd:string"/>
 <xsd:element customer="salesRank type="xsd:int"/>
 </xsd:complexType>
 </schema>
</types>

In our example, a complex type is used to define the messages. It describes the method name, its
parameters, the min and max occurs attribute for each parameter, and the data types for each
parameter. These names of the complex types are referred to in the <message> element. Complex
types can also support more complicated items, including purchase orders, which would have a header
and line item components. If you are not familiar with XML Schemas, you should read Professional XML
Schemas ISBN 1861005474 also from Wrox, or see the XML Schema specification at
http://www.w3.org/2001/XMLSchema.

Chapter 4

24

In essence, the types section is defining the parameters for the <message> element, which is used to
define the SOAP payload.

To return to our WSDL file, both methods from our Arithmetic class contain two elements:

❑ One for the input message

❑ One for the output message

The input message has the same name as the method, and the output message has the word
"Response" appended to the message name. Both the input and output message have their parameters
defined using a complex type:

<types>
 <s:schema attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="http://reassociates.net/">
 <s:element name="MultiplyNumbers">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="mnum1" type="s:int" />
 <s:element minOccurs="1" maxOccurs="1" name="mnum2" type="s:int" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="MultiplyNumbersResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1"
 maxOccurs="1"
 name="MultiplyNumbersResult"
 type="s:int" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="AddNumbers">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="anum1" type="s:int" />
 <s:element minOccurs="1" maxOccurs="1" name="anum2" type="s:int" />
 <s:element minOccurs="1" maxOccurs="1" name="anum3" type="s:int" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="AddNumbersResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1"
 maxOccurs="1"
 name="AddNumbersResult"
 type="s:int" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="int" type="s:int" />
 </s:schema>
 </types>

Web Service Description Language

25

This is another example of how flexible complex types are. Here it is defining the request and response
methods and their parameters. In the WSDL file created with the SOAP 2.0 Toolkit, the <types>
element is limited to a few namespace elements. In the ASP.NET version that we are now looking at, it
is used to detail the message and their parameters.

In the Message section below, you can see the <message> elements from both WSDL files. This
<message> element is drastically different, and this seems to be one of the constant differences
between WSDL documents. Some use the <types> element to define the methods and parameters and
refer to this in the <message> element, while others define the methods and parameters in the
<message> element directly.

Message Section
The <message> element contains the methods and their parameters. It contains a definition of the data
being communicated. Our ASP.NET implementation defines the methods and their properties in the
<types> element and refers to these definitions in the <message> element. On the other hand, the
SOAP 2.0 Toolkit defines the methods and their parameters solely in the <message> element. As stated
above, both implementations will be shown here.

The <message> element in our sample WSDL file contains three parts:

❑ message name - The <message name> element contains the combination of the method
name plus SoapIn for the calling message and SoapOut for the results message. It is this
name that is used as the operation name below. SoapIn and SoapOut are appended because
these messages are being defined as bound to SOAP. If we were using HttpGet, they would
have HttpGetIn and HttpGetOut appended to the name.

❑ part name - The part name attribute is set to parameters referring to the fact that the
parameters for this message were set above in the <types> element.

❑ part element - The part element attribute references the complex types by name
defined in the schema above for each input and output message.

The part type is not used in the ASP.NET WSDL document, but is used and explained in the SOAP
2.0 version of the WSDL document below.

We have four messages in this section: two request messages and two response messages. We have a request
and response message for our MultiplyNumbers method, and a request and response message for our
AddNumbers method. This corresponds to the four messages defined above in the <types> element.

ASP.NET implementation

 <message name="MultiplyNumbersSoapIn">
 <part name="parameters" element="s0:MultiplyNumbers" />
 </message>
 <message name="MultiplyNumbersSoapOut">
 <part name="parameters" element="s0:MultiplyNumbersResponse" />
 </message>
 <message name="AddNumbersSoapIn">
 <part name="parameters" element="s0:AddNumbers" />
 </message>
 <message name="AddNumbersSoapOut">
 <part name="parameters" element="s0:AddNumbersResponse" />
 </message>

Chapter 4

26

Let's assume we have a method named addCustomers. In order to demonstrate how the customer
complex type created above would be used:

 <message name="addCustomers">
 <part name="addCustomers" type="s0:addCustomers" />

SOAP 2.0 implementation

Here is a description of the <message> element contained in the WSDL document created with the
SOAP 2.0 Toolkit:

❑ The <message name> element here refers to the request and response operations of the
methods defined in our WSDL file, just as it does in the ASP.NET version above.

❑ The part name attribute defines the parameters and the data types of the messages. It
contains one row for each parameter; thus it contains two rows for each request message and
one row for each response methods. The request methods each contain two parameters, and
the response methods each contain one parameter.

❑ The part type attribute contains the data type information of the parameter. In the
ASP.NET version of the <message> element, the data type information was defined in the
<types> element. Both of these methods work. If you are handcrafting WSDL documents, it
is a design choice you must make. If you are using a tool, it will make the decision for you.

 <message name='abc2.multiplyNumbers'>
 <part name='NumberOne' type='xsd:double'/>
 <part name='NumberTwo' type='xsd:double'/>
 </message>
 <message name='abc2.multiplyNumbersResponse'>
 <part name='Result' type='xsd:double'/>
 </message>
 <message name='abc2.addNumbers'>
 <part name='NumberOne' type='xsd:double'/>
 <part name='NumberTwo' type='xsd:double'/>
 </message>
 <message name='abc2.addNumbersResponse'>
 <part name='Result' type='xsd:double'/>
 </message>

PortType Section
So far we have built a schema that describes the parameters of the messages and have used that schema in
our message section. Now we are going to define operations based on the messages we created, and group
the operations in a portType. Unlike the <message> element above, which contained independent
elements for the input and output messages, these operations are tied together in a request response grouping.
The operation name is the name of the method and the portType is a collection of operations. The
<portType> element is referred to in the <binding> element, to bind a set of operations to a protocol.
The operations are mapped to the SOAP operation calls contained within the binding element. In essence,
the portType is bound to a protocol and the operations are mapped to the SOAP methods, providing the
linkage between the abstract and concrete portions of a WSDL document.

Web Service Description Language

27

There are four types of operations: one-way, request-response, solicit-response, and
notification. The current WSDL specification defines only bindings for the one-way
and request-response operation types. The other two can have bindings defined via
binding extensions. The latter two are simply the inverse of the first two; the only
difference is whether the endpoint in question is on the receiving or sending end of the
initial message. HTTP is a two-way protocol, so the one-way operations will work only
with MIME (which is not supported by ASP.NET) or with another custom extension.

Here is a description of the parts in the portType section:

❑ portType name – the name of the service with SOAP added. The portType name is used to
bind the <portType> element to the protocol information contained in the <binding> element.

❑ operation name – there is one operation for each of our methods, and the method names
are used to name the operations.

❑ documentation – the documentation comes from the WebMethod documentation attribute
we used in our sample Arithmetic class above.

❑ input and output message – the input and output messages correspond to the messages
above. Just as above, we have four messages: one input for each method and one output for
each method.

❑ <fault> element – we are not using this in our WSDL document. It is used to specify the
error message returned for all non-protocol errors.

<portType name="ArithmeticSoap">
 <operation name="MultiplyNumbers">
 <documentation>Method that multiplies two numbers</documentation>
 <input message="s0:MultiplyNumbersSoapIn" />
 <output message="s0:MultiplyNumbersSoapOut" />
 </operation>
 <operation name="AddNumbers">
 <documentation>Method that adds two numbers</documentation>
 <input message="s0:AddNumbersSoapIn" />
 <output message="s0:AddNumbersSoapOut" />
 </operation>
 </portType>

WSDL Binding Section
The binding section contains several features, which we'll run through here:

❑ binding name – the binding name is the service name with Soap appended to it.It is used to
connect the binding (protocol information) with the port below (location information). The
binding name is connected to the port name binding attribute in the service section below.

❑ binding name type – the binding name type is used to link the binding section to the
portType section, referenced above.

❑ soap:binding – The <soap:binding> element is an extension to the WSDL core definition
framework. It contains two attributes:

Chapter 4

28

❑ style – there are two valid binding name styles: document and rpc. The rpc or remote
procedure call style is used to specify that methods and method parameters will be
contained in the SOAP envelope in the request and response messages. The document
style is used to specify that XML documents will be transmitted in the SOAP envelope.
For example, the request message may contain a purchase order and the response
message may contain a purchase order receipt.

❑ transport – This refers to the SOAP HTTP schema and sets the binding to SOAP
over HTTP.

❑ operation name – operation name is described in the portType section. Here it is set to
soapAction.

❑ soap:operation – This is another extension to the WSDL core definition framework. The
<soap:operation> element is used to set the document style and the handler information
for this operation. The document style defaults from the <soap:binding> element above
and can be set for this specific operation here. The handler information contains the name and
location of the method.input and output names – The <input> element and the
<output> element each contain three child elements: <soap:body>, <soap:header>, and
<soap:headerFault>. In our example we are using only the <soap:body> child element.
The other two elements and the attributes not being used here can be seen in the SOAP
binding extension below. The use attribute can be set to encoded or literal. When set to
literal, the parts are sent as is. When set to encoded, each message part is looked up
through a URI. See the SOAP chapter for more details.

 <binding name="ArithmeticSoap" type="s0:ArithmeticSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
 style="document" />
 <operation name="MultiplyNumbers">
 <soap:operation soapAction="http://reassociates.net/MultiplyNumbers"
 style="document" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 <operation name="AddNumbers">
 <soap:operation soapAction="http://reassociates.net/AddNumbers"
 style="document" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 </binding>

Web Service Description Language

29

WSDL Service Section
The service section contains a collection of ports or endpoints. A port provides address information
or a URI. In our case we only have one port because we have removed the non-SOAP protocols from
the document. The original ASP.NET-generated file contains three ports: one for SOAP, one for HTTP
GET, and one for HTTP POST.

The service attribute provides a unique name among all ports defined in the WSDL document. Here
the SOAP address of our Arithmetic class is combined with the protocol information from our
binding section:

<service name="Arithmetic">
 <documentation>Class with one method to add numbers and one to multiply
 numbers</documentation>
 <port name="ArithmeticSoap" binding="s0:ArithmeticSoap">
 <soap:address
 location="http://localhost/ProWebServices/WSDL/Arithmetic.asmx" />
 </port>
 </service>

Here's a breakdown of the attributes and elements involved:

❑ documentation – the documentation comes from the WebService Description attribute
we used in our sample Arithmetic class above.

❑ port name – provides a unique name among all ports in the class by appending the protocol
name, in our case SOAP, to the service name.

❑ port name binding – used to connect the port (URI) with the protocol in the binding
section. This is the same as the binding name, in the binding section.

❑ soap:address – the URI of the service or the network endpoint.

SOAP Message Examples
Here we will examine the SOAP messages as they would appear in three different scenarios based on
the WSDL document we went through above. The items used to determine the shape of the SOAP
message are the SOAP Binding Style, the SOAP Body Use, the Soap Body Encoding Style URI, and
SOAP Body Namespace URI. Each different SOAP message contains a table that identifies the settings
for that scenario.

Name Value

SOAP Binding Style rpc

SOAP Body Use literal

SOAP Body encoding style URI None

SOAP Body namespace URI None

Notice the <soap:body> element's child element is the method name MultiplyNumbers. This is
because the Binding Style is set to rpc:

TE
AM
FL
Y

Team-Fly®

Chapter 4

30

POST /arithmetic/arithmetic.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://reassociates.net/MultiplyNumbers"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <MultiplyNumbers>
 <mnum1>int</mnum1>
 <mnum2>int</mnum2>
 </MultiplyNumbers>
 </soap:Body>
</soap:Envelope>
HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

Name Value

SOAP Binding style document

SOAP Body Use literal

SOAP Body Encoding Style URI None

SOAP Body Namespace URI None

Notice the <soap:body> element's child element is the method parameters and not the method itself. This
is because the Binding Style here is set to document, and when set to document the data is sent directly:

POST /arithmetic/arithmetic.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://reassociates.net/MultiplyNumbers"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <mnum1>int</mnum1>
 <mnum2>int</mnum2>
 </soap:Body>
</soap:Envelope>
HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

Web Service Description Language

31

Name Value

SOAP Binding style rpc

SOAP Body Use encoded

SOAP Body Encoding Style URI http://schemas.xmlsoap.org/soap/encoding/

SOAP Body Namespace URI http://reassociates.net

This time we set the SOAP Body Use attribute as encoded and thus have to provide the encoding and
namespace URIs:

POST /arithmetic/arithmetic.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://reassociates.net/MultiplyNumbers"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <MultiplyNumbers xmlns="http://reassociates.net/">
 <mnum1>int</mnum1>
 <mnum2>int</mnum2>
 </MultiplyNumbers>
 </soap:Body>
</soap:Envelope>
HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

SOAP Binding Extensions
We pointed out SOAP 1.1 binding extensions we used as we went through our sample WSDL file
above. Here is a summary of all the SOAP binding extensions to WSDL 1.1 (highlighted in the code).

<definitions >
 <binding >
 <soap:binding style="rpc|document" transport="uri">
 <operation >
 <soap:operation soapAction="uri"? style="rpc|document"?>?
 <input>

 <soap:body parts="nmtokens"? use="literal|encoded" encodingStyle="uri- �
 list"? namespace="uri"?>

 <soap:header message="qname" part="nmtoken" use="literal|encoded" �
 encodingStyle="uri-list"? namespace="uri"?>*

 <soap:headerfault message="qname" part="nmtoken" �
 use="literal|encoded" encodingStyle="uri-list"? namespace="uri"?/>*
 <soap:header>

Chapter 4

32

 </input>
 <output>

 <soap:body parts="nmtokens"? use="literal|encoded" encodingStyle="uri- �
 list"? namespace="uri"?>

 <soap:header message="qname" part="nmtoken" use="literal|encoded" �
 encodingStyle="uri-list"? namespace="uri"?>*

 <soap:headerfault message="qname" part="nmtoken" �
 use="literal|encoded" encodingStyle="uri-list"? namespace="uri"?/>*
 <soap:header>
 </output>
 <fault>*

 <soap:fault name="nmtoken" use="literal|encoded" encodingStyle="uri- �
 list"? namespace="uri"?>
 </fault>
 </operation>
 </binding>

 <port >
 <soap:address location="uri"/>
 </port>
</definitions>

As you can see, most of the <binding> elements and the address elements of the <service> element
are SOAP binding extensions. In essence, WSDL defines a binding framework around the
<operation> element, and the SOAP binding extension adds all of the functionality. This is consistent
with the WSDL mantra of supporting unlimited binding extensions.

HTTP Binding Implementation
In this section, we will take a brief look at implementing our service with HTTP.

The <message> element for HTTP Get is similar to the SOAP 2.0 Toolkit implementation, where the
parameters of the methods are defined by using the part name and type, rather than by using the
<types> element, as is done in the ASP.NET implementation. The response, or in this case, the Out
message is set to body, because HTTP Get returns values as GIFs:

 <message name="MultiplyNumbersHttpGetIn">
 <part name="mnum1" type="s:string" />
 <part name="mnum2" type="s:string" />
 </message>
 <message name="MultiplyNumbersHttpGetOut">
 <part name="Body" element="s0:int" />
 </message>
 <message name="AddNumbersHttpGetIn">
 <part name="anum1" type="s:string" />
 <part name="anum2" type="s:string" />
 </message>
 <message name="AddNumbersHttpGetOut">
 <part name="Body" element="s0:int" />
 </message>

Web Service Description Language

33

The <portType> element is pretty much identical to the SOAP ones we looked at above. The only
difference is the message names now have HttpGet appended to them:

 <portType name="ArithmeticHttpGet">
 <operation name="MultiplyNumbers">
 <documentation>Method that mulitiplies two numbers</documentation>
 <input message="s0:MultiplyNumbersHttpGetIn" />
 <output message="s0:MultiplyNumbersHttpGetOut" />
 </operation>
 <operation name="AddNumbers">
 <documentation>Method that adds two numbers</documentation>
 <input message="s0:AddNumbersHttpGetIn" />
 <output message="s0:AddNumbersHttpGetOut" />
 </operation>
 </portType>

Now we have reached the actual HTTP binding extension:

<binding name="ArithmeticHttpGet" type="s0:ArithmeticHttpGet">
 <http:binding verb="GET" />
 <operation name="MultiplyNumbers">
 <http:operation location="/MultiplyNumbers" />
 <input>
 <http:urlEncoded />
 </input>
 <output>
 <mime:mimeXml part="Body" />
 </output>
 </operation>
 <operation name="AddNumbers">
 <http:operation location="/AddNumbers" />
 <input>
 <http:urlEncoded />
 </input>
 <output>
 <mime:mimeXml part="Body" />
 </output>
 </operation>
 </binding>

Lets look at some aspects of this section:

❑ binding name – Common options are GET or POST, but other options are possible. Note
that HTTP verbs are case sensitive.

❑ operation location URI – This is the relative URI of the operation. It combines with the
http:addresss in the <service> element to form the full URI. This element must contain a
relative URI.

❑ input and output elements – In general, the input and output are urlEncoded.
urlEncoded transmits the parameters as follows: mnum1=string&mnum2=string. The
other option is urlReplacement, which will perform a lookup on the message parts by
searching the relative URI of the operation for a set of search patterns. For each match, the
value of the corresponding message part is substituted.

Chapter 4

34

There is only one binding extension for both the Get and Post implementations. They are both pretty
much the same. HTTP Post transmits data over the wire as name/value pairs, and HTTP Get transmits
data over the wire in the query string.

The <service> element is very straightforward. The http:address location attribute provides the
name of the service that is mentioned above. This is the first part of the URI, which is then combined
with the operation location URI, above, to specify the address. The rest of the element is identical to the
<service> element in the ASP.NET WSDL document:

 <service name="Arithmetic">
 <documentation>Class with one method to add numbers and one to subtract
numbers</documentation>
 <port name="ArithmeticHttpGet" binding="s0:ArithmeticHttpGet">
 <http:address location="http://localhost/arithmetic/arithmetic.asmx" />
 </port>
 </service>

The HTTP binding extension is much simpler than the SOAP binding extension. It is utilized to support
HTTP Get/Post method calls in WSDL. The Web Service Description Help page also contains a
sample HTTP Post and Get message for a Web Service.

If you bring up a WSDL file in ASP.NET, through the Web Service Description Help page, you can see
the HTTP Get/Post elements. We did not cover these in detail because SOAP is the most common
way to work with Web Services in ASP.NET.

HTTP Message Examples
Here is an example of HTTP GET and POST request and response messages using the urlEncoded
method of transmission. The multiplyNumbers method is being used with 3 and 6 as the parameters.

GET /arithmetic/arithmetic.asmx/MultiplyNumbers?mnum1=3&mnum2=6 HTTP/1.1
<int xmlns=http://reassociates.net/>18</int>

POST /arithmetic/arithmetic.asmx/MultiplyNumbers HTTP/1.1
3=string&6=string
<int xmlns=http://reassoicieates.net/>18</int>

HTTP Binding Extension
Here are the actual HTTP binding extensions:

<definitions >
 <binding >
 <http:binding verb="nmtoken"/>
 <operation >
 <http:operation location="uri"/>
 <input >
 <-- mime elements -->
 </input>
 <output >
 <-- mime elements -->

Web Service Description Language

35

 </output>
 </operation>
 </binding>
 <port >
 <http:address location="uri"/>
 </port>
</definitions>

The only part of this we have not covered is that the request and response messages can be sent as
MIME elements. This permits the sending of graphical content.

WSDL Screen Scrape Example
Screen scraping has been around since before the PC, and it is still a very common mechanism used to
extract data from mainframe systems. It is also very common on the Web, which is not such a good
thing. As Web Services become more common, screen scraping should become a technique of the past.
At present, there are still many HTML pages that do not express themselves as Web Services, and thus,
the best way to extract data from them is to programmatically read the HTML form.

One new item that makes screen scraping a little better is the support of regular expression matching in
.NET. This means that if the overall structure of the page is changed, but the specific data being
searched for is not, the program will not break. Creating a WSDL document also makes it a little easier
to support screen scraping where the methods and properties can be stored in a WSDL document. Even
if you do not have a use for screen scraping, the example below provides a neat way to use and learn
about WSDL.

The following section covers the creation of a WSDL file in a screen scraping example that searches a
Web Page and returns the title of that Web page. Since the WSDL for ASP.NET Web Services is auto-
generated, we will write our own WSDL files that use simple web pages as the service. One of the
important things to keep in mind is that if you create and use proxies for these WSDL files, the methods
in the services will return a structure that has the various text matches as member variables, with the
names defined in the WSDL file.

Hello World
In this example of WSDL authoring, we will write a WSDL file that reads a web page's title and returns
it as a result. This will provide a very basic example of how screen scraping works with WSDL. We'll
begin with a brief overview of the WSDL document, and then walk through creating the WSDL and
accessing the service.

The WSDL Document for the HelloWorld application
Here is the source for the WSDL file:

<?xml version="1.0" encoding="utf-8" ?>
<definitions xmlns:s="http://www.w3.org/2001/XMLSchema"

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

Chapter 4

36

xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:s0="http://tempuri.org/" targetNamespace="http://tempuri.org/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>
 <s:schema targetNamespace="http://tempuri.org/"
 attributeFormDefault="qualified"
 elementFormDefault="qualified">
 <s:element name="TestHeaders">
 <s:complexType derivedBy="restriction"/>
 </s:element>
 <s:element name="TestHeadersResult">
 <s:complexType derivedBy="restriction">
 <s:all>
 <s:element name="result" type="s:string" nullable="true"/>
 </s:all>
 </s:complexType>
 </s:element>
 <s:element name="string" type="s:string" nullable="true"/>
 </s:schema>
 </types>
 <message name="TestHeadersHttpGetIn"/>
 <message name="TestHeadersHttpGetOut">
 <part name="Body" element="s0:string"/>
 </message>
 <portType name="TestItHttpGet">
 <operation name="TestHeaders">
 <input message="s0:TestHeadersHttpGetIn"/>
 <output message="s0:TestHeadersHttpGetOut"/>
 </operation>
 </portType>
 <binding name="TestItHttpGet" type="s0:TestItHttpGet">
 <http:binding verb="GET"/>
 <operation name="TestHeaders">
 <http:operation location="/MatchServer.html"/>
 <input>
 <http:urlEncoded/>
 </input>
 <output>
 <text xmlns="http://microsoft.com/wsdl/mime/textMatching/">
 <match name='Title' pattern='TITLE>(.*?)<'/>
 </text>
 </output>
 </operation>
 </binding>
 <service name="TestIt">
 <port name="TestItHttpGet" binding="s0:TestItHttpGet">
 <http:address location="http://localhost/HelloWorld" />
 </port>
 </service>
</definitions>

Web Service Description Language

37

The types section is basic because we have no parameters and only one result. Similarly, our message
and port definitions are basic due to the lack of complexity of our service. One of the important things
to notice in the message, port and binding definitions is that we only use HTTP GET as our method
of making requests. Since we are querying a simple web page, we cannot send SOAP as a request, and
because we are sending no parameters to the service, it is irrelevant whether we use HTTP POST or
HTTP GET.

The binding section of our WSDL file is where things get interesting. Instead of simply telling it to
send back SOAP for the output, we will use Microsoft's text matching element, which uses a schema
separate from the other binding schemas. The pattern attribute of the match element uses a regular
expression to select the title of a page. One of the interesting things about using the text matching is that
all of the items you match have a specific name that is specified in the match element, but not in the
type definition. Finally, the service definition is pretty simple because the service only has one port.

Creating the HelloWorld Application
The HelloWorld screen scrape application will consist of a WSDL document, a Proxy file, an HTML
page, and an ASPX page that will have a code behind file.

This application is different than the others in that as the WSDL document is large, it is assumed that
you will download it. The other functions are small, so we will input them manually.

To create the application in C#:

1. Create a new C# project in Visual Studio .NET, and select the ASP.NET Web
Application template. Name the application HelloWorld, and place it in the
http://localhost/ location.

2. Download the HelloWorld.WSDL document (or create it yourself from the code above)
from the Wrox site and place it into the directory you created above.

3. From the Project menu in Visual Studio .NET, choose Add Existing Item, select All Files
(*.*) from the File of type dropdown, and select the HelloWorld.WSDL file.

4. The HelloWorld WSDL file should now appear in the Solution Explorer. Double click on
it to view the file:

Chapter 4

38

5. Now it is time to create the Proxy file, which is done by referencing the WSDL document
we just added to the project. Right click the Project name in the Explorer menu and
choose Add Web Reference.

6. In the address type the location of the WSDL document. The location should be
http://localhost/HelloWorld/HelloWorld.WSDL. Hit Enter, and then click on the Add
Reference button the lower right hand corner, which will become highlighted.

7. Notice below References in the Explorer menu we now have a Web Reference item.
Right click the localhost reference directly below the Web Reference item, and change
the name to HelloRef.

8. Download the MatchServer.html document from the Wrox site and save it in the same
directory as the other files. Then choose Add Existing Item and add the MatchServer.html
page. This is the page that contains HelloWorld in the title.

We have now built the Proxy file that you can see below:

//--
// <autogenerated>
// This code was generated by a tool.
// Runtime Version: 1.0.2914.16
//

Web Service Description Language

39

// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </autogenerated>
//--

namespace HelloWorld.HelloRef {
 using System.Diagnostics;
 using System.Xml.Serialization;
 using System;
 using System.Web.Services.Protocols;
 using System.Web.Services;

 public class TestIt : System.Web.Services.Protocols.HttpGetClientProtocol {

 [System.Diagnostics.DebuggerStepThroughAttribute()]
 public TestIt() {
 this.Url = "http://www.microsoft.com";
 }

 [System.Diagnostics.DebuggerStepThroughAttribute()]

[System.Web.Services.Protocols.HttpMethodAttribute(typeof(System.Web.Services.Prot
ocols.TextReturnReader),
typeof(System.Web.Services.Protocols.UrlParameterWriter))]
 public TestHeadersMatches TestHeaders() {
 return ((TestHeadersMatches)(this.Invoke("TestHeaders", (this.Url +
"/default.asp"), new object[0])));
 }

 [System.Diagnostics.DebuggerStepThroughAttribute()]
 public System.IAsyncResult BeginTestHeaders(System.AsyncCallback callback,
object asyncState) {
 return this.BeginInvoke("TestHeaders", (this.Url + "/default.asp"),
new object[0], callback, asyncState);
 }

 [System.Diagnostics.DebuggerStepThroughAttribute()]
 public TestHeadersMatches EndTestHeaders(System.IAsyncResult asyncResult)
{
 return ((TestHeadersMatches)(this.EndInvoke(asyncResult)));
 }
 }

 public class TestHeadersMatches {

 [System.Web.Services.Protocols.MatchAttribute("TITLE>(.*?)<")]
 public string Title;
 }
}

TE
AM
FL
Y

Team-Fly®

Chapter 4

40

Now let's add the functions.

9. From the Project Menu, choose Add Web Form... and name it HelloWorld.aspx.

10.Push F7 to access the code behind for that ASP page, and add the following CallService
function:

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace HelloWorld
{

/// <summary>
/// Summary description for HelloWorld.
/// </summary>
public class HelloWorld : System.Web.UI.Page
{

public HelloWorld ()
{

Page.Init += new System.EventHandler(Page_Init);
}

private void Page_Load(object sender, System.EventArgs e)
{

// Put user code to initialize the page here
}

private void Page_Init(object sender, EventArgs e)
{

//
// CODEGEN: This call is required by the ASP.NET Web Form

Designer.
//
InitializeComponent();

}

public void CallService()
{

HelloRef.TestIt matcher= new TestIt();
HelloRef.TestHeadersMatches matches = matcher.TestHeaders();
Response.Output.PrintLine(matches.Title);

}

#region Web Form Designer generated code
/// <summary>

Web Service Description Language

41

/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>
private void InitializeComponent()
{

this.Load += new System.EventHandler(this.Page_Load);
}
#endregion

}
}

Next, in the html part of the ASPX page, you need to add a simple call to the CallService function.
You can use the following source for your html:

<%@ Page language="c#" Codebehind="HelloWorld.aspx.cs" AutoEventWireup="false"
Inherits="HelloWorld.HelloWorld" %>
<html>
 <body>
 %>
 CallService();
 %>
 </body>
</html>

Once you have saved the project, enter Control-Shift-B to build it. Right click on the HelloWorld.aspx
page in the Explorer and choose View in Browser:

Summary
In this chapter, we looked at:

❑ The SOAP 2.0 Toolkit

❑ WSDL documents and .NET

❑ A WSDL document in detail

❑ A screen scraping example

The first goal of this chapter was to explain what WSDL is and why it is important. We discussed that
SOAP and UDDI are not enough to create a truly automated Web Service world. This is a world where
every Web Service consumed would have to be understood and have handcrafted SOAP coded on it.

The second goal of this chapter was to examine how to work with WSDL documents, which is why we
covered the SOAP 2.0 Toolkit as well as WSDL documents and .NET. In the near future, a lot of us will
be interfacing our Web Services to COM objects. After all, there are quite a few COM objects out there.

Web Services, WSDL, SOAP, and UDDI are still very new, so it is hard to know how they will be
implemented in large scale projects in the future, but we now understand enough WSDL that we can
work with the tools to customize it when necessary.

Chapter 4

42

Using a Proxy to Consume a Web
Service

In this chapter, we will take the value of Web Services to the next level by incorporating Web Service
functionality into other applications. Sure, the built-in features of the .NET Framework make creating and
even testing Web Services relatively painless, but do we really want to require our Web Service consumers
to use the browser-based testing interface to retrieve data? Of course not! This would essentially make
Web Services useless. On the other hand, we don't want each consumer to expend time and resources
developing proprietary code to interface with our Web Service and enforce data types.

As you may already know (or have guessed), there's a great middle ground where developers can
implement Web Service logic within their applications without building the code from scratch. In .NET,
the tool that makes this possible is the proxy class. The proxy class enables us to reference a remote Web
Service and use its functionality within our application, as if the data it returns were generated locally.

We'll continue the use of our Application Web Service from Chapter 2 and walk through several proxy
scenarios, each of which demonstrates the use of Web Service functions within a separate program.

By the end of this chapter, you will have learned:

❑ The definition and role of proxies

❑ How to create proxies from the command prompt and Visual Studio .NET

❑ The difference between synchronous and asynchronous proxies

❑ How to modify the base settings of a proxy

3

Chapter 3

2

The Role of the Proxy
Before we jump headlong into creating a proxy, let's discuss an analogy that helps illustrate the need
and use of a proxy.

The Telephone Illustration
When you place a phone call, you have a single intent: to speak with an individual or group at the
endpoint, regardless of their location. Your only responsibility is to provide the phone with enough
information to know how to reach the other party: the phone number. Once the call is placed, your
phone converts your voice into a series of waves that jumps from tower to tower, and perhaps even
from base station to satellite, ultimately reaching the call recipient.

The wonder of it all is that your voice arrives not only audible, but distinguishable. A friend who
worked for a local telephone system once told me, "If you only knew what they did to your voice to
disassemble and reassemble it, you'd be amazed it even sounds similar". While that may be true, as soon
as we finish dialing our phones, we are concerned with speaking to the other person; not how our voice
is traveling there.

The same holds true for the Web Service proxy. Our application is presented with an interface that
looks just like the original (although, admittedly, the telephone doesn't precisely look like the original
person, but it can "listen" and "talk" just like they can). The program calls the method(s) exposed by this
proxy interface as much as required without regard to where or how the request is communicated. All
the work of transforming and transmitting this request is done by the proxy – just like the telephone
circuitry and antennae do for our voice.

)))))))))

Proxies Everywhere
In fact, the function of proxying has its origins far earlier than .NET Web Services. Although certainly
not the first case of proxying, Web Proxy software, like Microsoft's Internet Security and Acceleration
(ISA) Server (and previous Proxy Server), provides a single point for web requests. Each computer on
the network that requests Internet resources actually sends its request to the proxy server, whose job it is
to formulate a new request to the actual Internet destination. We don't have to use a different version of
the browser to use a web proxy server; we simply tell it where to make its requests, and the proxy's role
becomes transparent.

Using a Proxy to Consume a Web Service

3

If you have built applications based on COM, especially using Visual Basic 5.0 or 6.0, you've made
extensive use of proxies, perhaps without realizing it. In COM, the IDispatch interface enabled a
similar method to automate compatible classes. All COM object-to-object communication is handled
behind the scenes; when developing a COM-based Visual Basic application, as far as we're concerned,
we're simply calling methods within our application, when, in reality, we're using proxies.

Proxies, a Long-Time Friend
Step back from the Web Service mindset for a moment. If we were creating a standalone application
that contained all the logic required to retrieve the values from the site configuration (like our Web
Services from the previous chapter), we would still follow a particular design pattern. To keep our
program modular, we'd create separate functions for GetAppState, SetAppState, and
GetAppSettings that each performed its own data updates and queries. From our application, we'd
call each method to retrieve any needed values and use them, letting the functions themselves perform
the work of parsing the data accordingly.

The pseudocode outlining our application would be something like this:

public string GetAppState(string txtKey) {
 // Logic to retrieve the value associated with txtKey
 return (strState);
}

public void SetAppState(string txtKey, string txtVal) {
 // Logic to set the value associated with txtKey
}

public string GetAppSettings(string txtKey) {
 // Logic to retrieve the value associated with txtKey
 return (strSetting);
}

...
// Main Program
strConnectString = GetAppSettings("connectstring");

Using the same application structure, Web Services can become just as integral to our applications.
Instead of the logic within the methods doing simple file I/O, or other local machine or network
functions, the same black-boxed functions can call Web Service methods anywhere. Our application
neither knows nor cares where the data comes from, nor the logic behind it.

Creating a Proxy Class
The tools provided with the .NET Framework (and Visual Studio.NET) make building a proxy to our
Web Service rather simple. When we build the proxy class, the tools use the WSDL that defines our
Web Service to generate the appropriate methods, with related data types intact.

WSDL (Web Services Description Language) defines the communication requirements
of a Web Service, including function names and parameter types. For more details on
WSDL, see Chapter 4.

Chapter 3

4

With the proxy built, the consumer simply calls the web method from it, and the proxy, in turn,
performs the actual request of the Web Service. This request may, of course, have its endpoint
anywhere from the local network to another continent via the Internet. When we reference the Web
Service in the consumer application, it appears to be part of the consumer application itself, like a
normal internal function call.

Let's take a look at a diagram that illustrates the process:

Consumer

Application

Proxy

Web Service

1

2

3

4

5

6

7

The procedure works as follows:

1. Your application executes a function in the proxy code, passing any appropriate
parameters to it, unaware that the proxy is going to call a Web Service.

2. The proxy receives this call and formulates the request that will be sent to the Web Service,
using the parameters the consumer has specified. The difference between synchronous and
asynchronous calls ends here in the process (we'll discuss each later in this chapter).

3. This function call is sent from the proxy to the Web Service. This call can be within the
confines of the same machine, across a Local Area Network (LAN), or across the Internet.
The method of calling remains the same.

4. The Web Service uses the parameters provided by the proxy to execute its web-callable
function and build the result in XML.

5. The resulting data from the Web Service is returned to the proxy at the consumer.

6. The proxy parses the XML returned from the Web Service to retrieve the individual
values generated. These values may be as simple as integers and strings, or they may
define more complex data types.

Using a Proxy to Consume a Web Service

5

7. Your application receives the expected values from the proxy function, completely
unaware that they resulted from a Web Service call.

We'll take a look at how to do this in the following example.

Using WSDL.EXE to Create the Proxy Class
You'll remember from Chapter 2 that our Web Service is located at
http://localhost/ProWebServices/ch2/AppService.asmx. The command-line tool, wsdl.exe, needs to
know the interfaces provided by our Web Service (the WSDL that describes it), so we'll ask the Web
Service to provide that information for us. Simply enough, the Web Service can automatically generate
its self-describing WSDL by adding ?WSDL to its URL:
http://localhost/ProWebServices/ch2/AppService.asmx?WSDL.

Using this same information, wsdl.exe will create our proxy class. Called from the command prompt,
wsdl.exe requires this syntax:

wsdl.exe <parameters> <URL or path>

Chapter 3

6

Parameter Description

<url or path> A URL or path to a WSDL contract, an XSD schema
or .discomap document.

/nologo Suppresses the banner.

/language:<language> The language to use for the generated proxy class.
Choose from 'CS', 'VB', 'JS' or provide a fully-
qualified name for a class implementing
System.CodeDom.Compiler.CodeDomProvider.
The default is 'CS' (CSharp). Short form is '/l:'.

/server Generate an abstract class for a Web Service
implementation based on the contracts. The default is
to generate client proxy classes.

/namespace:<namespace> The namespace for the generated proxy or template.
The default namespace is the global namespace. Short
form is '/n:'.

/out:<fileName> The filename for the generated proxy code. The
default name is derived from the service name. Short
form is '/o:'.

/protocol:<protocol> Override the default protocol to implement. Choose
from 'SOAP', 'HTTP-GET', 'HTTP-POST', or custom
protocol as specified in the configuration file.

/username:<username>
/password:<password>
/domain:<domain>

The credentials to use when connecting to a server
that requires authentication. Short forms are '/u:',
'/p:' and '/d:'.

/proxy:<URL> The URL of the proxy server to use for http requests.
The default is to use the system proxy setting.

/proxyusername:<username>
/proxypassword:<password>
/proxydomain:<domain>

The credentials to use when connecting to a proxy
server that requires authentication. Short forms are
'/pu:', '/pp:' and '/pd:'.

/appsettingurkey:<key> The configuration key to use in the code generation to
read the default value for the URL property. The
default is to not read from the config file. Short form is
'/urlkey:'.

/appsettingbaseurl:<baseURL> The base URL to use when calculating the URL
fragment. The appsettingurlkey option must also
be specified. The URL fragment is the result of
calculating the relative URL from the
appsettingbaseurl to the URL in the WSDL
document. Short form is '/baseurl:'

Using a Proxy to Consume a Web Service

7

Another great feature of the wsdl.exe tool is its ability to generate proxy class code in your language
of choice. VS.NET also provides this flexibility.

Which language will you use? In .NET, it's truly a matter of preference. If you have a
strong background in Visual Basic, it's quite possible that VB.NET will be your choice.
Those of you with more familiarity with C-based languages like C++ or Java will
probably be more comfortable with C# or even MC++ (Managed C++). The reality is
that, since there are so few differences between the .NET languages in terms of features
and performance, you are free to select the one that you simply enjoy the most.

Before we attempt to build our proxy, we need to be certain that we have configured our system to
know where specific programs are located (these being wsdl.exe, vbc.exe, and csc.exe, which we'll
use below). By designating the location of these files, proxy building and compilation becomes much
simpler, by saving us the headache of typing the full paths to each file at the command prompt.

Environment variables provide a central location to maintain values like this path information. To add
the paths to our programs, right-click on My Computer (on the desktop) and select Properties. Select
the Advanced tab at top of the window, and click on the Environment Variables button. In the window
that displays, scroll to the Path value in the System variables pane. Click the Edit button, and append
this string to the end of the value, where %systemroot% points to the root directory of your version of
windows (for example c:\WINNT):

;%systemroot%\Microsoft.NET\Framework\v1.0.2914

Click OK to close each window to apply the changes to the path.

TE
AM
FL
Y

Team-Fly®

Chapter 3

8

Navigate to the directory in which your AppService.asmx file resides and execute this statement:

wsdl /l:cs /o:AppServiceProxy.cs �
http://localhost/ProWebServices/ch2/AppService.asmx?WSDL /n:AppSettings

You should see these results:

Microsoft (R) Web Services Description Language Utility
[Microsoft (R) .NET Framework, Version 1.0.xxxxx]
Copyright (C) Microsoft Corp. 1998-2001. All rights reserved.

Writing file 'AppServiceProxy.cs'.

Once the C# file is created, we need to compile it to a DLL, a new .NET DLL, that will be used by
other programs for the proxy.

csc /out:AppServiceProxy.dll /t:library �
/r:system.web.dll,system.dll,system.xml.dll,system.web.services.dll,�
system.data.dll AppServiceProxy.cs

You should see these results after executing this:

Microsoft (R) Visual C# Compiler Version 7.00.xxxx [CLR version v1.0.xxxx]
Copyright (C) Microsoft Corp 2000-2001. All rights reserved.

Much the same steps can be followed with a VB.NET version. Navigate to the directory in which your
AppService.asmx file resides, and execute this statement:

wsdl /l:vb /o:AppServiceProxy.vb �
http://localhost/ProWebServices/ch2/AppService.asmx?WSDL /n:AppSettings

You should see these results:

Microsoft (R) Web Services Description Language Utility
[Microsoft (R) .NET Framework, Version 1.0.xxxxx]
Copyright (C) Microsoft Corp. 1998-2001. All rights reserved.

Writing file 'AppServiceProxy.vb'.

Once the VB.NET file is created, we need to compile it to a DLL, a new .NET DLL, that will be used
by other programs for the proxy.

vbc /out:AppServiceProxy.dll /t:library �
/r:system.web.dll,system.dll,system.xml.dll,system.web.services.dll,�
system.data.dll AppServiceProxy.vb

Using a Proxy to Consume a Web Service

9

You should see these results after executing this:

Microsoft (R) Visual Basic.NET Compiler version 7.00.xxxx
for Microsoft (R) .NET CLR version 1.00.xxxx.xx
Copyright (C) Microsoft Corp 2001. All rights reserved.

This is a table of all of the available parameters for the compile commands (both vbc and csc):

Parameter Description

/out:<outfile> Specifies the output file name.

/t[arget]:winexe Create a Windows application.

/t[arget]:exe Create a console application (default).

/t[arget]:library Create a library assembly.

/t[arget]:module Create a module that can be added to an
assembly.

/main:<class> Specifies the class that contains Main.

/baseaddress:<addr> Specifies the default DLL base address (hex).

<filespec> Specifies a source file to compile. The filespec
may contain wildcards.

/recurse:<filespec> Search sub-directories for all matching files to
compile. The filespec may contain wildcards.

/r[eference]:<str> References an external assembly.

/imports:<namespace>,... Import a namespace from a referenced assembly.

/nostdlib[+/-] Do not add standard reference libraries.

/res[ource]:<file>[,<name>
[,<public|private>[,<locale>
[<desc>[,<mime>]]]]]

Adds a file internally to the assembly.

/linkres[ource]:<file>[,<name>] Creates a link to a managed resource.

/win32icon:<iconfile> Specifies an icon file (.ico).

/win32resource:<resfile> Specifies Win32 resource file (.res).

/keyfile:<file> Specifies key file for the assembly.

/keycontainer:<str> Specifies key container name for the assembly.

/version:<#.#.#.#> Specifies the assembly version.

/rootnamespace:<str> Specifies the root namespace for all declarations.

/removeintchecks[+/-] Remove integer checks.

Table continued on following page

Chapter 3

10

Parameter Description

/cls[+/-] Verify common-language-specification
compliance.

/d[efine]:<str=val>,... Define conditional compilation symbol(s).

/debug[+/-] Emit debugging information.

/optionexplicit[+/-] Require explicit declaration of variables.

/optionstrict[+/-] Enforce strict language semantics.

/optioncompare:text Specifies text-style string comparisons.

/optioncompare:binary Specifies binary-style string comparisons (default).

/optimize[+/-] Enable optimizations.

/nologo Do not display compiler copyright banner.

/? or /help Display this usage message.

@<responsefile> Insert command-line settings from a text file.

/bugreport:<file> Create bug report file.

/time Display elapsed compilation time.

/verbose Display verbose messages.

Referencing the DLL
The .NET Framework expects to find the DLL in the /bin directory of this particular site. Navigate to
the directory you're using as the application root (if you're following the steps that we suggested earlier
in the book, this will be C:\ProWebServices\ch2), create a folder there called bin, and copy the
newly-created AppServiceProxy.dll over from the original test directory.

Now that we have a proxy class, and we've moved it to the correct location, we're ready to make use of
our AppSettings Web Service from within an ASP.NET page. We'll call the page
AppSettingsInfoCS.aspx, and use it to call the web-callable function GetAppSettings in
AppService.asmx. By using a proxy, our reference to the function's namespace will appear as if it
were a function residing within the same page.

Create the AppSettingsInfoCS.aspx file in your test directory (or use the one we have provided in
the code download for this chapter), and enter the following code:

<%@ Page Language="C#" Debug="true"%>
<%@ Import namespace="AppSettings" %>

<script language="C#" runat="server">
void GetSetting(System.Object sender, System.EventArgs e) {
 AppService ws = new AppService();
 lblValue.Text = ws.GetAppSettings(txtSetting.Text);

Using a Proxy to Consume a Web Service

11

}
</script>

<html>
 <body>
 <form id="Form1" method="post" runat="server">
 Enter the Application Setting to retrieve:

 <asp:TextBox id="txtSetting" runat="server"></asp:TextBox>

 <asp:Button id="Button1"
 runat="server"
 Text="Submit"
 OnClick="GetSetting"></asp:Button>

 <% if (IsPostBack) { %>
 Value retrieved:

 <asp:Label id="lblValue"
 runat="server"
 Width="100%"
 Height="23px"></asp:Label>
 <% } %>
 </form>
 </body>
</html>

By setting the reference (importing the namespace):

<%@ Import namespace="AppSettings" %>

the page looks in the /bin directory for the DLL that corresponds with this namespace,
AppServiceProxy.dll.

Save the file and open the URL in your browser:
http://localhost/ProWebServices/ch2/AppSettingsInfoCS.aspx. Note that it may take a few seconds for
the page to appear, since it is compiled the first time it is accessed. Once this has taken place, the .aspx
page will execute in the browser:

We enter the setting name connectstring and press the Submit button.

Chapter 3

12

This simple web form has used the proxy class we created to access the Web Service, simply by calling
a function on the page.

Building Proxies with Visual Studio .NET
While the command line tools provide all the proxying features we need, the visually appealing
interface of Visual Studio .NET makes building a proxy even easier. In Visual Basic 5.0 and 6.0, to
ensure early binding took place, we would set a reference in our project to a given COM object. This
also helped us with Intellisense, giving us hints of what properties and methods were available for a
given object. Of course, setting a reference in those earlier Visual Basic days was, in fact, building a
proxy to another COM object.

In the case of Web Services, we're not really doing anything new. Let's walk through the process of
building the proxy within the VS.NET environment. We'll start off with a Windows Application, click
New Project | Visual C# Projects | Windows Application:

Using a Proxy to Consume a Web Service

13

To access a Web Service natively (by building a proxy that becomes part of the solution), select Project
| Add Web Reference:

Making this selection invokes a nice, informative dialog box. It's complete with UDDI login
information, as well as local server web references.

Chapter 3

14

For our purposes, we need to type the following into the Address bar at the top of the page:

http://localhost/ProWebServices/ch2/AppService.asmx?WSDL

The Add Web Reference dialog box also uses DISCO to query the local web server
for its available Web Services. DISCO is an XML-based standard discovery
mechanism that allows a .NET-based web server to produce dynamic catalogs of its
available Web Services. For more information on DISCO take a look at Chapter 7.

Once Visual Studio .NET retrieves the Web Service information, we click Add Reference.

Using a Proxy to Consume a Web Service

15

The proxy class is generated and placed in the Solution Explorer. To view the newly-created proxy
class, select the Class View of Solution Explorer. Expand the tree down to localhost and you'll see the
class created to access the Web Service, AppService.

Chapter 3

16

Double click AppService to view the proxy code that was created. All this was done with a few mouse
clicks! A quick examination of the proxy class code shows us the interfaces created for us:

Functional Divisions of Proxies
Earlier in this chapter, we discussed why we need proxies and then provided details of the proxy model.
When we develop applications that use proxies, there are two pieces of each proxy to distinguish: the
transparent proxy and the real proxy.

Transparent Proxies
Following our phone illustration, the transparent proxy is analogous to the mouthpiece and earpiece of
the phone. These pieces of the whole telephone conversation process do a small percentage of the work;
but their role is vital, as they are the only pieces of the puzzle that are tangible. After all, the entire
voice send-and-receive may be successful, but a malfunctioning earpiece will impair your attempts to
carry on a conversation.

Using a Proxy to Consume a Web Service

17

In .NET, the transparent proxy is the local interface generated by wsdl.exe (or through Visual Studio
.NET). As we've said, these proxies appear just like the object they represent, including parameters and
parameter types. The benefit of the transparent proxy to us as the developer is that methodology need
not change. We first prototype our application without the Web Service (using a local function as a
placeholder). Then later we add the Web Service reference, accessing the remote functionality through
the transparent proxy, replacing the local function.

Real Proxies
The portion of the proxy that performs the actual work of interacting with the Web Service is the real
proxy. The part of your phone that corresponds to the real proxy is the circuitry that sends your voice
over the air or wire. In .NET, real proxies expose a single method, called Invoke, to the Transparent
Proxy. We'll look at the code built for the proxies below, when we alter the base functionality of a
proxy. Remember that the part of the proxy doing most of the work is the "real" one. Using our
previous proxy diagram, let's take a look at the two pieces of the proxy.

Consumer

Application

Proxy

}

}
Transparent Proxy

Real Proxy

Synchronous versus Asynchronous
Our previous use of a Web Service proxy from the Web Form illustrated a synchronous call. That is, the
application was forced to wait for a result from the Web Service before it could continue processing
anything else. Think of synchronous calls as code in which everything is processed single-file and any
bottleneck slows the process down. Asynchronous processing simply issues the remote command and
continues to proceed. Synchronous remote calls are generally easier to develop, and they guarantee that
the invoking process knows when the remote operation is complete. Asynchronous remote calls, while
slightly more involved, are generally more efficient all around.

Synchronous Call

Web Service

Application

TE
AM
FL
Y

Team-Fly®

Chapter 3

18

Web Service

Asynchronous Call

Application

The tools that create the proxy class provide capabilities to call the Web Service both synchronously
and asynchronously. Accessing a Web Service asynchronously allows your application to continue
executing its calling thread without halting until a response is received. Generally, this provides
significant performance gains on the client. The endpoint (the Web Service itself) is completely unaware
whether it is called synchronously or asynchronously, which relieves us from specifically designing a
Web Service to handle the call types differently.

Even though synchronous calls can be time-limited (with the Timeout property of the proxy class,
which we'll discuss later in the chapter), our application must still wait for the call to time-out before
continuing on. In truth, as Web Services become more and more available, asynchronous usage may be
the most practical method of invoking them, as the guarantees of network uptime and bandwidth
diminish for each hop those request packets must make along the way. Remember that, unlike on a
LAN, there is no way to limit the time a call may require when routed over the Internet.

Convenient enough to remember, the proxy class contains two methods, BeginServiceName and
EndServiceName, to enable asynchronous access. This two-step process begins by initiating the
BeginServiceName method, which returns an object of type
System.Web.Services.Protocols.WebClientAsyncResult. This object enables us to query the
status of our Web Service request, and to manage multiple calls to the same Web Service. The asynchronous
code generated by Visual Studio .NET for our AppService Web Service proxy is the following:

[System.Diagnostics.DebuggerStepThroughAttribute()]
public System.IAsyncResult BeginGetAppSettings(string key,
 System.AsyncCallback callback, object asyncState) {
 return this.BeginInvoke("GetAppSettings", new object[] {delay},
 callback, asyncState);
}

[System.Diagnostics.DebuggerStepThroughAttribute()]
public string EndGetAppSettings(System.IAsyncResult asyncResult) {
 object[] results = this.EndInvoke(asyncResult);
 return ((string)(results[0]));
}

Of the four choices listed here, the simplest method of waiting for an asynchronous call to complete is to
periodically check the IsCompleted property of the object returned from the BeginServiceName method:

Using a Proxy to Consume a Web Service

19

IAsyncResult ar = AppSettings.BeginGetAppSettings(key, delay, callback,
 asyncstate);

while (ar.IsCompleted == false){
 // perform other tasks
}

The IAsyncResult class also provides a series of WaitHandle methods that allow us to manage
various calls to the Web Service and present a way to wait for the completion of an asynchronous call.

We could even simply call the EndGetAppSettings method. Essentially, this creates a synchronous
call condition, as control will not return to the program until the Web Service completes.

The fourth option for waiting on the asynchronous operation is, as we'll use in our Windows Forms
example below, passing the BeginGetAppSettings method the address to a Public method so that it
may return the results to our program when it completes. This allows our form application to continue
doing whatever it needs to do while the Web Service is being called, executed, and returns information.

We'll make a quick modification to the Web Service that defines a second parameter to the
GetAppSettings method of AppService, one that we can use to specify a delay in milliseconds. This
added parameter will help us test asynchronous remote calls and watch them return values
independently.

 public string GetAppSettings(string key, int delay) {
 object[] results = this.Invoke("GetAppSettings", new object[] {
 key, delay});
 System.Threading.Thread.Sleep(delay); //Sleep for delay msec
 return ((string)(results[0]));
 }

To test the use of asynchronous calls, we'll build a simple Windows Form that has a few textboxes and a
button to start the calling process. You can find this in the AsyncTestCS folder of the code download.
When the button is pressed, each call is issued, passing the address of the callback function that will
process the return value.

BtnGOSync

BtnGOAsync

TxtSync

TxtAsync1

TxtAsync2

LblAsync1

LblAsync2

Chapter 3

20

Let's take a quick look at the code within the GO Async button to make each Web Service call:

private void btnGOAsync_Click(object sender, System.EventArgs e)
{
 localhost.AppService objService = new localhost.AppService();

 // First Async call
 AsyncCallback adrCallBack1 = new AsyncCallback(AppServiceCallback1);
 txtAsync1.Text = ""; lblAsync1.Text = "";
 objService.BeginGetAppSettings("connectstring",2500, adrCallBack1,
 objService);

 // Second Async call
 AsyncCallback adrCallBack2 = new AsyncCallback(AppServiceCallback2);
 txtAsync2.Text = ""; lblAsync2.Text = "";
 objService.BeginGetAppSettings("connectstring",5000, adrCallBack2,
 objService);

}

private void AppServiceCallback1 (IAsyncResult resAr)
{
 localhost.AppService objService = (localhost.AppService)resAr.AsyncState;
 txtAsync1.Text = objService.EndGetAppSettings(resAr);
 lblAsync1.Text = DateTime.Now.ToLongTimeString();
}

private void AppServiceCallback2 (IAsyncResult resAr)
{
 localhost.AppService objService = (localhost.AppService)resAr.AsyncState;
 txtAsync2.Text = objService.EndGetAppSettings(resAr);
 lblAsync2.Text = DateTime.Now.ToLongTimeString();
}

In the call to BeginGetAppSettings, we're passing 2500 and 5000 to the two asynchronous calls,
respectively. The first call will then return data in 2.5 seconds, while the second will return data in a
total of 5 seconds.

 objService.BeginGetAppSettings("connectstring", 2500, adrCallBack1, _
 objService)

 ...

 objService.BeginGetAppSettings("connectstring", 5000, adrCallBack2, _
 objService)

When we press the GO Async button, the first results return to AppServiceCallback1 in 2.5 seconds:

Using a Proxy to Consume a Web Service

21

After another 2.5 seconds, the second results return to AppServiceCallback2:

By declaring variables of type System.AsyncCallback and passing it the address of the method
AppServiceCallback1 and AppServiceCallback2 (using AddressOf), the proxy knows exactly
what to do when it is completed. BeginGetAppSettings accepts the standard parameters we've
defined, the Key and the Delay in milliseconds, as well as the address of the callback method and an
instance of the object we're accessing (AppService). If you're reasonably familiar with asynchronous
callbacks, you will recognize logic implemented here. If we were creating a synchronous call, the code
in AppServiceCallback1 would most likely be placed inline within the button's Click event.
objService, the instance of AppService, is retrieved from the IAsyncResult variable
resAr.AsyncState. That's it!

Modifying Default Proxy Settings
The generated proxy class provides some healthy features, but undoubtedly there is room for making
adjustments to the way the proxy executes. Since the proxy class inherits from several classes, there are
a number of properties and methods available. We'll discuss the following of these properties and how
to use each:

❑ Changing the URL

❑ Timeout

❑ Proxy Server

❑ Encoding

❑ User Agent

❑ Redirection

Changing the URL
The location of the Web Service is defined by the WSDL that describes it. There are circumstances that
may warrant changing the URL, such as relocation of the Web Service. This may happen, for example,
if the organization providing the service is acquired by another company; in this case, you may be
required to change the URL to the Web Service.

It's important to know that the URL can be modified at run-time, which makes the proxy class very
flexible. Some uses of changing the Url property are:

Chapter 3

22

❑ Implementing round-robin logic to balance load

❑ Attempting a different URL after a Timeout or other error occurs

The Url property is implemented in the proxy like this:

this.Url = "http://localhost/ProWebServices/ch2/AppService.asmx";

Let's take a look at a simple method of providing round-robin Web Service accesses. You can find this
example in the AsyncTestCS-2 folder of the code download. Without creating mammoth algorithms,
we'll use the current second to determine which URL we choose in our proxy class. While it may not be
foolproof, handling various URLs based on the time gives a statistically even spread.

Our proxy constructor remains the same, but we'll place a Case-type structure to set the Url appropriately:

 public AppService() {
 int Seconds = System.Math.IEEERemainder(DateTime.Now.Second, 3);
 this.Url = "http://server" + Seconds +
 "/ProWebServices/ch2/AppService.asmx";
...

Depending on the current second, we'll select one of three URLs. Using the Mod function, it's easy to
do, giving us an even distribution.

Timeout
It's very important to be prepared if the Web Service refuses to answer, or if any kind of network
communication problem arises. After all, without some such mechanism, our program will wait
patiently indefinitely (while our users most certainly will not!). Unlike the prospect of handling an
excessive delay elsewhere in the program, with regard to synchronous Web Service access, it's best to
handle the timeout condition within the proxy. Still using the new GetAppSettings method that
includes a delay parameter, this short code snippet illustrates the handling of a client-side timeout
condition. You can find this code in the AsyncTestCS-3 folder of the code download.

First, we add the Timeout property to the constructor of our AppService. By setting it to one
millisecond, it is almost certain that our Web Service will not respond in time, generating an exception
caused by the timeout.

[System.Web.Services.WebServiceBindingAttribute(Name="AppServiceSoap",
 Namespace="http://tempuri.org/")]
public class AppService : System.Web.Services.Protocols.SoapHttpClientProtocol {

 [System.Diagnostics.DebuggerStepThroughAttribute()]
 public AppService() {
 this.Url = "http://localhost/5458/ch3/AppService.asmx";
 this.Timeout = 1 //one millisecond, definitely not enough time!
 }

Then we modify the GetAppSettings method by adding Try...Catch logic to handle the
impending timeout:

Using a Proxy to Consume a Web Service

23

[System.Diagnostics.DebuggerStepThroughAttribute()]
[System.Web.Services.Protocols.SoapDocumentMethodAttribute
 ("http://tempuri.org/GetAppSettings",
 Use=System.Web.Services.Description.SoapBindingUse.Literal,
 ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Wrapped
)]

public string GetAppSettings(string key, int delay) {
 try
 {
 object[] results = this.Invoke("GetAppSettings", new object[] {
 key, delay});
 return ((string)(results[0]));
 }
 catch
 {
 return ("Timed out.");
 }
}

When the call to the GetAppSettings Web Service fails, the Catch clause will execute, returning the
string "Timed Out.".

Regardless of the method you use to proxy to Web Services, you should provide ample
logic to catch timeouts and other communication errors.

An even more robust example of combining the Url and Timeout properties is attempting to access
various URLs, one after another, if the previous one times out. For this example, we'll create a routine
called GenerateUrl, whose job it is to return the URL to attempt, based on the number of attempts.
Using a counter integer called Attempts, we'll track how many times we've attempted to connect to a
Web Service.

We've added the integer declaration and ensured our Timeout will cause our call to expire:

 public class AppService :
 System.Web.Services.Protocols.SoapHttpClientProtocol {

 int Attempts = 0;
 [System.Diagnostics.DebuggerStepThroughAttribute()]
 public AppService() {
 this.Timeout = 50 ;
 this.Url = "http://localhost/ProWebServices/ch2/AppService.asmx";
 }

Within the GetAppSettings function, we build our logic to handle Timeout conditions and select
alternative URLs appropriately. We know that the URLs provided by GenerateUrl are non-existent, so
using VS.NET, we can step through the entire application, watching the Catch of each Timeout condition.

[System.Diagnostics.DebuggerStepThroughAttribute()]
[System.Web.Services.Protocols.SoapDocumentMethodAttribute("http://tempuri.org/Get
AppSettings", Use=System.Web.Services.Description.SoapBindingUse.Literal,
ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)]

Chapter 3

24

public string GetAppSettings(string key, int delay) {

 try

 {

 object[] results = this.Invoke("GetAppSettings", new object[] {

 key, delay});

 return ((string)(results[0]));

 }

 catch

 {

 Attempts++;

 if (Attempts < 3)

 {

 this.Url = GenerateUrl(Attempts);

 return GetAppSettings(key, delay);

 }

 else

 {

 return ("Timed out.");

 }

 }

}

private string GenerateUrl(int Attempts) {

 switch (Attempts)

 {

 case 1:

 return ("http://localhost/ProWebServices/ch2/appservice2.asmx");

 case 2:

 return ("http://localhost/ProWebServices/ch2/appservice3.asmx");

 default:

 return ("http://localhost/ProWebServices/ch2/appservice4.asmx");

 }

}

Proxy Server
When we first introduced the idea of proxying, we mentioned Microsoft's Internet Security and Acceleration
(ISA) Server, which accepted Internet requests from computers on a LAN/WAN and sent them out to the
Internet on their behalf. This software is called a Web Proxy, not to be confused with a Web Service Proxy.

Web Proxy Servers provide a single access point to the Internet, acting similar to a
router. Some implementations also provide encryption, caching, and other advanced
features that boost Internet access performance for a network.

If your consumer resides on a network that accesses the Internet via a Web Proxy Server, you'll need to
ensure that your proxy class can reach the Internet. The proxy class is intelligent enough to check
Internet Explorer's web proxy settings on the consumer's computer, which it then uses to set its own
web proxy details. If, for some reason, you need to change the Web Proxy server settings from Internet
Explorer's defaults, you can use the Proxy property.

Using a Proxy to Consume a Web Service

25

The value of this property is set with an object of type WebProxy.

IWebProxy proxyObject = new WebProxy("http://proxy.domain.com:80", true);

this.Proxy = proxyObject;

Encoding
Not all platforms use the same text encoding standards. Should you need to change the encoding type of
your message to match that of the Web Service, the RequestEncoding property of the proxy, coming
from the inherited WebClientProtocol class, allows you to do just that. If you change the
RequestEncoding value, which defaults to Null (Nothing in VB.NET), the ContentType of the
request will be changed accordingly.

The short example below shows how to change your encoding to UTF-8:

this.RequestEncoding = System.Text.Encoding.UTF8;

User Agent
Web Servers identify certain information about the browsers that access them by interpreting the User
Agent string. Part of the HTTP standards of communication, the User Agent most often lists the browser
type and the platform of the computer making the request. It is the duty of the browser to generate this
information. The Web Server can make some informed judgments based on these details, such as the
type of data or HTML with which to respond. Some organizations customize the User Agent string to
include other details, including user-specific information.

The UserAgent property defines what User Agent string will be passed in the HTTP protocol headers
of the Web Service request. This defaults to MS Web Services Client Protocol x, where x is the version
of the common language runtime.

A Web Service may use the User Agent string to determine the type of consumer; whether as part of
some versioning scheme, or even as a form of identification. Just as the browser can provide user-
specific information in the User Agent sent to the Web Server, our proxy classes can provide unique
details to the Web Services they call.

this.UserAgent = "AppServiceProxy v1.2";

Redirection
Another part of the HTTP protocol is the use of redirection. As part of a response, the Web Service may
issue a redirection (no different from Response.Redirect, since each uses HTTP), to a different URL.
The following illustrates the details sent from the Web Server that instruct a browser (or Web Service
proxy class) to seek a new URL, in this case, http://newlocation/file.aspx.

HTTP/1.0 302 Found

Server: Microsoft-IIS/5.0

Date: Thu, 23 Nov 2001 13:35:22 GMT

Chapter 3

26

Location: http://newlocation/file.aspx

Content-Type: text/html

Content-Length: 734

The AllowAutoRedirect property, by default, is set to false to prevent such redirection within a
proxy class. When set to true, the proxy will follow redirection to another URL provided in the HTTP
response. Why permit redirection? Maintenance is reduced, in the case of a change in the Web Service
URL. If the Web Service provider is kind enough to introduce the redirection message, your proxy will
be able to locate the new Web Service seamlessly (albeit an extra round-trip to the server).

this.AllowAutoRedirection = true;

Summary
The Web Service proxy class greatly enables the integration of Web Service functionality into our
everyday applications. Abilities to interpret WSDL and generate the appropriate source code for calling
any Web Service make implementing Web Service logic within our applications very natural. Life
without the simple ability to generate these proxies would mean that every developer would have
his/her own methods of accessing Web Services and enforcing type constraints, not to mention a fairly
steep learning curve. Instead of investing significant development time at the beginning of each project
simply connecting to a Web Service, our focus goes directly to the functionality we are seeking to
provide with our application.

Proxies aren't just limited to the role of accessing Web Services. The same features apply to all proxy
utilizations, such as web proxy servers and COM. The functional divisions of a proxy, transparent and
real, also apply. While the transparent proxy provides our application with an interface like the actual
Web Service, the real proxy performs all the work of communication. Since the idea of proxying isn't
new, we are not venturing into a world of new methodologies; rather, we are taking this paradigm to the
world of web-based applications. This is the basis for the publicity that Web Services are receiving
throughout the industry.

We've seen the two primary ways to build a proxy class: using wsdl.exe at the command prompt and
setting a Web Reference from within Visual Studio .NET. Each technique created a proxy class in the
language we specified, complete with the facility to call the Web Service both synchronously and
asynchronously.

While the generated proxy class is fully featured, we can make modifications to its code to override
some of its defaults. For synchronous operation, we can force a timeout if we wait too long for a Web
Service to respond. We can change the URL where the Web Service resides, and with a little extra
code, we can produce a round-robin Web Service call strategy to offset the load to a particular Web
Service.

Understanding why we need proxies and how to make effective use of them is very important, since
most practical use of Web Services is carried out with their help. Excitement and adrenaline may not be
the hallmark of the proxy class, but certainly the fact that most of the proxy work is done for us (and
very efficiently) is reason to rejoice.

Using a Proxy to Consume a Web Service

27

In this chapter we have covered the following subjects:

❑ The definition and role of proxies

❑ Using wsdl.exe from a command prompt to create a proxy class

❑ Using Visual Studio .NET to create a proxy class

❑ The difference between synchronous and asynchronous proxies

❑ How to modify the base settings of a proxy

TE
AM
FL
Y

Team-Fly®

Chapter 3

28

Managing State

Before Microsoft Transaction Server (MTS) had changed the landscape of object-oriented component
development, and web-based applications became the favored system deployment style, we
programmers took stateful programming for granted. Back then, we didn't have to write special routines
to have our application remember its state from one method call to the next. The objects we instantiated
had actions and data associated with them. And these objects 'remembered' what condition the data was
in from one method call to the next. It just worked, plain and simple.

Then came the Internet. The World Wide Web became the catalyst for a revolution in enterprise
application design. And, yes, in many ways, the browser-based application paradigm was a great leap
forward because never before had applications had such broad reach. In some ways, though, developing
these web-based systems felt like a step backwards. This is definitely true in the case of application state
management. Whereas before, the system took care of state, with Web development, we have to
explicitly write code to make sure the server remembers application or session state from one HTTP
request to the next.

Thankfully, Microsoft has felt our pain. ASP.NET brings with it new features and elements for managing
state, both at the application level and at the user session level. In this chapter, we'll explore the topic of
managing state in ASP.NET, and its relevance in the development of .NET Web Services. We'll discuss the
scalability and performance impact that enabling state has on Web Services and why, in most instances, it
may be better to turn the feature off. When session state is required, however, the ASP.NET environment
proves to be a powerful and easy-to-use platform for developing stateful Web Services.

10

Chapter 10

2

The topics we'll be covering for this chapter are:

❑ State management in ASP.NET

❑ Implementing a stateful Web Service

❑ The Application object in ASP.NET

❑ The Session object

❑ Session state configuration

Overview
State can be defined as the ability of an object, variable or other container to remember the values
assigned to it over time.Consider the real-life example of a waiter working at a very busy restaurant. This
waiter needs to have the ability to manage state because he has the unenviable task of remembering not
only the food specials for the day, but also the orders of each customer seated at his tables. You might say
that the food specials are "application-level" state variables. They don't vary from one customer to the next
and will remain in his memory for the length of his shift. Food orders, on the other hand, can be thought
of as user state or "session-level" variables. Each customer will have their own unique request and our
waiter will have to remember all of them. He can discard the information from his memory, however,
once the customer leaves.We'll explore the concepts of application-level and session-level variables in
ASP.NET in the next section, Managing State in Web Services. For now, let's discuss why state management is
an important concept when building Internet-based applications such as Web Services.

State can be defined as the ability of an object, variable or other container to
remember the values assigned to it over time.

In the two-tiered client/server world, managing state was pretty straightforward. Take, for example, the
implementation of user connections in this client/server scenario. More often than not, a user
connection with a back-end server or database is established from the beginning when a client
application is executed. This connection is normally maintained until the client application terminates.
It was usually better to implement systems in this fashion because establishing these connections was
typically expensive and time-consuming.

Since the server maintained one connection per client in the two-tiered system scenario, this model provided a simple
mechanism for tracking user sessions. The back-end server would use this one-to-one association between users and
connections to track and manage user resources that were being held on the server. When the server picks up a new
connection, it knows that a new user has begun using the system. Once the client connection goes away, the user's session
with the server ends and corresponding server-side resources are de-allocated.

Distributed, web-based applications, on the other hand, must behave differently. In fact, this basic concept of user connections is
what makes web-based applications fundamentally different from typical client/server applications. The reason Web applications
can't use the "one connection per-user" model for tracking user sessions is related to the web's underlying protocols. HTTP is truly
a stateless protocol. In other words, the HTTP server doesn't remember anything about previous HTTP requests. If a user sends
an HTTP request and then sends another one a few minutes later, the HTTP server behaves as if it's the user's first request. The
reason HTTP was designed to behave in this manner is that Web applications will typically service thousands of concurrent users,
and having one connection per-user is not a strategy that would allow the system to scale to the required numbers.

Managing State

3

For many developers, understanding and handling the stateless nature of Internet applications is one of
the more difficult concepts to grasp, especially when transitioning from the client/server, COM-based
world to a web-based world. Unlike your standard COM-based applications, where state is supported by
the underlying wire protocol, the Web developer must provide the mechanism for maintaining state in
their application. Because the HTTP protocol itself cannot maintain state, the programmer must use
other means to store information that they want the application to remember between requests. Web
application developers are required to implement higher-level session management, developing in an
environment in which the browser and the server must agree on a mechanism for identifying users on a
connection-to-connection basis.

Microsoft had provided just such an infrastructure for managing state in ASP making use of features
such as cookies, query strings, hidden form fields, application and session-level storage to provide the
mechanisms necessary to maintain user state from one HTTP request to the next. ASP.NET has similar
capabilities, further extending the Application and Session state model and adding the caching model to
make it easier to manage state across a Web farm. Web Services that are implemented using the .NET
framework make use of the ASP.NET infrastructure and, therefore, have access to the same state
management features as other ASP.NET applications. Let's begin by taking a closer at the design pattern
around state management in ASP.NET. We'll then take a look at how Web Services are able to maintain
state in ASP.NET.

State Management in ASP.NET
When developing systems that make use of the Web, programmers are often faced with the challenge of
creating a coherent application in an environment that uses separate and independent ASP and HTML
pages. IIS and ASP have typically provided state management facilities to assist the programmer in
developing these applications. ASP.NET is, of course, no different. The ASP.NET object model
maintains the same design pattern for state management as the previous version. ASP.NET maintains
the following core functionalities for state management:

❑ Provides a mechanism for maintaining a user's identity during an HTTP session through the
use of cookies, query string, etc.

❑ Provides a way to store state associated with an identity through the use of the ASP Session
and Application intrinsic objects.

The ASP.NET Application object and Session object are key technologies that we will be using in
our Web Service applications to manage state. The Application object provides a mechanism for
storing data that is accessible to all code running within the Web application. The Session object, on
the other hand, allows data to be stored on a per client session basis. These Application and
Session objects are built into the ASP.NET object model.

Chapter 10

4

Web Application

Session
#1

Session
#2

Session
#3

Application Object

Browser
User
#1

Browser
User
#2

Browser
User
#3

The diagram above illustrates the relationship between the Application and Session objects. Users
of the Web application have access to the same Application object. Changes made to the
Application object values will be visible and accessible to other users of the system. Session
objects, on the other hand, are unique to each user. Only the Session object assigned to a user is
visible to that user. Other Session objects are inaccessible.

The Application Object
You can picture the Application object as a global container for information available to all pages or
modules of your ASP.NET application. You can store both variables and object references in the
Application object. The Application object is instantiated when the first page of your application
is requested. During its lifetime, you can add, update, and delete application scope values from the
Application object. The values stay available until the Web Service is shut down. Microsoft has taken
an evolutionary approach in furthering the application state management model of ASP.NET. This new
version provides the following application-state support:

❑ An easy-to-use state facility that is code-compatible with earlier versions of ASP. It works with
all .NET-supported languages such as VB and C#. And it's consistent with other .NET
Framework APIs.

❑ An application-state dictionary that is available to all request handlers invoked within an
application. Unlike IIS and earlier versions of ASP, which restrict access application state only
to pages, all IHttpHandler and IHttpModule instances can store and retrieve global
variables within the dictionary.

Managing State

5

❑ Whenever data is shared globally and is given access to multiple threads of execution, a data-
management facility is required to avoid data contention. ASP.NET provides a simple and
intuitive synchronization mechanism that enables developers to easily coordinate concurrent
access to global variables stored in the application state.

❑ Application-state values that are accessible only from code running within the context of the
originating application. Other applications running on the system cannot access or modify the values.

ASP.NET Application Definition
In order to use the Application object effectively, we need to first have an understanding of what
constitutes an ASP.NET application. ASP.NET Web Services, and ASP.NET Web applications, in
general, are comprised of all the files, pages, handlers, modules, and code that reside in a given IIS
virtual directory and its subdirectories. For example, the StockService application that we developed
in the previous chapter is published in a virtual directory named /StockWebService on a Web server.
The directory structure for this application might look something like this:

\StockWebService
 \Bin\
 \StockService.asmx
 \Global.asax

In this example, the StockService.asmx and Global.asax files, along with any modules stored in
the \Bin directory constitute an ASP.NET Web Service application. Application state objects are
shared across all these files and so an Application object referenced in one module will be accessible
in any other module in the \StockWebService directory for the lifetime of the application.

How To Use The Application Object
The syntax for using the Application object is pretty straightforward. Programmatically, the
Application object is nothing more than memory in the shape of a dictionary or collection of key-
value pairs. Here's an example of an Application object instance being referenced using C#:

//C# code running from within an *.aspx, *.asmx, or Global.asax file
Application["DatabaseName"] = "Datastore"

For compatibility with earlier versions of ASP, these Application object variables can also be
accessed via an actual Contents property of the Application object (Most programmers no longer
use the Contents property. The preferred method is to use the previously described syntax). The
Contents property is a collection of Application object values. The collection exposes all variable
items that have been added to the Application object collection directly in code. Here's an example
of its use:

//C# code running from within an *.aspx, *.asmx, or Global.asax file
Application.Contents["DatabaseName"] = "Datastore"

Chapter 10

6

The Session Object
A session is defined as the period of time that a unique user interacts with a particular Web application.
ASP.NET developers who wish to retain data for a unique user session can use the intrinsic feature
known as the Session object. ASP developers have historically known that IIS session state is a great
feature, but one that had been somewhat limited. Developers were, therefore, hesitant to make use of it
for Web applications that went beyond an intranet or required multiple Web servers. That is, until
ASP.NET came along. Some of these limitations included:

❑ Session objects ran in-process. ASP session state existed in the same process that hosted the
ASP runtime. Therefore, the actions that affected the process also affected session state. For
example, when the ASP process failed or was recycled, the session state was also
invariably lost.

❑ Session state depended on the use of cookies. This, of course, required client browsers to
enable cookie support. Browsers that couldn't accept HTTP cookies, or disabled the feature,
couldn't take advantage of session state.

❑ Session management was limited to one server. As HTTP requests for a given session moved
from server to server in a given Web farm, the corresponding session state did not follow
them. The reason for this is that ASP session state is machine-specific. Each IIS server
provided its own session state, and unless the same server handled all HTTP requests for a
given user, the session state was inaccessible.

New ASP.NET Session State Features
Microsoft took these well-known limitations into consideration when they designed the state model for
ASP.NET. ASP.NET session state overcomes all of the previously mentioned shortcomings associated
with classic ASP session state. For example:

❑ Session objects are process independent – ASP.NET session state can be configured to run
in a separate process from the ASP.NET host process. If session state is in a separate process,
the ASP.NET process can come and go while the session state process remains available. Of
course, you can still use session state in process similar to classic ASP, too.

❑ ASP.NET provides support for server farm configurations – by moving to an out-of-process
model, ASP.NET also solves the server farm problem. The new out-of-process model allows
all servers in the farm to share a session state process that may be hosted on a separate
machine. You can implement this by changing the ASP.NET configuration to point to a
common StateServer (a server that manages session state).

❑ Session objects are cookie-independent – although solutions to the problem of cookieless state
management do exist for classic ASP, they're not trivial to implement. ASP.NET, on the other
hand, reduces the complexities of cookieless session state to a simple configuration setting.

Let's now look at each of these features in more detail, including how to configure session state in your
application for maximum performance.

Managing State

7

Identifying a Session
Unlike application state where objects are not tied to a specific session, successfully implementing
session state requires more than just a storage facility on the Web server. As stated earlier, due to the
nature of the HTTP protocol, a mechanism for identifying users across connections is also required in
order to be able to associate a server-side Session object with a given user. Because HTTP is a
stateless protocol, building Web applications that need to maintain some cross-request state information,
such as shopping carts, user status, and so on, can be extremely challenging without additional
infrastructure help.

ASP.NET imparts that help by providing an infrastructure that assigns a unique ID for each user of the
Web application. Each active ASP.NET session is identified and tracked using a 128-bit Session ID
string containing URL-legal ASCII characters. Session ID values, known as GUID's (Globally Unique
Identifier) are generated using an algorithm that ensures uniqueness so that sessions do not collide.

These generated Session IDs are communicated across client-server requests and serves as a token for
client identification. The token is used to identify session values stored on the server. Depending on
how the Web application is configured, the Session ID is passed from client to server either by means of
an HTTP cookie or a modified URL. With ASP.NET, if the client supports cookies, a cookie can
identify the client session; otherwise the modified URL can identify that particular session.

Web Service applications will also need to coordinate with their clients when managing session state.
The client application accessing the Web Service will also need to support the use of cookies in order to
store the Session ID locally.

How To Use The Session Object
Just as the Application object is designed to be a collection of key-value pairs, the Session object
contains a Contents collection that exposes all variable items that have been added to the session state
collection directly in code. Here's an example of a Session object instance being referenced using C#:

//C# code running from within an *.aspx, *.asmx, or Global.asax file
Session["UserName"] = "John Smith"

For compatibility with earlier versions of ASP, the Session object variables can also be accessed via
the actual Contents property of the Session object (most programmers no longer use the Contents
property. The preferred method is to use the previously described syntax). The Contents property is a
collection of Session object values. Here's an example:

//C# code running from within an *.aspx, *.asmx, or Global.asax file
Session.Contents["UserName"] = "John Smith"

Storage Options for Session State
Remember when we first started developing Web applications in ASP, one of the first tips we learned
was to be afraid of session-level variables. "Stay away from them if you want your application to scale,"
we were told. Yes, previous versions of the Session object did not scale, because storage for the
Session object was limited to an in-process mechanism on a single server only. If a developer wanted
to store session state in a centralized database for use in a Web farm, he had to implement a custom
solution. ASP did not have a built-in session state solution for Web farm scenarios.

Chapter 10

8

With ASP.NET, the developer now has a choice. ASP.NET provides a simple and easy-to-use session
state storage model that you can use to store arbitrary data and objects across multiple Web requests.
One of the ways it accomplishes this is through the use of an in-memory cache of object references that
live within the IIS process. This, by the way, is the default configuration. It is identical to the way
session state is stored in previous versions of ASP.

The second option available to the developer is to make use of a new ASP.NET feature called the
StateServer. StateServer is a Windows service that runs in a separate process from IIS that can run
either on the same machine as the Web server or on a different server altogether. When this mode is
chosen, instead of keeping Session objects in the same process as IIS, the .NET state server simply
stores chunks of binary data, either in memory or in a SQL Server database. ASP.NET worker processes
are then able to take advantage of this simple storage service by serializing and saving all objects within
a client's session collection at the end of each Web request. When the client revisits the server, the
relevant ASP.NET worker process retrieves these objects from the state server as binary streams,
deserializes them into live instances, and places them back into a new Session collection object
exposed to the request handler. Note that since the StateServer is running on a separate process from
IIS, it will have an associated performance penalty. You will need to weigh the performance hit with the
advantages this feature provides.

Lastly, an application can also store session-state data into a SQL Server database. This was possible
before in previous versions, but what makes it different in ASP.NET is that the infrastructure takes care
of the steps necessary to make use of SQL Server. ASP.NET worker processes take care of serializing
the data and then store the serialized session data into a temporary SQL Server table. The ASP.NET
worker process accesses the temporary table by a combination of stored procedures in the database and
the managed data access components for SQL Server. Because SQL Server is a tried and tested platform
for data storage, this option is typically the preferred method for session state management in most
commercial environments.

The session state storage options that were just outlined provide a clean separation between the storage
of the session data and the application's use of it. Because of this separation of storage and
implementation, ASP.NET can support several powerful scenarios that were unavailable with earlier
versions of ASP. These include:

❑ Recovery from application crashes is possible because the memory used for session state is not
within the ASP.NET worker process. Because all state is stored separately from an individual
worker process, it is not lost if the process crashes due to an access violation, or is forcibly
restarted by the IIS Admin Service in the event of a deadlock or memory leak.

❑ Periodic stale-code purges. Because all state is stored separately from running user code, it is
not lost during the regular preventive restarts of each worker process after a given interval.
ASP.NET performs preventive restarts every 20 minutes or 5000 requests to help prevent
problems resulting from memory leaks, handle leaks, cache irregularities, and the like. This
automatic purging process can dramatically improve the perceived availability and reliability
of an application.

❑ Partitioning an application across multiple worker processes. Because all state is stored
separately from worker processes, you can cleanly partition an application across multiple
processes. Such partitioning can dramatically improve both the availability and the scalability
of an application on multiple-processor machines. Moreover, because it associates each
worker process with a single computer, ASP.NET is able to eliminate cross-processor lock
contention, one of the major scalability bottlenecks in earlier versions of ASP.

Managing State

9

❑ Partitioning an application across multiple Web farm computers. Because all state is stored
separately from worker processes, you can partition an application across multiple worker
processes running on multiple computers. The model for communicating state between a
worker process and a state service running on different computers is almost the same as that
for processes and servers running on the same computer

Session State Configuration Option
Session state settings in ASP.NET are configured through the ASP.NET XML configuration file
web.config. You configure your state management options in the <sessionState> section of your
web.config file as follows:

<sessionState
 mode="Inproc"
 stateConnectionString="tcpip=127.0.0.1:42424"
 sqlConnectionString="data source=127.0.0.1;user id=sa;password="
 cookieless="false"
 timeout="20"
/>

There are two types of configuration files: a machine-level configuration file and an application-level
configuration file, machine.config and web.config respectively. The two are identical, except that
the machine configuration file applies settings to all applications, while the application configuration file
is confined at the application level.

Application-level configuration files are optional, in that if an application's web.config file is missing,
the machine.config settings are used instead. Default ASP.NET session state settings can be made at
the machine level and overridden for a particular application in it's own web.config file.

Let's look at the various configuration settings that you can make in the sessionState section of the
configuration file:

Mode Setting

The mode setting specifies where and how you would like to store your state information. The options
are Inproc, StateServer, SqlServer, or Off. ASP.NET supports two modes of storage: in process
and out of process. "In process" means that the Session object will store state in the same process that
is running the Web application. There are also two options for out-of-process session state management:
memory-based (using ASP.NET's StateServer functionality), and SQL Server-based (using Microsoft
SQL Server). The following table describes each option for the mode setting:

Option Description

InProc Default Setting – Session state is stored locally on this server
(ASP style).

State Server Session state is stored in a StateServer process located
remotely or potentially locally.

SqlServer Session state is stored in a SQL Server database.

Off Session state is disabled.

TE
AM
FL
Y

Team-Fly®

Chapter 10

10

stateConnectionString Setting

The stateConnectionString setting only comes into play if you specify the StateServer option
in the mode setting. In the out of process mode StateServer, it names the server that is running the
required Windows service: ASPState. This server is specified by its IP address and could be the same
machine that is hosting the Web application. Here's how the setting is specified:

 stateConnectionString=" tcpip=127.0.0.1:42424"

The example above sets the IP address for the connection to "127.0.0.1" using IP Port "42424".

sqlConnectionString Setting

Similar to the StateConnectionString, the sqlConnectionString setting only comes into play if you
specify the SQLServer option in the mode setting. The sqlConnectionString setting contains the
database connection string that names the database used for storing state. Here's how the setting is specified:

 sqlConnectionString="data source=127.0.0.1;user id=sa;password="

cookieless Setting

The cookieless option for ASP.NET is configured with a simple Boolean setting (true or false).
Here's how the setting is specified:

 cookieless="false"

timeout Setting

This option controls the length of time a session is considered valid. The session timeout, which is
specified in minutes, is a sliding value. This means that on each request, the timeout period is reset to
the current time plus the timeout value. Here's an example of how the setting is specified:

 timeout="30"

If the setting is not explicitly stated, the default timeout value will be 20 minutes.

State Management Considerations
After going through a high-level overview of the new state management features in ASP.NET, it is clear,
as a developer, that we will have a number of options that we need to consider as well as compatibility
issues with previous versions of ASP that we may have to deal with. Here are some state management
considerations that we will need to keep in mind.

Performance
When developing a Web application, we need to consider the performance implications of the state
management options that you choose. Each option (whether we decide to use the in-process mode or
the SQL Server mode) has its advantages and disadvantages. As far as performance goes, nothing comes
for free, of course. In many cases, the in-process mode will continue to be the best performer, followed
by StateServer and then SqlServer. You should perform you own tests with your application to ensure
the option you select will meet your performance goals.

Managing State

11

COM-Based Components
One thing to keep in mind is that if you rely on storing references to your legacy COM components in
the Session or Application object, you cannot use the new state storage mechanisms (StateServer or
SqlServer) within your application. You will need to use the in-process mode. This is due, in part, for
the need of an object to be self-serializable in .NET terms, something that COM components obviously
cannot do. New, managed components you create, on the other hand, can do this relatively easily and
thus can use the new state storage models.

Legacy ASP and ASP .NET Interoperability
Another important thing to consider is that although your application can contain both ASP and
ASP.NET pages, you cannot share state variables stored in the intrinsic Session or Application
objects. The Session object in ASP.NET is not the same as the Session object in legacy ASP. You
either need to duplicate this information in both systems or come up with a custom solution until your
application is fully migrated. The bottom line is that if you have made little use of the Session and
Application objects in your legacy code, then you should be in good shape. If, on the other hand,
you use these objects extensively, you will need to proceed with caution and perhaps come up with a
custom short-term solution to sharing your state.

Managing State In Web Services
We've just taken a high-level overview of state management in ASP.NET. We actually have more to
cover regarding best practices in the implementation of Application and Session objects, and we'll
make sure to cover that later in this chapter. In the meantime, we have enough background in ASP.NET
state management to dive into implementation specifics with Web Services.

ASP.NET does a great job of providing an infrastructure for managing state both at the application and
session level. Let's now take a look at how these features are implemented in your Web Services
development projects. Actually, in many cases, you may not need to manage state in your Web Service.
In fact, state management functionalities in Web Services are optional and are disabled by default. It is
often best to design your Web Service using a stateless model, similar to the approach in developing
components that run in the COM+ environment. This design approach provides the best way to scale
the application to enterprise-level performance.

That being said, there will, of course, be instances where implementing an application that keeps track
of state is required. Perhaps you will be developing a financial Web Service that allows multiple types of
transactions over a single session. Since the .NET runtime environment treats Web Services as a type of
ASP.NET Web application, ASP.NET Web Services have access to the same state management
functionalities as other ASP.NET applications, particularly the Session and Application objects.

In order to enable state management in a Web Service, the class implementing the Web Service must
derive from the WebService class, which is part of the System.Web.Services namespace. The
WebService class contains many of the common ASP.NET objects, including the Session and
Application objects. A class deriving from WebService automatically has access to the
Application object. Session state, on the other hand, requires an extra step. Data stored in the
Session object is only available when the EnableSession property of the WebMethod attribute is set
to true from a class deriving from WebService.

Chapter 10

12

Let's go through the steps necessary to enable state in an ASP.NET Web Service:

❑ Include a Web Service declaration in your ASMX file.

<%@ WebService Language="C#" Class="SampleService" %>

❑ Add a reference to the System.Web.Services namespace.

using System.Web.Services;

❑ All ASP.NET Web Services require the previous steps. The next step is to derive the class
implementing the Web Service from the System.Web.Services.WebService base class.
This is normally an optional step but is required to enable state in your Web Service.

public class StateSample : System.Web.Services.WebService

After implementing the previous steps, the Web Service is ready to make use of the Application
object. Here are the steps to create Application object variables and retrieve the saved values:

❑ Implement a Web Service method.

[WebMethod(Description="Number of times service is accessed.")]
public int GetServiceUsage()

❑ Store state in the Application object, specifying a name for the state for later retrieval.

Application["appServiceUsage"] = 1;

❑ Access the state variable stored in the Application object.

Application["appServiceUsage"] =
 System.Convert.Int32(Application["appServiceUsage"]) + 1;

If storing state at the application level is all that you require, then you're set to access and update
Application object values. Session state, on the other hand, is not yet enabled. Access to the
Session object is enabled for each function in your Web Service. Here are the steps to access and store
state specific to a particular client session:

❑ Declare a Web Service method, setting the EnableSession property of the WebMethod
attribute to True.

[WebMethod(EnableSession:=True)]
public int GetSessionServiceUsage()

❑ Store state in the Session object, specifying a name for later retrieval.

Session["myServiceUsage"] = 1;

❑ Access the state variable stored in the Session object

Session["myServiceUsage"] =
 System.Convert.Int32(Session["myServiceUsage"]) + 1

Managing State

13

That's all there is to it! ASP.NET makes it very easy to implement state management in your Web
Service application. Let's take a closer look at the various pieces that enable state management in your
ASP.NET Web Service. We'll then create a simple example of a state-enabled Web Services to put into
practice all that we've gone over so far.

Deriving From the WebService Class
As stated previously, state management is optional and turned off by default in ASP.NET Web Services.
If you would like to enable this feature, the class implementing your Web Service must derive from the
WebService class to gain access to the common ASP.NET objects such as Application, Session,
User, and Context.

The Application and Session properties provide access to storing and receiving state across the
lifetime of the Web application or a particular session. The User property contains the identity of the
caller, if authentication is turned on for the Web Service. Using the User property is one way a Web
Service can determine whether the user is authorized to call the Web Service. The Context property
provides access to all HTTP-specific information about the Web Service client's request. Here's a table
of the frequently used members of the WebService class:

Class Member Description

Application Gets the Application object for the current HTTP request.

Context Gets the ASP.NET HttpContext for the current request,
which encapsulates all HTTP-specific context used by the
HTTP server to process Web requests.

Server Provides a handle to the HttpServerUtility (which
contains helper methods for processing Web requests) for the
current request.

Session Gets the Session object instance for the current request.

User Gets the ASP.NET server User object. This can be used to
authenticate whether a user is authorized to execute the
request.

Here's a code snippet that demonstrates a class that derives from WebService. This code example
looks up the authenticated user name and returns that name.

<%@ WebService Language="C#" Class="Util" %>
using System.Web.Services;

public class Util : System.Web.Services.WebService
{
 [WebMethod(Description = "Obtains the User Name")]
 public string GetUserName()
 {
 return User.Identity.Name;
 }
}

Chapter 10

14

The EnableSession Property
Because session state management can have a significant impact on system performance, access to the
Session object is enabled only at the method level. Web Service methods that do not require access to
the Session object can disable access to it to improve performance.

In order to store session state in the ASP.NET HttpSessionState object, the Web Service must
inherit from WebService and a WebMethodAttribute applied to the Web Service method, setting
the EnableSession property to true. The default value for the EnableSession property is false.

Let's Create a State-Enabled Web Service
Now that we've discussed the intricacies of enabling state management in an ASP.NET Web Service
application, let's get down to business and write some code to illustrate the concepts we just covered.
We'll begin by creating an ASP.NET Web Service that makes use of the Application and Session
objects. We'll then create a Windows Forms client to consume the Web Service and demonstrate the use
of a state-enabled Web application.

This first application we will be developing is a simple implementation of the Application and
Session objects, but it will hopefully illustrate for you the steps you will need to go through when
developing more sophisticated state-enabled Web Services.

The service we will be developing is called StatefulService and contains one .asmx file named
StatefulService.asmx. Below is a screenshot of the Web Service as seen from the Internet
Explorer browser:

The StatefulService application exposes two methods. Here's a description of what each
method does:

Managing State

15

Method Name Description

GetSessionServiceUsage This method serves as a hit counter for a specific client
session. It will return an integer value denoting the number
of times a specific session has invoked this method. If three
clients were to invoke this method consecutively, each caller
will receive the same result of 1 the first time they call the
method.

GetApplicationServiceUsage This method serves as a hit counter for every time the
method is called regardless of the client invoking the Web
Service method. It will return an integer value denoting the
total number of times the method has been called. For
instance, if three clients were to invoke this method
consecutively, the last client will receive a return value of 3.

Code for StatefulService
<%@ WebService Language="C#" Class="StatefulWebService.StatefulService" %>

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;

namespace StatefulWebService
{
 public class StatefulService : System.Web.Services.WebService
 {

 [WebMethod(Description="Number of times this service is accessed.")]
 public int GetApplicationServiceUsage()
 {

 //If the Web Service method hasn't been accessed yet
 //Then initialize the application variable to 1
 if (Application["ServiceUsage"] == null)
 {
 Application["ServiceUsage"] = 1;
 }
 else
 {
 //Increment the usage count
 Application["ServiceUsage"] =
 System.Convert.ToInt32(Application["ServiceUsage"]) + 1;
 }
return System.Convert.ToInt32(Application["ServiceUsage"]);
 }

Chapter 10

16

 [WebMethod(EnableSession=true)]
 public int GetSessionServiceUsage()
 {

 //If the Web Service method hasn't been accessed yet
 //Then initialize the application variable to 1
 if (Session["myServiceUsage"] == null)
 {
 Session["myServiceUsage"] = 1;
 }
 else
 {
 //Increment the usage count
 Session["myServiceUsage"] =
 System.Convert.ToInt32(Session["myServiceUsage"]) + 1;
 }

 return System.Convert.ToInt32(Session["myServiceUsage"]);
 }
 }
}

This Application object is used in the method GetApplicationServiceUsage(). First, the code
checks to see if the specific object instance with the key value "ServiceUsage" already exists. If it does
not yet exist, then it initializes the value to 1:

 if (Application["ServiceUsage"] == null)
 {
 Application["ServiceUsage"] = 1;
 }

If the object instance already exists then it simply increments the value by 1:

 Application["ServiceUsage"] =
 System.Convert.ToInt32(Application["ServiceUsage"]) + 1;

This Session object is used in the method GetSessionServiceUsage(). The logic is identical to the
previous method in that the code first checks to see if the Session object instance already exists. If it
does not yet exist, then it initializes the value to 1:

 if (Session["myServiceUsage"] == null)
 {
 Session["myServiceUsage"] = 1;
 }

If the object instance already exists then it simply increments the value by 1:

 Session["myServiceUsage"] =
 System.Convert.ToInt32(Session["myServiceUsage"]) + 1;

Managing State

17

Developing a Client for a State-Enabled Service
Let's now complete the circle and develop a client application that will invoke the Web Service
application that we just coded. The client will be developed as a Windows Forms application using
Visual Studio .NET. Here's a screenshot of the client application:

Our Windows application will have three features represented by the command buttons shown above.
The first button allows the user to create a brand new user session. The second button invokes the
GetSessionServiceUsage() method from the Web Service which increments a session-level object.
The third button invokes the GetApplicationServiceUsage() method which increments an
application-level object. A label is used to display the output of all three functions.

Code for Client Application
using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.Net;

namespace StatefulClient_CSharp
{
 public class frmClient : System.Windows.Forms.Form
 {

 //Create an instance of the Web Service via the proxy class
 localhost.StatefulService objService = new localhost.StatefulService();

 private void frmClient_Load(object sender, System.EventArgs e)
 {
 //Create a cookie and assign the cookie
 //to the Web Service's cookie container
 CookieContainer objCookie = new CookieContainer();
 objService.CookieContainer = objCookie;
 }

 private void btnNewSession_Click(object sender, System.EventArgs e)
 {
 //Create a new instance of the Web Service
objService = new localhost.StatefulService();

Chapter 10

18

 //Create a cookie and assign the cookie
 //to the Web Service's cookie container
 CookieContainer objCookie = new CookieContainer();
 objService.CookieContainer = objCookie;

 //Display feedback to the user
 lblDisplay.Text = "New Session Started.";
 }

 private void btnSession_Click(object sender, System.EventArgs e)
 {
 int iUsage;

 //Invoke the Web Service method that
 //Accesses a Session-level object
 lblDisplay.Text = "";
 iUsage = objService.GetSessionServiceUsage();
 lblDisplay.Text = "Session Usage = " + iUsage;
 }

 private void btnApp_Click(object sender, System.EventArgs e)
 {
 int iUsage;

 //Invoke the Web Service method that
 //Accesses the Application-level object
 lblDisplay.Text = "";
 iUsage = objService.GetApplicationServiceUsage();
 lblDisplay.Text = "Application Usage = " + iUsage;
 }
 }
}

The code for the client application is pretty straightforward. It's a standard Web Service client that I'm
sure you've seen numerous times by the time you've reached this chapter. What's noteworthy, however,
is how the client application does its part to help the server manage user sessions.

Using Cookies on the Client

Remember that we've determined that due to the nature of the HTTP protocol, a mechanism for
identifying users across connections is required in order to be able to associate a server-side Session
object with a given user. A partnership has to be forged between the client and the server to agree on a
moniker for identifying a specific user session.

In this particular example, the moniker used is in the form of an HTTP cookie. In order for our client
application to make use of cookies, we must first import the System.Net namespace as shown in this
C# code:

using System.Net;

Managing State

19

The next step is to create a cookie that the Web Services application can use to keep track of a user
session. In this application, we created a Cookie object and assign it to the Web Server proxy class'
cookie container:

 //Create a cookie and assign the cookie
 //to the Web Service's cookie container
 CookieContainer objCookie = new CookieContainer();
 objService.CookieContainer = objCookie;

This code is invoked when the application first starts in the Form_Load() event as well as when the
user clicks the NewSession button to begin a new user session. A user session is represented by the
instance of the Web Service proxy class. De-allocating this class from memory terminates the user
session. The following code ends one session and begins another:

 //Create a new instance of the Web Service
 objService = new localhost.StatefulService();

Below is a screenshot demonstrating multiple instances of our client application running on the
same machine:

As you can see, each instance of the application will have it's own user session. The Application
object, however, is shared across all the applications. Each time the Application object is called from
any client, the hit counter is incremented by 1.

Design Considerations
This section will cover additional topics about application and session state management that you may
wish to take into consideration when developing your server-side Web Service or client application.

TE
AM
FL
Y

Team-Fly®

Chapter 10

20

Application State
Now that we have a big-picture overview of ASP.NET's state management capabilities, let's focus on the
Application object and learn more about its features.

The HttpApplicationState Class
Behind the Application object that we use to manage state in our ASP.NET application is the base
class HttpApplicationState. The HttpApplicationState class is designed to give the developer
the ability to share global information throughout an application. A single instance of an
HttpApplicationState class is created the first time a client requests any URL resource from within
a particular ASP.NET application virtual directory. A separate single instance is created for each
ASP.NET application on a Web server. Because of this, the Application object is not shared across
applications. A reference to each instance is then exposed via the intrinsic Application object. This
class exposes a key-value dictionary of objects that we can use to store both .NET Framework objects
and scalar values related to multiple Web requests from multiple clients. The following are the steps a
typical ASP.NET Web application will go through to enable Application state management:

❑ An instance of the HttpApplicationState class is created the first time any client requests
a URL resource from within a particular ASP.NET application's virtual directory namespace.
This is the case for each Web application that is stored on the computer.

❑ Access to this per-application instance is provided through an HttpContext property
named Application.

❑ All HTTP modules and handlers, such as an ASP.NET page, have access to an instance of the
context and therefore have access to the Application property during a given Web request.

Here is a table of the key HttpApplicationState class members accessible via the
Application object.

Class Member Description

Add (Method) Adds a new object to the HttpApplicationState collection.

Clear (Method) Removes all objects from the HttpApplicationState collection.

Count (Property) Gets the number of objects in the HttpApplicationState
collection.

Remove (Method) Removes the named object from the HttpApplicationState
collection..

RemoveAll
(Method)

Removes all objects from the HttpApplicationState collection.

Item (Property) Gets access to an object in HttpApplicationState collection. This
property is overloaded to allow access to an object by name or
numerical index.

Managing State

21

Application State Issues
Well-designed, application-level variables can be very powerful in Web applications. You can do a one-
time (or infrequent) loading and calculation of information and then use application state to cache it for
speedy, in-memory access during later Web requests.

For example, a stock market Web site might fetch extensive financial stock information from a database
every five minutes during the day and then cache it in application state where all subsequent lookup
requests can access it. The result is a dramatic improvement in per-request performance, since incoming
requests do not require cross-process, cross-computer, or database round trips.

You have to be aware of the Application object's limitations, however, to make effective use of its
capabilities. Here are a few considerations you will have to think about when developing your Web
Service application.

Memory Implications

Application-state variables are, in effect, global variables for a given ASP.NET application. Like client-
side application developers, ASP.NET programmers should always consider the impact of storing
anything as a global variable.

Consider the memory impact of storing something in application state. The memory occupied by
variables stored in application state is not released until the value is either removed or replaced, unlike
for an individual Web page, in which all resources are torn down at the conclusion of a Web request.
Keeping seldom-used data retrieved from 10 MB recordsets in application state permanently, for
example, is not the best use of system resources.

Concurrency and Synchronization

Consider the concurrency and synchronization implications of storing and accessing a global variable
within a multithreaded server environment. Multiple threads within an application can access values
stored in application state simultaneously. You should always be careful to ensure that:

❑ If an application-scoped object is free-threaded, it contains built-in synchronization support.

❑ If an application-scoped object is not free-threaded, explicit synchronization methods are
coded around it to avoid deadlocks, race conditions, and access violations.

For performance reasons, the built-in collections in the .NET Framework do not contain built-in
synchronization support. You must explicitly use the Lock and Unlock methods provided by the
HttpApplicationState class in order to avoid problems when you place them into application state.

Multiple threads within an application can simultaneously access values stored in application state.
Consequently, when you create something that needs to access application-state values, you must always
ensure that the application-state object is free-threaded and performs its own internal synchronization or
else performs manual synchronization steps to protect against race conditions, deadlocks, and access
violations.
The HttpApplicationState class provides two methods, Lock and Unlock, that allow only one
thread at a time to access application-state variables.

Calling Lock on the Application object causes ASP.NET to block attempts by code running on other
worker threads to access anything in application state. These threads are unblocked only when the
thread that called Lock calls the corresponding Unlock method on the Application object.

Chapter 10

22

The following code example demonstrates the use of locking to guard against race conditions:

' From within a page, a handler, or Global.asax.
Application.Lock();
Application["SomeGlobalCounter"] = CType(Application["SomeGlobalCounter"],
 Integer) + 1

If you do not explicitly call Unlock, the .NET Framework automatically removes the lock when the
request completes, when the request times out, or when an unhandled error occurs during request
execution and causes the request to fail. This automatic unlocking prevents the application
from deadlocking.

Application State Durability

Consider the life-cycle implications of information stored in application state. The .NET application
domain or the process hosting a .NET application can be torn down and destroyed at any moment
during application execution (as a result of crashes, code updates, scheduled process restarts, and so on).
Because global data stored in application state is not durable, it is lost if the host containing it is
destroyed. If you want state to survive these types of failures, you should store it in a database or other
durable store.

Scalability

Consider the scalability implications of storing and accessing a global variable within a multithreaded
server environment. Locks that protect global resources are themselves global, and code running on
multiple threads accessing global resources ultimately ends up contending on these locks. This causes
the operating system to block the worker threads until the lock becomes available. In high-load server
environments, this blocking can cause severe thread thrashing on the system. On multiprocessor
systems, it can lead to processor underutilization (since all of the threads for a processor theoretically
can be stalled while waiting for a shared lock) and significant drops in overall scalability.

Application state is not shared across a Web farm (in which an application is hosted by multiple servers)
or a Web garden (in which an application is hosted by multiple processes on the same server). Variables
stored in application state in either of those scenarios are global only to the particular process in which
the application is running. Each application process can have different values. Therefore, you cannot
rely on application state to store unique values or update global counters, for example, in Web-farm and
Web-garden scenarios.

Session State
Quite possibly the most important decision you will make when implementing Session management in
your Web Service application is how to store session state. Session state storage has an impact on your
application's ability to scale and has a bearing on how well your system will perform. There are three
general configuration settings we can look at in more detail to help you in your decision-making
process. The three options are: in-process mode, StateServer mode, and SQL Server mode.

In-Process Mode
In-process mode simply means using ASP.NET session state in a similar manner to classic ASP session state.
That is, session state is managed in process and if the process is recycled, state is lost. Given the new settings that
ASP.NET provides, you might wonder why you would ever use this mode. The reasoning is quite simple:
performance. The performance of session state, the time it takes to read from and write to the session state

Managing State

23

dictionary, will be much faster when the memory read to and from is in process, as cross-process calls add
overhead when data is marshaled back and forth or possibly read from SQL Server.

In-process mode is the default setting for ASP.NET. When this setting is used, the only other relevant
session web.config settings used are cookieless and timeout.

In process mode performs best because the session state memory is kept within the ASP.NET process.
For Web applications hosted on a single server, applications in which the user is guaranteed to be re-
directed to the correct server, or when session state data is not critical, this is the mode to choose.

StateServer Mode
One of the great new features available in ASP.NET is a session state store named StateServer.
StateServer is a Windows service that can be configured to run on the same machine as the Web Server
or on a totally separate server. Running the service on a separate server gives our Web application the
ability to share session state across a Web farm.

This mode is best used when performance is important but you can't guarantee which server a user will
request an application from. By using StateServer, which operates out-of-process, you get the
performance of reading from memory and the reliability of a separate process that manages the state for
all servers.

SQL Server Mode
The SQL Server mode option is similar to that of the Windows StateServer mode, except that the
information persists to SQL Server rather than being stored in memory.

To use SQL Server as our session state store, we first must create the necessary tables and stored
procedures that ASP.NET will look for on the identified SQL Server. Thankfully, the .NET SDK
provides us with a SQL script (state.sql) to do just that.

The state.sql file contains the SQL commands used to create the ASPState database. This script
creates two tables and several stored procedures. ASP.NET uses both the tables and the procedures to
store data in SQL Server.

Once the SQL Server tables have been generated, our Web Service application can make use of this
session store simply by changing the configuration settings in the web.config file. An added benefit of
using the SQL Server option is that we could cluster the SQL Servers such that if one SQL Server
happened to be unavailable, another server that was replicating its data could take its place. This
provides a level of reliability that was not available before in ASP.

This mode is best used when the reliability of the data is fundamental to the stability of the application,
as the database can be clustered for fail-over scenarios. The performance of this operation isn't as fast as
StateServer, but the tradeoff is the higher level of reliability.

Chapter 10

24

Summary
Microsoft has managed to create a state management facility in ASP.NET that is leaps and bounds
beyond what previous versions of ASP provided. At the same time, the seasoned programmer will be
very comfortable in this new environment. The familiar Application and Session object is still there
and works in a very similar manner to previous versions.

As we have seen in this chapter, ASP.NET session state is a very much-improved version of the ASP
Session object. The new capability of session state that is not bound to the ASP.NET process means
that developers can begin to use session state in server farm environments without worrying about
whether the client is coming through a proxy server. Additionally, with the cookieless state
functionality, it is even easier to use session state and guarantee that all clients can take advantage of the
session state feature.

Because Web Services make use of the ASP.NET infrastructure, they, too, can take advantage of the
available state management features. State is optional and is turned off by default. The reason for this is
that a typical Web Service may not require this feature. Enabling the feature, however, is very easy to
do, and it won't take much for a developer to start developing stateful Web Service applications. Here is
a rundown of what we have seen in this chapter:

❑ State management in ASP.NET

❑ Implementing a stateful Web Service

❑ The Application object in ASP.NET

❑ The Session object

❑ Session state configuration

Managing State

25

Chapter 10

26

Case Study – Passport-Style
Authentication Service

Throughout the preceding chapters, we've looked at the main concepts involved in implementing and
consuming ASP.NET Web Services on the Microsoft .NET Framework.

In this case study, we are going to look at how to use ASP.NET to create a centralized Web Service to offer
authentication and profiling services across platforms in the enterprise. We will proceed step-by-step through the
process of building and consuming the ASP.NET Web Service. In this way the chapter will provide insight into
how we can use ASP.NET, XML, SOAP, and HTTP to provide cross-platform services on the web.

The basic concepts and issues we'll look at throughout this chapter are as follows:

❑ How to design and code an ASP.NET Web Service

❑ How to build the proxy

❑ How to secure the service

❑ How to deploy the Web Service

❑ How to test the Web Service

18

Chapter 18

2

Overview of the VPASS Web Service
Corporations today face the challenge of administering and supporting several application-specific
directories. A directory is a database of user names, passwords, and profile information of every user on
the network. It is used to manage user accounts and permissions. When sent a user name, it returns the
attributes of that individual, which may include a telephone number as well as an e-mail address. An
application directory can include any user data store such as the NT\Active Directory, Lotus Notes
databases, MS Exchange directories, phone lists, other RDBMSs, lookup tables, text files, etc. These
directories can number in to the several hundreds and possibly even thousands at the world's largest
corporations.As each new directory goes online, the costs to develop, administer, and support continues to
spiral upward and out of control. Each of these data stores can contain unique user credentials that are
required for access to the application. Combine this with having to remember a PIN for voicemail, another
PIN for the ATM, and yet another PIN for online banking (which are also user directories) and it is not
hard to see why many of us have resorted to writing passwords on Post-Its in order to remember them.

Web Services can help corporations better utilize and secure information within their own companies
by enabling them to link disparate information systems in a standard way. One of the key factors in
linking these disparate systems is providing a standard way of authenticating users against a common
credential store. The value of a single credential store can then be further enhanced by storing and
making other user-specific information such as their gender, location, language, and so on available to
many systems within the enterprise. This data can then be re-used to make access to information easier
as well as targeting information to users based on the data.

The inclusion of Microsoft Passport in the Hailstorm Web Services should go a long way towards solving
this problem on the Internet. However, the privacy issues associated with the Internet make it difficult for
today's corporations to make use of this service. The corporate enterprise needs a similar solution that can
be managed in house, in other words "Microsoft Passport in a box". Since Microsoft has not made public
any plans to release such a product, corporations will need to develop this service internally.

Currently, Microsoft Active Directory is being used by many companies to reduce the number of
credentials that users are required to remember on a daily basis. The wide support of Active Directory
and the integration of Windows Authentication by Independent Software Vendors has provided
seamless transitions between many third party applications and has further reduced the number of
credentials that users must remember. Enterprises running Active Directory can use the Lightweight
Directory Access Protocol (LDAP, described below) provider and ASP.NET Web Services to provide
cross-platform access to information stored in the Active Directory. This has the effect of simplifying a
users experience by limiting the number of IDs and passwords they are required to remember, and
further limits the number of times they are required to authenticate during a normal day.

Not all companies have implemented Active Directory. Some corporations have decided to continue supporting
their existing Windows NT 4.0 account domains and hold off on the implementation. Yet others have decided
to forego Active Directory for Netscape IPlanet, Novell eDirectory, or another directory product. Some
companies have decided that the best of course of action is to implement MetaDirectory services to integrate
existing directories and decrease the proliferation of new directories. A MetaDirectory is a directory that
contains information about other directories. It functions as a master directory gleaning information from all the
other directories. The directory services mentioned above are all accessible via an LDAP interface.

Case Study – Passport-Style Authentication Service

3

The LDAP (Lightweight Directory Access Protocol) v3.0 specification provides a standard protocol used
to access a directory listing. Many software products including Web Browsers, email programs, and line-
of-business applications are now providing an LDAP interface to enable the use of an existing LDAP-
compliant directory service. LDAP is a sibling protocol to HTTP and FTP and uses the ldap:// prefix in
its URL. It is expected that LDAP will provide a common method for searching email addresses on the
Internet, eventually leading to a global white pages.

LDAP is a simplified version of the DAP protocol, which is used to gain access to X.500 directories. It is
easier to code the query in LDAP than in DAP, but LDAP is less comprehensive.

In this case study, we will bring several of these ideas together by building and consuming a Web
Service that provides cross-platform authentication services. We will expose a centralized LDAP
directory that is currently providing authentication services for a single platform and make it available
to applications, web sites and services across the enterprise.

All files for the VPASS Web Service are available from the Wrox website,
http://www.wrox.com.

Web Service Setup
Before we examine the various aspects of this project, we're going to take this section to detail the
software requirements and the necessary steps to get the Web Service setup and running.

Software Requirements
The following software is required:

❑ Microsoft Windows 2000 Server

❑ Microsoft Windows 2000 Service Pack 2

❑ Microsoft SQL Server 2000

❑ Microsoft SQL Server 2000 Service Pack 1

❑ Microsoft Site Server 3.0

❑ Microsoft Site Server 3.0 Service Pack 4

❑ Visual Studio.Net

Post Software Installation Configuration
Our case study uses the LDAP and Directory from Site Server to provide data services. SiteServer was
not chosen for any specific reason other than it provides us with an LDAPv3.0 compliant directory
service. Active Directory or any other LDAP v3.0 compliant directory could be substituted with
relatively minor changes to the code to adjust for changes in the schema.

TE
AM
FL
Y

Team-Fly®

Chapter 18

4

In the next few steps, we'll create the SQL Server 2000 database that will be used for the directory
service, and configure the LDAP service. The LDAP service provides the directory view of the SQL
2000 relational database.

Create the SQL Server 2000 database

1. Open the SQL Query Analyzer from Start | Programs | Microsoft SQL Server | Query
Analyzer

2. Select File | Open from the Query Analyzer menu bar and navigate to the WebServices.sql
file that was in the setup folder of the files you downloaded from the Wrox site.

3. Choose Query | Execute. You should see the following window:

Creating the Directory and Configuring the LDAP instance
In this step, we will set up a new instance of LDAP on port 4957 of the local machine and construct the
directory using the database we just created. This is all completed via the createLDAP.bat script that
is located in the setup directory:

Case Study – Passport-Style Authentication Service

5

cd "Microsoft Site Server\Bin\P&M"
PMAdmin Create Instance /Name:"WebServices" /LDAP:on /Directory:on /DMail:off
/adminUser:admininstrator /AdminPassword:password /DBType:1
/DBSource:"\\(LOCAL)\WebServices" /DBusername:sa /DBPassword:password
/LDAPPort:4957 /authmode:1 /Realm:WebServices /DirRoot:WebServices

If your machine is configured as we described earlier, the script should run without any problems.
However, if your configuration is different some modifications to the script may be necessary for it to
run properly. The script uses the sa account for SQL Server with a password of "password".

To run the script, open a cmd window and enter e:\setup\createLDAP.bat. The script will take a few minutes
to create the new directory and instance of LDAP. The command window should appear as follows:

Chapter 18

6

Open the SQL Enterprise Manager and view the tables in the new Web Services database that we
created. You can see in the diagram below that eleven user tables have been added to the database:

These additional tables hold the data for our directory service and were created by the script
we ran in the previous step. All of the work that we will be doing with this new database will
be done through the LDAP service. Therefore, the table names and column names are not
important for us to discuss since we won't be editing them directly. Let's take a look at the new
instance of LDAP and the view of the directory it provides for us.

Case Study – Passport-Style Authentication Service

7

Open the Site Server Admin (MMC) by selecting Start | Programs | Microsoft Site Server |
Administration. The following console appears:

Two items are important to notice here. First the new Web Services instance of LDAP is under the
Personalization and Membership node. From here we could manage all the properties of LDAP.
Second, if we right click on Membership Directory Manager node and enter 4957 for the port number
and click OK, we can connect to the new Web Services directory and view the organizational structure
of the directory as shown above. The members OU is where we will be storing all user data that we
create in our directory. We'll take a closer look at this later when we start registering new members.

Member Attributes
We need to add two new attributes (timezone, nickname) to our directory and apply them to the
member class. We also need to add the gender attribute to the member class. To do this:

1. Open the Site Server Admin (MMC)

2. Right-click on the Membership Directory Manager in the left pane of the MMC and select
Properties from the context menu.

Chapter 18

8

3. Enter localhost for the host name and 4957 for the port. Click OK.

4. Navigate to ou=Admin | ou=Schema and right-click. Then select New | Attribute from the
context menu.

5. When the New Attribute Wizard appears, click Next.

Case Study – Passport-Style Authentication Service

9

6. Enter timezone for the attribute name and for the display name, and click Next. On the
next page, verify that String is selected. Click Next.

7. Verify that None is selected for syntax constraints and click Finish.

8. Repeat steps 5 – 10 to create a nickname attribute.

Apply the attributes to the member class
Now we need to apply the timezone and nickname attributes that we created to the member class.
Additionally, we will be making use of a pre-existing gender attribute, which we also need to apply to
the member class. Follow the procedure outlined below to add the attributes to the member class:

1. Open the Site Server Admin (MMC)

2. Right-click on the Membership Directory Manager in the left pane of the MMC and select
Properties from the context menu.

3. Once again, enter localhost for the host name and 4957 for the port. Click OK.

4. Navigate to ou=admin | ou=schema and locate the member class in the right pane of the
MMC. Select Properties from the context menu.

Chapter 18

10

5. Select the Class Attributes tab on the member property sheet that appears and press
Add…

6. Locate and highlight the gender attribute and then click OK.

7. Press Add... again and locate and highlight the nickname attribute and then click OK,
and do the same for the timezone attribute.

8. Click OK to close the member class property sheet.

Setting Up the Web Service

To setup the Web Service, copy the AuthWebService directory from the files that you downloaded to
the home directory of your web server. This should be E:\inetpub\wwwroot.

After you've copied the directory, open the Internet Services Manager from the Administrative Tools
folder on the Start menu. Create a new virtual directory called AuthWebService by right clicking on the
default site and selecting New | Virtual Directory from the context menu that appears:

Complete the information requested by the wizard that appears.

The configuration of the Web Service is now complete. You can test the configuration by entering the
following URL, http://localhost/authwebservice/authservice.asmx. You should see the Web Service
description page appear:

Case Study – Passport-Style Authentication Service

11

That's it. The service has been successfully configured. Let's move on now and discuss the VPASS Web
Service architecture.

VPASS Architecture
The VPASS Web Service is built upon a Microsoft Windows 2000 Server Platform with Microsoft
Internet Information Services 5.0. It uses standard n-tier application design principles to ensure the
service can be scaled to meet the needs of even the largest enterprises:

VPASS Web Service

ASP .NET

C#

.NET FrameWork

LDAP (Lightweight Directory Access Protocol)

SQL Server 2000

Internet Information Server 5.0

Windows 2000 Server

SOAP

XML

ADO .NET

WSDL

Chapter 18

12

The Microsoft .NET Framework is used to provide support for SOAP over HTTP. The presentation tier
consists of an ASP.NET interface supported by a collection of .NET assemblies written in C#. These
tiers communicate with an LDAP layer for access to the Microsoft Site Server directory service stored in
a Microsoft SQL Server 2000 database.

Application Overview
In the following section we will discuss:

� How the VPASS Web Service works

� How consumer sites implement the service

� How members register for the service

� How members sign in and out of the service

How the VPASS Web Service works

1

2

5

6

3 4

VPASS
Directory

VP ASS Web Service

1. Client requests page from consumer site.
2. Client is redirected to VPASS login.aspx
3. Client enters credential and request authentication.
4. Authentication response. Cookies and profile information

if request is successful.
5. A second authentication request is made but the VPASS

cookies and profile information are included with request.
6. The web page is returned to the client

Case Study – Passport-Style Authentication Service

13

Take a look at the flow of communication in the diagram above. When a consumer site of the Web Service
needs to identify a visitor, the site inspects the HTTP query string for an encrypted authentication ticket.
The encrypted authentication ticket is globally unique 32-bit identifier (GUID) and a timestamp that is
encrypted and returned to the consumer site along with the profile information. If the encrypted ticket is
not in the HTTP query string the site visitor is redirected to the VPASS login.aspx. If the visitor is a
member of VPASS Web Service, they will enter their member name and password. If VPASS successfully
authenticates the member, an authentication ticket and the member profile information is encrypted and
placed as parameters in the HTTP query string. The consumer site decrypts the information, manages
authentication and profile access, caches the user's authentication and profile information in cookies on the
user's browser, and silently recertifies the cookies as the user moves from page to page at the site. The site
may use information in the profile cookie to personalize the user's experience in some way.

When a user signs in to VPASS, the UserID and password are transmitted over the network to the Web
Service login server using the Secure Sockets Layer (SSL) protocol. VPASS sends the user's
authentication and profile information – which includes the encrypted authentication ticket – to the
consumer site using Triple DES encryption.

How consumer sites implement the service
The .Net Framework allows clients from different platforms to interoperate with the VPASS Web
Service. It does this by using SOAP, HTTP-GET, and HTTP-POST protocols. Any client that can
format SOAP can communicate the VPASS Web Service. In addition, VPASS can accept parameters
passed in by legacy applications via the HTTP-GET and HTTP-POST protocols.

How members register for the service
New members register for the service when a consumer site redirects the user to the VPASS sign in page
login.aspx. If the user does not have an existing VPASS account they can create one by selecting
Register Me. This redirects the user to the new member registration page (register.aspx), which
prompts the new user to enter the information required to create their VPASS account and profile.

The VPASS Web Service will create the new account and assign a globally unique 32-bit identifier
(GUID). This identifier will be encrypted along with a timestamp and sent to consumer sites as the
authentication ticket.

How members sign in and out of the service
Members sign in to VPASS when they attempt to access a participating site. If the consumer site does
not detect an authentication ticket on the client, the client will be redirected to the consumer site hosted
VPASS sign in page (login.aspx). VPASS users can sign out from the VPASS service by selecting the
VPASS logoff button hosted by the consumer site, which redirects users to the VPASS logoff page
(Logoff.aspx). The logoff page automatically signs the user out of the Web Service.

Scalability
As we have seen, the VPASS Web Service adopts an n-tier architecture that is divided into presentation,
business logic, and data layers. More specifically, the Web Service is divided into layers consisting of
ASP.NET pages that provide the user interface (login.aspx, register.aspx, and logoff.aspx), a
.Net assembly, which is used to encapsulate the business logic and make all calls to the directory
through the LDAP-tier. Therefore, VPASS can be scaled using traditional scaling techniques. This is to
say that it can be spread across multiple machines, as the following diagram demonstrates:

TE
AM
FL
Y

Team-Fly®

Chapter 18

14

Server

Consumer Site B

Server

Consumer Site A

Server

Consumer Site D

Server

Consumer Site C

ServerServer ServerServer

ASP .NET Presentation Cluster

Server ServerServer

LDAP Cluster

Server

Server ServerServer

.NET Assemblies Cluster

Server

Directory

SQL Cluster

Directory

VPASS Web Service

Running the Web Service on multiple servers that are working together to meet client requests is a very
effective way of increasing reliability.

All state is stored client-side through the use of cookies or on the query string. When VPASS
authenticates a user, an authentication ticket and profile information is encrypted and stored in a string
that is sent back to the consumer site. The participating site has the option to continue to pass the
information in the query string throughout the site or cache it to a client cookie.

VPASS Security
Let's define what we mean by a secure Web Service. There are many aspects to security – for example,
authentication, authorization, auditing, data privacy, data integrity, availability, and nonrepudiation.

Authentication is the process of verifying that someone (or something) is who they claim to be. The
someone or something is known as a principal. Authentication requires evidence, or credentials. For
example, a client application could present a password as its credentials. If the client application
presents the correct credentials, it is assumed to be who it claims to be. In our example, we have the
Unique Identifier (GUID) that VPASS assigns the user at registration. This is a unique 32-bit identifier
sent (encrypted) to client sites as the authentication ticket when a user signs in.

For more information on Securing Web Services see chapter 14.

Case Study – Passport-Style Authentication Service

15

Directory Services and LDAP
Directory services are designed to provide quick access to information over the network. They are
optimized to provide many reads and infrequent writes. A directory service uses a naming structure to
identify and organize objects that represents information stored in the directory. It is a hierarchical
database but the specifics of its schema are less relevant than the protocol used to define how a client
can access the data the directory contains.

LDAP defines the way clients should access data on the server, but it does not specify how the data
should be stored internally. LDAP offers excellent access to other directory services and has been
implemented as a front-end to many data stores. Many of the major directory vendors have revised or
are revising their products to incorporate, and take advantage of LDAP.

As mentioned earlier, the VPASS Web Service is driven by a directory service and LDAP. Our
directory will store the user authentication credentials and additional user profiling data that can be
used for site personalization. Even though we've chosen to implement the LDAP and directory service
from Site Server in our case study, LDAP provides the flexibility to swap out the directory and replace
it with another directory with minimal changes to the Web Service.

The logical, hierarchical organization of the directory is known as the Directory Information Tree
(DIT). The DIT for our directory contains a root organization (o) and six organizational units (ou):

ou=Admin ou=Groups ou=Dynamic ou=Members ou=Applications ou=DisributuionLists

o=webservices

Each item displayed under the root organization in the figure is an organizational unit and is capable of
containing more organizational units or objects.

For our case study, all users of the service will be stored in the Members OU. Depending on the number
of users that you expect your service to support it may be necessary to consider partitioning the directory.

For more information on scaling the directory service and partitioning see
http://www.microsoft.com/technet/treeview/default.asp?url=/TechNet/prodtechnol/ssc
omm/deploy/confeat/memdirct.asp

Let's take a slightly closer look at our directory tree above.

o=webservices

The root top level organization in our directory is called webservices and can be referenced through
code as o=webservices. It contains all the data in our directory.

Chapter 18

16

o=webservices | ou=members

The members organizational unit will store all the member objects created by the VPASS Web Service.
The Member object will store the following information about our users:

Common
Name

Display Name Description Required
?

Cn Common name The identifier of the registered user that
will be used by the user to sign in.

*

Userpassword User Password The password entered by the user. *

givenName First Name The first name of the user. *

Sn Last Name The last name of the user. *

L User City The city entered by the user.

St User State The state entered by the user.

postalCode Zip Code The zip code entered by the user.

C Country-name The country entered by the user.

nickname Nick-Name The nickname entered by the user.

Gender Gender The gender entered by the user.

birthDate Birth-date The date of birth entered by the user.

language Language The preferred language entered by the user.

timezone Time-Zone The time zone entered by the user.

password
Reminder

Password-
Reminder

The password reminder entered by the user. *

Mail Email Address The email address entered by the user.

GUID Globally Unique
Identifier

A unique 32-bit identifier generated by
the service when the user's registered.

*

Objects and Assemblies
The AuthService object of our ASP.NET Web Service has been written using C#. The object contains
six WebMethods that provide the Web Service with the core business logic and directory access code. We
will review this object and its WebMethods in detail here, and discuss the
System.DirectoryServices namespace, which supports the object in accessing our directory service.

AuthService Business Object – authservice.asmx
The AuthService class provides the WebMethods for accessing our directory service to read, update, and
remove member data from the LDAP directory service. The class contains the following six WebMethods:

Case Study – Passport-Style Authentication Service

17

❑ Authenticate – validates the member name and member password in the directory.

❑ getMemberProps – returns the property values of the member object to the consumer site.

❑ MemberExists – verifies the member object exists in the directory.

❑ UpdateMemberProps – updates the property values of the specified member object.

❑ CreateMember – creates a new member object in the directory.

❑ RemoveMember – removes the specified member object from the directory.

Let's go ahead and look at the class. Open the file named authservice.asmx from the code
download. We begin by declaring the WebService directive, along with the language and class
attributes on the first line.

Next we have the declaration of our namespaces:

using System; //Import the standard system namespace
using System.DirectoryServices; //Import the directoryservices namespace
using System.Web; //Import the web namespace
using System.Web.Services; //Import the web services namespace
using System.Web.Security; //Import the web security names

This is pretty basic stuff, but lets just briefly look at each namespace to emphasize the significance of it
to this project (feel free to skip the rest of this section if it is not relevant to you – we will review the
specific classes of the namespaces when we discuss the WebMethods within our object and explain why
each is required in more detail, below):

❑ System.DirectoryServices – the classes in the namespace provide access to directory
services via the Active Directory Service Providers. These providers include IIS, NTDS, LDAP,
and Novell Netware. We will be using the LDAP provider to connect to our directory service
and will make extensive use of the DirectoryEntry and DirectorySearcher classes.

❑ System.Web – this namespace provides the basic classes for exchanging information
between the Web Service and its clients. We will make use of HTTPRequest to receive
information from forms and HTTPResponse to send information back to our clients.

❑ System.Web.Services – this namespace provides the hooks to enable us to build and use
our Web Services. It makes specific classes available to us that are required for building Web
Services such as the WebService directive mentioned above, and the WebMethod directive
described below. ASP.NET Web Services require us to include a reference to this namespace
and use the attributes within the namespace to enable consumer sites to call our methods.

❑ System.Web.Security – this namespace provides the user authentication modules used in Web
Services. Specifically, we will be looking at the FormsAuthenticationModule and its members.

The next section of code calls the WebService directive, sets up our namespace, and creates the class:

<WebService(Namespace:="http://www.rjbtech.com/authwebservice")> _

Chapter 18

18

Technically, the WebService attribute class is optional, and not required by our Web Service.
However, its members provide functionality that will be required by practically every published Web
Service. By default, a Web Service receives a Namespace property of http://tempuri.org. By including
the Namespace property as part of our WebService attribute we can change the default namespace to
a more permanent name such as our company's Internet domain name.

We could also include the Description property of the WebServiceAttribute. This property
allows us to provide a description of our Web Service to potential consumers. To include the
Description property, we would modify the code as follows:

<WebService(Description := "Provides user authentication and profiling.", _
 Namespace:="http://www.rjbtech.com/authwebservice")> _

The next line of code make use of C# to expose our AuthService class and inherit from the
WebService base class:

 public class AuthService : WebService

WebMethods
Now we can get into the core infrastructure of our Web Service. In this section we will review each of
our WebMethods that can be called from the web via the SOAP protocol. These WebMethods are the
ones we will rely on to do the work for our Web Service. Let's take a look at the steps required to build
the authenticate method first.

authenticate WebMethod

The authenticate method provides the key authentication services behind our Web Service. It
enables our consumer sites to pass in two parameters, strMemberName, which is the unique user
identifier chosen by the member when they registered with the service, and strMemberPassword,
which is the password also chosen by the member when they registered for the service. The function
returns True when the strMemberName and strMemberPassword variables are successfully validated
against the directory service and False if the validation attempt fails.

The next line of code in our object declares the WebMethod attribute and includes the Description
property. Inline with the WebMethod attribute we declare the authenticate method:

[WebMethod (Description="Validates the member name and member password in the LDAP
directory")]
public bool authenticate(string strMemberName, string strMemberPassword)

The next couple of lines of code establish the variables we will be using and their associated data types:

 string sPassword = ""; //declare a variable
 object err; //declare a variable
 string sPath = ""; //declare a variable

We are now ready to begin our Try/Catch block. This statement specifies a block of code that is
always executed and enables us to catch errors that occur during the execution of that code block:

Case Study – Passport-Style Authentication Service

19

try //Begin our try/catch block
{

//Build the path to ou containing the member object
 string strPath = "LDAP://localhost:4957/o=webservices,ou=members";

Underneath the opening Try, we establish a variable and build the physical directory path to the OU
where our member objects are stored in our directory. It's important to note here, that we're also including
the Active Directory Service Interface LDAP:// as part of the physical path. We have chosen to hard
code the path to the OU as part of the function. However, if we wanted to increase the flexibility of the
code and simplify potential issues when migrating from one directory service to another, we could modify
the code very easily to pass the provider and OU path into the function as additional variables.

Now we can create a new instance of the DirectoryEntry object, which we get from the
System.DirectoryServices namespace that we imported earlier, and use our new instance to bind
to the physical path defined in the previous line.

Once we are bound to the OU, we create a new instance of the DirectorySearcher object which allows
us to query the bound OU. Then we initialize an instance of the SearchResult object to store the results of
our query. We use the Filter property and the FindAll method of the DirectorySearcher object to
locate the specific member object we need in the OU and store the SearchResult:

oEntry = new System.DirectoryServices.DirectoryEntry(strPath);
oEntrySearch = new System.DirectoryServices.DirectorySearcher(oEntry);

oEntrySearch.Filter = ("(cn=" + strMemberName + ")");

foreach (System.DirectoryServices.SearchResult oEntrySearchResult in

oEntrySearch.FindAll())
{

sPath = oEntrySearchResult.GetDirectoryEntry().Path;
}

oEntry.Path = sPath;
sPassword = (string) oEntry.Invoke("GET", "userPassword");

oEntry.Close();

In the next line of the code sample above, we get the directory entry path and store it in the sPath
variable for use later on. Then we change the path of the bound object to the path of the member object
we located during our search and for whose password we need to validate. Now we can call the Invoke
method of the DirectoryEntry object to get the value of the members' userpassword property and
store it in the sPassword variable for comparison with the password passed in to the function. Finally,
we are ready to close the DirectoryEntry instance and release its resources back to the system.

Now we are ready for our condition to compare the values of the password passed into the function by
the consumer site with the value retrieved from the directory service. If these values match, we access
the FormsAuthentication module and call its SetAuthCookie method to create an authentication
ticket and return it in the cookie collection of the outbound response:

if (sPassword == strMemberPassword)
{

FormsAuthentication.SetAuthCookie(strMemberName, true);

Chapter 18

20

return true;
}
else

return false;

If all has gone well up to this point, the function returns a Boolean value of true to the consumer site.
If the password submitted to the function by the consumer site does not match the value stored in our
directory we return a Boolean value of false.

Throughout the remaining methods we won't labor upon repeating the same level of detail that we went
through discussing the authenticate method. In other words, we will skip over blocks of code that
are the same as the ones we've already discussed and focus on what is new about each function.

MemberExists

The MemberExists function is very simple. The method is used to verify that the member object exists
in our directory service before calling one of our other methods. Using the method will help prevent
errors when making changes to the member object.

The key operation of the MemberExists method is implemented using the Exists method of the
DirectoryEntry object. The Exists method enables us to search our directory for the specified
member to see if the entry exists. It returns true if the member object exists at the specified path and
false if not. The code is as follows:

[WebMethod(Description="Verifies that the member object exists in the directory,
returns true if it exists, retruns false if it doesn't exist.")]
 public bool MemberExists(string strMemberName)
 {
 try
 {
 //Build the path to ou containing the member object
 string strPath = "LDAP://localhost:4957/o=webservices,ou=members,cn=" +
 strMemberName;

//System.DirectoryServices.DirectoryEntry oEntry = new
 System.DirectoryServices.DirectoryEntry();

return System.DirectoryServices.DirectoryEntry.Exists(strPath);
 }
 catch(Exception e)
 {
 Console.WriteLine(e);
 return false;
 }
 }

getMemberProps WebMethod

The getMemberProps WebMethod returns the values of the properties of the specific member passed
into the method as an array. The array returned to the consumer sites could be used to dynamically
personalize content or streamline an online purchase process.

The method itself is very similar to the authenticate method: we establish the variables, build the
path to the OU, create instances of the necessary objects that enable our code to search for the member
and then use the Invoke method to read the property values of the member object:

Case Study – Passport-Style Authentication Service

21

[WebMethod(Description="Returns the property values of the specified member object
from the directory")]
 public string getMemberProps(string strMemberName)
 {
 string sFirstName; //declare a variable
 string sLastName; //declare a variable
 string sPath = ""; //declare a variable
 string sGuid; //declare a variable
 string sGender; //declare a variable
 string sCountryName; //declare a variable
 string sEmailAddress; //declare a variable
 string sLanguage; //declare a variable
 string sNickName; //declare a variable
 string sPwdReminder; //declare a variable
 string sZip; //declare a variable
 string sTimeZone; //declare a variable
 string sCity; //declare a variable
 string sState; //declare a variable
 string sBirthDate; //declare a variable

 try
 {
 //Build the path to ou containing the member object
 string strPath = "LDAP://localhost:4957/o=webservices,ou=members";
 System.DirectoryServices.DirectoryEntry oEntry = new �
 System.DirectoryServices.DirectoryEntry(strPath);
 System.DirectoryServices.DirectorySearcher oEntrySearch = new �
 System.DirectoryServices.DirectorySearcher(oEntry);
 //System.DirectoryServices.SearchResult oEntrySearchResult;
 oEntrySearch.Filter = ("(cn=" + strMemberName + ")");
 foreach (System.DirectoryServices.SearchResult oEntrySearchResult in �
 oEntrySearch.FindAll())
 sPath = oEntrySearchResult.GetDirectoryEntry().Path;

 oEntry.Path = sPath;

 if (strMemberName != "")
 {
 sGuid = (string) oEntry.Invoke("GET", "guid");
 sLastName = (string) oEntry.Invoke("GET", "sn");
 sFirstName = (string) oEntry.Invoke("GET", "givenName");
 sGender = (string) oEntry.Invoke("GET", "Gender");
 sCountryName = (string) oEntry.Invoke("GET", "c");
 sEmailAddress = (string) oEntry.Invoke("GET", "mail");
 sLanguage = (string) oEntry.Invoke("GET", "language");
 sNickName = (string) oEntry.Invoke("GET", "nickName");
 sPwdReminder = (string) oEntry.Invoke("GET", "passwordReminder");
 sZip = (string) oEntry.Invoke("GET", "postalCode");
 sTimeZone = (string) oEntry.Invoke("GET", "timezone");
 sCity = (string) oEntry.Invoke("GET", "l");
 sState = (string) oEntry.Invoke("GET", "st");
 sBirthDate = (string) oEntry.Invoke("GET", "birthDate");
 oEntry.Close();
 return "FirstName=" + sFirstName + "&LastName=" + sLastName + "&Gender="
+ sGender + "&Guid=" + sGuid + "&CountryName=" + sCountryName + "&EmailAddress=" +
sEmailAddress + "&Language=" + sLanguage + "&NickName=" + sNickName +
"&PwdReminder=" + sPwdReminder + "&Zip=" + sZip + "&TimeZone=" + sTimeZone +
"&City=" + sCity + "&State=" + sState + "&BirthDate=" + sBirthDate;

Chapter 18

22

 }
 else
 return "";
 }
 catch (Exception e)
 {
 return e.ToString();
 }
 }

UpdateMemberProps

The UpdateMemberProps WebMethod provides our object with the capability to modify the properties
of the specified member object. It is important to take note of two primary differences from the method we
reviewed above. The Properties property of our DirectoryEntry object enables us to update the
values of the properties set on the member object. The updated properties are held in the local cache at
this point. To enter them into the directory and perform the actual update on the member object we must
call the CommitChanges() method. Uncommitted changes are lost forever. Here is the code:

[WebMethod(Description="Updates the properties on the specified member object,
returns true if successful, retruns false if it fails.")]
 public bool UpdateMemberProps(string strMemberName, string strMemberPassword,
 string strMemberPasswordReminder, string strMemberFirstName, string
 strMemberLastName, string strMemberNickName, string strMemberEmailAddress,
 string strMemberGender, string strMemberLanguage, string strMemberCity, string
 strMemberState, string strMemberPostalZipCode, string strMemberCountry, string
 strMemberTimeZone)
 {
 try
 {
 //Build the path to ou containing the member object
 string strPath = "LDAP://rjb-tiger300:4957/o=webservices,ou=members,cn=" +�
 strMemberName;
 System.DirectoryServices.DirectoryEntry oEntry = new �
 System.DirectoryServices.DirectoryEntry(strPath);
 oEntry.Properties["userPassword"][0]= strMemberPassword;
 oEntry.Properties["passwordReminder"][0]= strMemberPasswordReminder;
 oEntry.Properties["givenName"][0]= strMemberFirstName;
 oEntry.Properties["sn"][0]= strMemberLastName;
 oEntry.Properties["nickName"][0]= strMemberNickName;
 oEntry.Properties["mail"][0]= strMemberEmailAddress;
 oEntry.Properties["gender"][0]= strMemberGender;
 oEntry.Properties["language"][0]= strMemberLanguage;
 oEntry.Properties["l"][0]= strMemberCity;
 oEntry.Properties["st"][0]= strMemberState;
 oEntry.Properties["postalCode"][0]= strMemberPostalZipCode;
 oEntry.Properties["c"][0]= strMemberCountry;
 oEntry.Properties["timezone"][0]= strMemberTimeZone;
 oEntry.CommitChanges();
 return true;
 }
 catch (Exception e)
 {
 Console.WriteLine(e.ToString());
 return false;
 }
 }

Case Study – Passport-Style Authentication Service

23

CreateMember WebMethod

The CreateMember WebMethod provides the capability to create new member objects within the
members OU. As with the methods we've previously discussed, we begin by establishing the variables,
building the path to members OU, and creating an instance of the directory entry object:

[WebMethod(Description="Creates a new member object in the directory.")]
 public bool CreateMember(string strMemberName, string strMemberPassword)
 {
 object oGuidGen;
 string strGUID;
 try
 {
 //Build the path to ou containing the member object
 string strPath = "LDAP://rjb-tiger300:4957/o=webservices,ou=members";
 System.DirectoryServices.DirectoryEntry oEntry;

However, in the next line of code we deviate from the previous methods and we create an instance of the
DirectoryEntries object, which we will use later to obtain the child entries of our members
DirectoryEntry. After this we establish a variable as a DirectoryEntry to store our new member object:

 System.DirectoryServices.DirectoryEntries oCollection;
 System.DirectoryServices.DirectoryEntry oMember;

Our directory requires that all member objects be assigned a GUID so we need to create a GUID.
There are many ways to create a GUID, but since Site Server includes a GUID generator we use it:

//create the guid generator
oGuidGen = Server.CreateObject("Membership.GUIDGen.1");
strGUID = oGuidGen.Generate();

We are now ready to retrieve a collection of all child member objects under the members OU. We
accomplish this by using the Children property of DirectoryEntry object. Once we have obtained
the collection of child entries, we call the Add method of the DirectoryEntries object to create a
new entry in the members OU. The Add method requires us to pass in two parameters, the name of the
new entry as a string and the name of the schema used for the new entry as a string:

//bind to the OU in which the member will be created
oEntry = new System.DirectoryServices.DirectoryEntry(strPath);

//get a collection of members
oCollection = oEntry.Children;
oMember = oCollection.Add("cn=" + �
strMemberName,oEntry.SchemaClassName.ToString());
oMember.Properties["userpassword"][0] = strMemberPassword.ToString();
oMember.Properties["guid"][0]= strGUID.ToString();

Lastly, we call CommitChanges to enter the new entry into the directory. If all went well and the new
member was successfully added to the directory, the method returns true. If the operation failed, we
return a description of the error:

TE
AM
FL
Y

Team-Fly®

Chapter 18

24

 oMember.CommitChanges();
 return true;
 }
 catch (Exception e)
 {
 Console.WriteLine(e.ToString());
 return false;
 }
}

RemoveMember WebMethod

The RemoveMember WebMethod follows the same format as the previous methods. The only real
difference is the use of the DirectoryEntry object's delete method. We get our DirectoryEntry
by creating oParamArray as the member object we want to delete. Once we have our
DirectoryEntry, we call its Invoke method to make the change in the local cache. Finally, we call
CommitChanges to enter our changes into our directory service and do some cleanup to end our class.

[WebMethod(Description="Removes a member object from the directory.")]
 public bool RemoveMember(string strMemberName)
 {
 try
 {
 //Build the path to ou containing the member object
 string strPath= "LDAP://localhost:4957/o=webservices,ou=members";
 //Dim oParamArray As object() = {"member",strMemberName.ToString()};
 object[] oParamArray = {"member",strMemberName.ToString()};
 System.DirectoryServices.DirectoryEntry oEntry;
 oEntry = new System.DirectoryServices.DirectoryEntry(strPath);
 oEntry.Invoke("Delete", oParamArray);
 oEntry.CommitChanges();
 return true;
 }
 catch (Exception e)
 {
 Console.WriteLine(e.ToString());
 return false;
 }
 }
}

Using the Web Service
In order to use the Web Service, we must know what classes and methods are available and understand
how to use them. As we have seen throughout this book, ASP.NET provides a Web Service help page
that provides exactly that information for us. We can access the page by using our browser to create an
HTTP GET request to call the Web Service on our local machine by pointing our browser at
http://localhost/authwebservice/authservice.asmx. ASP.NET generates a page that shows us that the
Web Service provides a class named "AuthService" and six public methods that we can call:

Case Study – Passport-Style Authentication Service

25

The Web Service also has a service description page which takes you to the WSDL file. This page can
be accessed by clicking on the Service Description link as shown in the screenshot above or it can be
accessed directly by entering the following URL into the web browser:
http://localhost/authwebservice/authservice.asmx?WSDL.

Testing the Service
The first step we will look at is how we can test the Web Service and more specifically the
authenticate method. By directing our browser to
http://localhost/authwebservice/authservice.asmx?op=authenticate or clicking the link on the above
page for the authenticate method we can manually test the Web Service. We can use the HTML form
provided to pass two string values to the authenticate method. Let's enter a member name and
member password and click Invoke now so we can take a closer look at the results.

The screen shot below shows the XML results from the authenticate method call. By examining the
document we can determine that the method returns a Boolean value true if the authentication was
successful and false if authentication failed:

Chapter 18

26

The help page for the authenticate method also defines how communication with the web takes place.
For our authenticate method, for example, we can see that the service supports all three of the
default protocols supported by ASP.NET. These are HTTP-GET, HTTP-POST, and SOAP. For now, we
will use HTTP-GET to test our Web Service. Later on in the chapter, we will look at how to create a
proxy that uses SOAP as the default protocol.

Creating the Proxy
To access our Web Service, we need to build a proxy that will allow consumer sites to communicate
directly with the Web Service.

To create the proxy, we will use the command-line utility to generate code for Web Service clients and
ASP.NET Web Services from WSDL contract files. The utility is WSDL.exe and it requires us to use
several different switches in addition to some optional switches that are also available. To simplify the
use of the utility, we have created a batch file called build.bat that contains the following code:

wsdl http://localhost/authwebservice/authservice.asmx?WSDL /l:CS �
/n:RJBTech.AuthenticationServices /o:authwebservice.cs

If there are no errors, when run, the WSDL utility will have generated a CS source file for us named
authwebservice.cs that we can use to compile a DLL.

Authwebservice Assembly
The source code for the authservice assembly is contained in the file authwebservice.cs. We can
use the C# compiler to compile the source code and create our proxy DLL. Once again, we have placed
the command into a batch file in order to prevent typing errors. This time we will call the file
make.bat. With this, the C# compiler creates a library assembly. Let's go ahead and execute our
batch file. Once the C# Compiler has completed processing the source file and creating our assembly,
we can copy it to the /bin directory of our web application.

Web.Config
The web.config file of our Web Service is very straightforward. It simply provides support for forms
authentication within the Web Service and allows us to set a forms authentication cookie to persist the
user authentication.

Application Interfaces
When a consumer site wants to call our web page, they will need to create a series of web page user
interfaces. Let's take a look at how a site might build an ASPX page to call our Web Service.

Case Study – Passport-Style Authentication Service

27

Login.aspx
To call our Web Service consumer sites will need to create an ASPX similar to the one below. This page creates
a simple form to input the member's name and their password and uses the import directive to reference the
namespace of our Web Service. In this case the namespace, RJBTech.AuthenticationServices.

For the specific steps required to build an ASP.NET form page with controls see
Chapter 14 of Professional ASP.NET ISBN 1861004885 also by Wrox Press.

In the Validate sub we make use of our proxy to access the Web Service to authenticate the client.
Our Validate sub is executed when our Login button is clicked. Once our script has been executed we
establish our variables and collect the values of the arguments passed into our sub from the form. We
then set a flag, bIsAuthenticated, to indicate if authentication has been successful. Initially, we'll set
the flag to false and only change it to true if our user has been successfully authenticated.

Now that our script set up is out of the way we can proceed to create a new instance of our proxy object. We
are ready to call the authenticate method of the Web Service and pass in the values given to us by the
client. If the client is successfully validated against the Web Service, it will return a value of true and
because our Web Service supports forms authentication we will also receive an authentication ticket back as
part of the cookie collection. We can then change the value of our flag from false to true:

<%@Page Language="C#" Debug="true" %>

<%@Import Namespace="RJBTech.AuthenticationServices"%>
<html>
 <head>
 <title>Login Form</title>
 <style type="text/css">
 body, input {font-family:Tahoma,Arial,sans-serif; font-size:10pt }
 </style>
 </head>
<body>
 <FORM name=.ASPXAUTH action=authService.asmx method=post >

Chapter 18

28

 UserName: <input id="txtUsr" type="text" runat="server" />
 <p />
 Password: <input id="txtPwd" type="password" runat="server" />
 <p />
 <ASP:CheckBox id="chkPersist" runat="server" />
 Remember my credentials
 <p />
 <input type="submit" value="Login" runat="server" OnClick="Validate"/>
 <p />
 <div id="outMessage" runat="server" />
 </form>
</body>
</html>

<script language="VB" runat="server">
 public void validate(Object sender, EventArgs e)
 {
 String strMemberName = txtUser.Value;
 String strMemberPassword = txtPwd.Value;

 //set flag to indicate if authentication is successful
 Boolean bIsAuthenticated = false;

 try
 {
 //create a new object
 authService AWS = new authService();

 lblResult = AWS.Authenticate(strMemberName,strMemberPassword);

 if(lblResult = true)
 bISAuthenticated = true;
 }
 Catch(Exception oErr)
 {
 outMessage.InnerHTML = "Error accessing directory.
";
 }
 }

</script>

Register.aspx
The VPASS.Net Web Service provides a registration page that can be used by consumer sites on a
corporate intranet to register new member's in the VPASS directory service using the Web Service
proxy. The registration page implements two methods of our proxy (createMember and
updateMemberProps) to create a new member. Consuming sites can pass values into these methods
via the proxy and registration page and store them in a centralized location. These values can then be
used by other consumer sites to target content to visitors.

The code for the registration page is as shown:

<%@ Page Language="C#" Debug="true" %>
<%@Import Namespace="RJBTech.AuthenticationServices"%>

<html>
 <head>
 <title>Registration Form</title>

Case Study – Passport-Style Authentication Service

29

 <style type="text/css">
 body, input {font-family:Tahoma,Arial,sans-serif; font-size:10pt }
 </style>
 </head>
 <body>
 <FORM name=.ASPXAUTH action=registerme.aspx method=post >
 <table>
 <tr>
 <td>UserName:</td>
 <td><input id="txtUsr" type="text" runat="server" NAME="txtUsr"/></td>
 </tr>
 <tr>
 <td>Password: </td>
 <td><input id="txtPwd" type="password" runat="server" NAME="txtPwd"/></td>
 </tr>
 <tr>
 <td>Password Reminder:</td>

 <td><input id="txtPasswordReminder" type="text" runat="server" �
 NAME="txtPasswordReminder"/></td>
 </tr>
 <tr>
 <td>First Name:</td>

 <td><input id="txtFirstName" type="text" runat="server" �
 NAME="txtFirstName"/></td>
 </tr>
 <tr>
 <td>Last Name:</td>

 <td><input id="txtLastName" type="text" runat="server" �
 NAME="txtLastName"/></td>
 </tr>
 <tr>
 <td>NickName:</td>

 <td><input id="txtNickName" type="text" runat="server" �
 NAME="txtNickName"/></td>
 </tr>
 <tr>
 <td>Email Address:</td>

 <td><input id="txtEmailAddress" type="text" runat="server" �
 NAME="txtEmailAddress"/></td>
 </tr>
 <tr>
 <td>Gender:</td>

 <td><input id="txtGender" type="text" runat="server" �
 NAME="txtGender"/></td>
 </tr>
 <tr>
 <td>Birth Date:</td>

 <td><input id="txtBirthDate" type="text" runat="server" �
 NAME="txtBirthDate"/></td>
 </tr>
 <tr>
 <td>Language:</td>

 <td><input id="txtLanguage" type="text" runat="server" �
 NAME="txtLanguage"/></td>
 </tr>
 <tr>
 <td>City:</td>

Chapter 18

30

 <td><input id="txtCity" type="text" runat="server" NAME="txtCity"/></td>
 </tr>
 <tr>
 <td>State:</td>

 <td><input id="txtState" type="text" runat="server" �
 NAME="txtState"/></td>
 </tr>
 <tr>
 <td>Postal Zip Code:</td>

 <td><input id="txtPostalZipCode" type="text" runat="server" �
 NAME="txtPostalZipCode"/></td>
 </tr>
 <tr>
 <td>Country:</td>

 <td><input id="txtCountry" type="text" runat="server" �
 NAME="txtCountry"/></td>
 </tr>
 <tr>
 <td>Time Zone:</td>

 <td><input id="txtTimeZone" type="text" runat="server" �
 NAME="txtTimeZone"/></td>
 </tr>
 <tr>
 <td></td>

 <td><input type="submit" value="Login" runat="server" OnClick=�
 "Register" ID="Submit1" NAME="Submit1"/></td>
 </tr>
 <tr>
 <td></td>
 <td> <div id="outMessage" runat="server" /></td>
 </tr>
 </table>
 </form>
 </body>
</html>

The page starts out by importing a reference to our Web Service proxy. Then, we include a series of
input controls on the body of the page to collect values from new visitors.

In the code below, we create a sub called Register to accept the value pairs from our form:

<script language="C#" runat="server">
 public void Validate(object sender, EventArgs e)
 {
 string strMemberName = txtUsr.Value;
 string strMemberPassword = txtPwd.Value;
 string strMemberPasswordReminder = txtPasswordReminder.Value;
 string strMemberFirstName = txtFirstName.Value;
 string strMemberLastName = txtLastName.Value;
 string strMemberNickName = txtNickName.Value;
 string strMemberEmailAddress = txtEmailAddress.Value;
 string strMemberGender = txtGender.Value;
 string strMemberBirthDate = txtBirthDate.Value;
 string strMemberLanguage = txtLanguage.Value;
 string strMemberCity = txtCity.Value;
 string strMemberState = txtState.Value;
 string strMemberPostalZipCode = txtPostalZipCode.Value;

Case Study – Passport-Style Authentication Service

31

 string strMemberCountry = txtCountry.Value;
 string strMemberTimeZone = txtTimeZone.Value;
 bool lblResult;

 try
 {
 //create a new object
 authService AWS = new authService();
 lblResult = AWS.CreateMember(strMemberName,strMemberPassword);
 if (lblResult)

 lblResult = AWS.UpdateMemberProps(strMemberName,strMemberPassword, �
 strMemberFirstName,strMemberLastName);
 }
 catch (Exception oErr)
 {

 outMessage.InnerHTML = "Error accessing directory.
" + oErr.Message &�
 "
" + oErr.Source;
 return;
 }
 }
</Script>

Here, we establish some variables and set them to values posted to our form page. We need to create a
new instance of our Web Service proxy object next and call the createMember method. If the method
is successful and the new member object is created, we can proceed to update the properties of the
member object with the additional values entered by the member. We close our Try/Catch statement,
add some code to inform us if an exception is detected and finally close out our sub.

displayme.aspx
The VPASS Web Service provides profiling services to its consumer sites by collating the most
commonly requested information from users in one location. This centralized profiling service enables
consumer sites to streamline their processes to make completing transactions easier and more efficient
for both the consumer site and the member.

To demonstrate how the service provides this information we will build a page called displayme.aspx
which very simply retrieves member profile data from the Web Service for an authenticated member. In
order to get access to the methods of our web proxy the first thing we need to do is import the namespace
RJBTech.AuthenticationServices. We'll add <div> tags to the body of the file and use these tags
to display the information we retrieved about the member from the Web Service:

<%@ Page Language="C#" Debug="true" %>
<%@Import Namespace="RJBTech.AuthenticationServices"%>
<html>
 <head>
 <title>Login Form</title>
 <style type="text/css">
 body, input {font-family:Tahoma,Arial,sans-serif; font-size:10pt }
 </style>
 </head>
 <body>
 <div id="lblResult" runat="server" />
 <p />
 <div id="FirstName" runat="server" />
 <p />

Chapter 18

32

 <div id="LastName" runat="server" />
 <p />
 <div id="Gender" runat="server" />
 <p />
 <div id="Guid" runat="server" />
 <p />
 <div id="CountryName" runat="server" />
 <p />
 <div id="EmailAddress" runat="server" />
 <p />
 <div id="Language" runat="server" />
 <p />
 <div id="NickName" runat="server" />
 <p />
 <div id="PasswordReminder" runat="server" />
 <p />
 <div id="Zip" runat="server" />
 <p />
 <div id="TimeZone" runat="server" />
 <p />
 <div id="City" runat="server" />
 <p />
 <div id="State" runat="server" />
 <p />
 <div id="BirthDate" runat="server" />
 <p />
 <div id="outMessage" runat="server" />
 <p />
 </body>
</html>

Next we add a new sub called Page_Load to displayme.aspx which will be automatically called when
the page loads. Now we can go ahead and establish a few variables for use within our Page_Load sub. For the
purposes of the demonstration, we'll hardwire the strMemberName parameter of the Web Service to the user
smithj from our directory service. The getMemberProps WebMethod of our Web Service is the one we'll
use to access the member's profile information. This method will return a single string containing the values:

<script language="C#" runat="server">
 public void Page_Load(object sender, EventArgs e)
 {
 string strMemberName = "smithj";
 string lblResult;
 string[] sResult;

 try
 {
 //create a new object
 authService AWS As New authService();
 lblResult = AWS.getMemberProps(strMemberName);

 sResult = lblResult.Split('&');

 NickName.InnerHtml = lblResult;
 FirstName.InnerHtml = sResult[0];
 LastName.InnerHtml = sResult[1];
 Gender.InnerHtml = sResult[2];
 Guid.InnerHtml = sResult[3];

Case Study – Passport-Style Authentication Service

33

 CountryName.InnerHtml = sResult[4];
 EmailAddress.InnerHtml = sResult[5];
 Language.InnerHtml = sResult[6];
 NickName.InnerHtml = sResult[7];
 PasswordReminder.InnerHtml = sResult[8];
 Zip.InnerHtml = sResult[9];
 TimeZone.InnerHtml = sResult[10];
 City.InnerHtml = sResult[11];
 State.InnerHtml = sResult[12];
 BirthDate.InnerHtml = sResult[13];
 }
 catch (Exception oErr)
 {

 outMessage.InnerHtml = "Error accessing directory.
" + oErr.Message +�
 "
" + oErr.Source;
 return;
 }
 }
</script>

Once we have begun our Page_Load sub, you can see from the code above that we then create a new
instance of our AuthService class. This proxy class that we created contains all the web-callable
methods of our service. In the next line, we call the getMemberProps method and pass in the
strMemberName variable that we set earlier. If all goes well the function will return a single
concatenated string containing all the profile values stored by the service.

We chose to return the values from the method as a single string rather than multiple name value pairs
to help offset the potential performance and availability issues of Web Services running on the Internet.
It's important to limit the number of requests a consumer site has to make of the service. Since VPASS
is designed to run as an internal Web Service on a corporate intranet, the number of requests and the
efficiency of each request become less critical with LAN speeds now reaching into the gigabits per
second. One potential modification that we could make to the VPASS Web Service to increase
efficiency would be to immediately return the profile information when the member is successfully
authenticated instead of returning true from the authenticate WebMethod.

You can see in the code that our string actually contains the 13 distinct profile values. We'll assign these
values and set the content of the controls we placed in the body of our page using the InnerHTML
property. Finally, we do some cleanup and end our sub.

TE
AM
FL
Y

Team-Fly®

Chapter 18

34

The page generated by all this looks like this:

Logoff.aspx
When a user wants to end their session, it's important that we delete all cookies. We can accomplish this
by calling the SignOut method of the forms authentication object. The SignOut method removes the
authentication ticket from the cookie that was issued to the user.

<%@ Page Language="c#" Debug="true" %>
<script language="c#" runat="server">

void Page_Load()
{
 //destroy the users authentication cookie
 FormsAuthentication.SignOut();

 //and redirect them to the login page
 Response.Clear();

Case Study – Passport-Style Authentication Service

35

 //Response.Redirect(Request.UrlReferrer.ToString())
 Response.Write ("LogOff Complete!");

}

</script>

Summary
In this case study we've shown how ASP.Net Web Services can provide a simple authentication and
profiling service to an intranet based application. More specifically, we have:

❑ Looked at the creation of the service and its web proxy.

❑ Built some ASP.Net pages to illustrate how consumer sites would implement the service as
part of their site.

Chapter 18

36

Case Study – BizTalk

In this case study, we will take a look at Microsoft's BizTalk Server 2000. BizTalk is not a part of the
.NET Framework, but it is one of the building blocks of the .NET platform. We will work through a
great case study to see how BizTalk can be leveraged and the powerful role it can play in a Web
Services architecture.

This chapter looks at:

❑ A brief overview of Biztalk Server 2000

❑ How to use BizTalk Server 2000 to aggregate Web Services

It is not intended to fully explain and explore BizTalk Server 2000, as that would be a complete book in
itself (and in fact, it is. See Wrox Professional BizTalk Server, ISBN #1861003293). This chapter
assumes some familiarity with BizTalk, and the aforementioned publication is an excellent way to get
that familiarity.

In addition, the Web Services used in this case study have been kept simple so as not to detract from the
focus of the chapter: the aggregation of .NET Web Services using BizTalk Server. Examples of more
complex Web Services can be found in other chapters throughout this book.

BizTalk in a nutshell
BizTalk is a multi-pronged initiative from Microsoft. It consists of:

❑ BizTalk Framework specification

17

Chapter 17

2

❑ BizTalk.org web site

❑ BizTalk Server 2000 product

While it is not the goal of this chapter to be a definitive guide to BizTalk, we will briefly discuss the
various components of the BizTalk initiative in order to provide you with a basic grounding. For more
detailed information on BizTalk, please refer to Wrox's Professional BizTalk ISBN 1861003293.

BizTalk Framework
The BizTalk Framework (version 2.0 was current at the time this was written) defines a SOAP-compliant
message envelope. It adds value to the current SOAP specification (version 1.1, although there is a
version 1.2 working draft) by focusing on business-related details such as idempotent delivery,
guaranteed delivery via receipt request, finite document lifetime and more.

The BizTalk Server is capable of routing any XML documents, not just BizTalk Framework-compliant
documents. Although BizTalk Server 2000 works internally with XML documents, it can easily import
EDI documents such as X12 or UN/EDIFACT or flat files, allowing us to do custom transformations on
the way in. Rather than shunning existing EDI initiatives, BizTalk Server embraces them, which makes
it easy to use the BizTalk Server as a routing and processing controller for EDI documents.

BizTalk Server uses BizTalk Framework-compliant documents to provide "reliable messaging". It can
also be used as a wrapper for non-XML messages.

Our BizTalk implementation will use standard XML documents as the input and output of the business
process. We will not be using BizTalk Framework-compliant documents in our implementation.

BizTalk.org
The BizTalk.org website is an online repository of BizTalk Framework-compliant schemas. The
intention is that it be a place where developers and trading partners can go to retrieve standardized
schemas. If BizTalk.org realizes its full potential, then it will become a significant developer resource, as
developers will be able to re-use schemas created by other developers. Instead of starting with a blank
slate, they will be able to start with an existing schema and either use it as it, or build on it to suit their
specific needs.

In addition to schema discovery, BizTalk.org allows users to register interest in a schema. If you register
interest in a schema, you will automatically be notified of any updates to that schema. In addition, the
number of users registered for a given schema is published along with the schema information,
providing a mechanism to give prospective users an indication of the popularity of a schema.

BizTalk Server 2000
BizTalk Server 2000 is an extremely ambitious product, and is a key piece of Microsoft's .NET
initiative. Microsoft's vision is to provide a product that addresses all facets of the interoperability
puzzle, including inter-application and inter-enterprise interoperability. Most players in this space
started with products focused either on B2B integration, or on Enterprise Application Integration, and
then added on the other capability. This yields results that are often not optimally integrated. BizTalk,
on the other hand, tightly integrates these capabilities.

Case Study – BizTalk

3

The key premise behind BizTalk is to remove integration code from the applications, and to instead
perform integration by configuring data flow and acting on the data. This approach yields loosely-
coupled applications that are better suited to modern business requirements, and more resilient to the
inevitable changes that will occur. BizTalk Server moves us away from creating extensive tightly-
coupled application integration layers, towards a world of integration done via configuration.

For the benefit of readers completely unfamiliar with BizTalk Server 2000, it includes the
following tools:

Tool Description

BizTalk Editor Edits the schema that defines a document (an XML document
in most cases, but not necessarily)

BizTalk Mapper Establish transformation relationships between two documents

BizTalk Messaging Manager Create and maintain BizTalk entities (ports, channels, etc)

BizTalk Orchestration
Designer

Visual modeling tool based on Visio for defining a business
process and its implementation

BizTalk Server Administrator Tool for cross-server system level maintenance of BizTalk
Servers

Document Tracking Web-based interface to the tacking database

As mentioned, this chapter will not attempt to be a comprehensive guide to the entire product, nor is it
intended to serve as a tutorial. Instead, we will focus on how BizTalk Server 2000 can be used in
conjunction with .NET Web Services.

Application Overview
The source code for this application is included with the downloads. The installation has been simplified
with the use of setup scripts. Please see the accompanying README.TXT file for instructions.

We will be creating a BizTalk Orchestration schedule that will do the following:

❑ Retrieve an order from Message Queuing

❑ Call a Web Service to pre-authorize a credit card

❑ If the pre-authorization fails, move the order to a "Suspended" Message Queuing queue

❑ If the pre-authorization succeeds, call a Web Service at a fulfillment partner site to ship the order

❑ Call a Web Service to charge the credit card

❑ If the customer provided an email address, call a Web Service that sends a shipment
confirmation email.

❑ Place the completed order on a "Completed" Message Queuing queue

Chapter 17

4

These workflow steps are shown below, graphically represented by the BizTalk Orchestration designer:

The above diagram should be fairly self-explanatory. It includes shapes for the following tasks:

Task Description

Begin The filled-in "Begin" shape is the starting point for the Orchestration
schedule.

Oval task shapes The white ovals (eg "get message from queue") are tasks in the business
process.

Decision The square decision shape is a branching point identical to a
programmatic "If" statement.

Case Study – BizTalk

5

Task Description

Or The filled-in "Or" shape denotes two branches of the business process
merging together. We will look at this more closely later in the chapter.

End The filled-in "End" shape in this case marks an end point for the business
process and is also used to mark the end of a looping construct, as we will
see later in this chapter.

We will use BizTalk Server 2000's Orchestration Designer to model the business process, and it will be
managed automatically for us by BizTalk's Orchestration engine: the XLANG Scheduler. However,
before we move on to the workflow, we will start by defining the various pieces it will require.

Defining the Messages
There are two levels of message definition in BizTalk Server:

❑ creating a document specification in the BizTalk Editor

❑ registering it in the BizTalk Messaging Manager

Document definition in the Messaging Manager adds an entry to the repository of available documents,
and basically tells BizTalk Messaging that the document exists. We will need to do this in order to set
up our messaging channel (the pipe through which our message will flow).

For our purposes, we will have a single message that travels through the business process. The
fulfillment partner will modify the message by populating the shipping reference element as the
document passes through them.

We will use the BizTalk Editor to create the document specification. The BizTalk Editor is an editing
tool that allows you to define message characteristics such as the grammar and vocabulary of an XML
message, cardinality and allowable data ranges. The output of the editor is an XML schema document.
The BizTalk editor also supports importing from well-formed XML documents, DTDs and existing
XML schemas.

Two bonus features of the BizTalk Editor are that it allows for the creation of an instance document
and validation of a specific instance. Creating an instance document means creating an XML
document that conforms to the schema you've created, populated with dummy data. This saves the
developer some of the tedium of creating test data. Validating a specific instance document against a
schema allows the developer to check the system inputs to ensure that the message origin point is
creating messages properly.

In order to declare the documents as being available to the BizTalk Messaging Manager, we will have to
tell it which specification they conform with, making specification definition our logical starting point.

Chapter 17

6

For our implementation, we've opted to use Message Queuing (formerly known as MSMQ) as a
coupling mechanism to other applications. A loose-coupling between applications like this has some key
advantages, notably scalability and reliability. If our "front end" web site gets heavily used, we could
scale up to any number of web servers, and have them all place messages on the same queue. This
means that the front end (from our viewpoint) could be scaled without having any impact on
architecture. We would also gain reliability: should the power supply on the BizTalk Server computer
catch fire, orders would continue to accumulate on the server hosting the queue, and once the BizTalk
Server is resurrected, the backlog of orders will be cleared automatically.

The following screenshot shows several messages in the BizTalk Messaging Manager. The one we will
be using throughout our example is WroxBTSWS:

After discussions with the e-commerce architects who are creating the system that will deposit messages
on the message queue, we know that they will be sending us an order that will look like this
(WroxBTSWS_Instance.xml in the code download):

<?xml version="1.0"?>

<Order Reference="ORD87443">

 <Customer>

 <ContactInfo>

 <FirstName>Melissa</FirstName>

 <LastName>Stevenson</LastName>

 <HomePhone>619-123-4567</HomePhone>

 <WorkPhone>858-123-4567</WorkPhone>

Case Study – BizTalk

7

 <Email>bloesgen@stellcom.com</Email>

 </ContactInfo>

 <ShipTo>

 <Address1>17 Miriam Way</Address1>

 <Address2>Suite 1705</Address2>

 <City>La Costga</City>

 <State>CA</State>

 <ZipCode>92009</ZipCode>

 </ShipTo>

 <BillTo>

 <Address1>17 Miriam Way</Address1>

 <Address2>Suite 1705</Address2>

 <City>La Costga</City>

 <State>CA</State>

 <ZipCode>92009</ZipCode>

 </BillTo>

 <Billing>

 <CardNumber>8111-1111-1111</CardNumber>

 <Expires>09/04</Expires>

 </Billing>

 </Customer>

 <OrderItems>

 <Item>

 <ProductID>4500IPAQ</ProductID>

 <Quantity>1</Quantity>

 <Price>450.00</Price>

 </Item>

 <Item>

 <ProductID>123CASE</ProductID>

 <Price>28.00</Price>

 </Item>

 </OrderItems>

 <OrderTotal>478.00</OrderTotal>

 <Shipping>

 <ShipDate>02/02/2002</ShipDate>

 <ShipReference>TR-143M98</ShipReference>

 </Shipping>

</Order>

We can import this document directly into the BizTalk Editor. This is a time-saving step that will create
the structure of the XML document. When you import a document into the BizTalk Editor (using the
Tools/Import menu option), you will not have any information about cardinality or data types. You can
use the editor after importing to add these important schema elements. After we import the message,
this is what it looks like in the BizTalk Editor:

TE
AM
FL
Y

Team-Fly®

Chapter 17

8

The left-hand pane of the editor shows a tree structure representing the schema. A database-oriented
record/field nomenclature is used, which may strike you as odd if you are coming from an XML
background. However, this starts to make sense when you consider that BizTalk Messaging is about
moving documents, and that those documents could start life as a non-XML entity, for example, a flat
file. The XML terms of "elements" and "attributes" does not make sense when applied to a flat file,
however the records/fields semantics still make sense. The difference between records (with
horizontal lines across the icon) and fields (vertical lines down the icon) is that records can contain
fields, allowing the creation of hierarchical documents. When you import a document into the
BizTalk Editor, it will automatically create a field for an element in your XML document that does
not contain any child nodes.

Case Study – BizTalk

9

The BizTalk Editor does not impose any design constraints, we can structure our documents any way we
want, and we are free to use either attribute-normal or element-normal constructs. A drop-down allows
us to convert a "field" to be either an element or an attribute.

Mapping Messages
In the nascent days of XML (and some would argue that we're still there!), converting between different
document definitions meant doing so by code either by applying an XSL transformation, or
programmatically.

BizTalk Server 2000 introduces the BizTalk Mapper, a graphical solution to the mapping problem. With
the BizTalk Mapper, you load source and destination document definitions, and then establish a
relationship between them by dragging lines between the data entities that travel from the source to the
destination. The output of the BizTalk Mapper is still an XSLT (see the output window), but defining the
relationships in a GUI environment is far more productive than doing so in XSLT.

We will not be using the Mapper in our example, but it is worth mentioning, as it is an important part of
BizTalk Server 2000 messaging. As messages move through a message "channel", we can convert them
from one type of XML document to another, or from other document types to XML.

The following is a screenshot showing a message being mapped to a file of similar, but essentially
different structure:

Chapter 17

10

You'll notice from looking at the map that most of the relationships are one-to-one, a line directly
connects an entity in our source document with a corresponding entity in the destination document
(note that in our case some of the names are different).

An exception to this is the fact that our source specification has a "FirstName" and "LastName"
element, with connection lines that converge to a box in the middle of the map before a single line
connects that box with "ShipName" in the destination specification. As you may have suspected, there is
a transformation occurring. The box is a "Functoid", which is an intermediate step that can be
introduced into the mapping process.

The BizTalk Mapper includes a large
selection of functoids for common tasks
such as string manipulation, financial and
scientific functions, custom script and even
database access (very powerful, but watch
performance considerations with this last
two!). In our case, we have used a custom
script functoid to concatenate the first name,
a blank space and the last name. The
following screenshot shows the property
dialogs for this functoid:

As you can see above, the input parameters
are specified as XPath expressions pointing
to elements in our source document.

On the script tag, the two input parameters are received, the script runs, and the return value of the
script is inserted into the destination element.

Case Study – BizTalk

11

BizTalk uses a WebDAV repository to store both document specifications created by the BizTalk Editor
and the maps created by the BizTalk Mapper. This allows for centralized access through HTTP and a
web interface, and allows access without needing to expose a file share. This is a level of indirection that
would make it possible for the WebDAV repository to be relocated without affecting any of the
developers or applications that depend on it.

Messaging Ports
There are two types of ports in BizTalk, BizTalk Messaging Ports and the ports used by BizTalk
Orchestration. This seems to be a major cause of confusion to newcomers to BizTalk, until they realize
that they are two separate and unrelated things.

BizTalk Orchestration ports will be discussed in greater detail when we create our schedule, but they
are essentially a "bridge" between the design and the implementation of a business process.

In this section, we are only concerned about BizTalk Messaging Ports, which are one type of entry point
to BizTalk messaging. A Messaging Port binds a specific organization or application with up to two
transports (primary and backup, such as HTTP and SMTP).

For our use, we will only need one Messaging port, which is the port involved in the activation of our
Orchestration schedule.

As with other parts of
BizTalk, everything is
driven by wizards both in
the original creation of the
entity as well as in any
subsequent editing
operations. The most
important of those dialogs
from the BizTalk Messaging
Manager is shown below:

Note that this is a messaging port to a new XLANG schedule. The "Port Name" referred to above is the
port inside the orchestration schedule.

Chapter 17

12

Defining the Channel
A BizTalk channel is a grouping mechanism that combines a source (application or organization) with a
target (application or organization) and specifies things like mapping, document specifications and auditing.

In our application, we only have one channel; the one associated with the port described above that is
used to activate our Orchestration schedule. If you look at the Orchestration schedule, you'll see lots of
implementation shapes, but only the activation step involves a channel. The web service calls are done
through a COM shape, and the output goes to Message Queuing queues, the location of which we
explicitly specify.

Starting it all off…
Up to this point, we have seen most of the BizTalk Messaging pieces that will comprise our business
process, but there is one important piece missing, which is the initiation of the entire process.

To do this, we will create a BizTalk receive function. The function will monitor the message queue, and
when an order appears on our inbound queue, it will launch a new instance of the Orchestration process.

The receive function "WroxBTSWS" is shown below in the BizTalk Server Administration tool:

Let's step through the various screens to see how this receive function is set up.

The first screen, which you get to by right-clicking on the receive function name and choosing
"Properties", is where we specify the name and access information:

Case Study – BizTalk

13

We need to ensure that the user ID information we specify has sufficient rights to gain access to the
location (in our case, a queue in Message Queuing) that is being polled. Note also that receiving can be
turned off by checking the "disable receive function" checkbox, giving us a single point to control the
availability of an entry point into a channel.

For this example, we are polling a message queue. You can also create polling functions for file
receipt. In that case, a folder can be monitored, and when a file appears in that folder (by file copy or
FTP), it can be passed into a channel. It is important to note that a receive function does not waste
CPU cycles by constantly polling a folder. Instead, it receives an operating system event when a file
is placed in the folder.
The Services tab is where we specify which computer the receive function should run on, and the name
of the receive function:

Chapter 17

14

Finally, the Advanced tab is where we specify which channel we want to run when a message is
received from our polling location (in this case it is the message queue specified as the "polling location"
on the Services tab):

Case Study – BizTalk

15

The channel we are using here is called "WroxBTSWS". As we're not providing a comprehensive look
at BizTalk here, only relevant fields will be explained, where not self-explanatory.

Now lets move on to the actual Orchestration schedule.

Drawing the Orchestration Schedule
We have now defined all the infrastructure pieces that are required to support our schedule. The next
step is to draw and implement the schedule itself.

When you first start the BizTalk Orchestration Designer, you'll notice it seems to be split down the
middle. The reasoning behind this is that the business analyst and end user work together to model the
business process in the left-hand pane, and then the developer connects the implementation pieces in
the right-hand pane. In BizTalk Server 2000, tasks are implemented by one of the following means (see
the shapes in the right-hand margin):

❑ A COM component

❑ A script component

❑ Message queuing

Chapter 17

16

❑ BizTalk Messaging

The file we will be working with is WroxBTSWS.SKV. There is a compilation process, which will
produce a file called WroxBTSWS.SKX. This is the XLANG XML file that will be used by the XLANG
scheduler to actually "run" our orchestration.

The tool palettes to the left and right of the design surfaces reflect these roles. The left-hand palette has
flow control shapes that allow you to control the workflow, including branching, joining, decisions and
looping, The shapes on the right-hand palette are for the creation of orchestration "ports". Ports in this
context are the rectangles that bridge the process diagram on the left and the implementation on the
right. It is important to note that these ports bear no relationship to the Messaging Ports we saw earlier.

Note that the work surface has two tabs: "Business Process" and "Data". The business process tab
shows the flow of execution. The data tab shows the actual message flow. We will need to work on both
of these tabs in order to implement our workflow.

Let's examine this schedule moving sequentially from the top down through the tasks.

Our entry point to this workflow is through the receive function. It will be polling the message queue,
and when an order appears, it will take the order and send it through the WroxBTSWS BizTalk
Messaging channel that we designated in the receive function properties. This channel in turn is
associated with the BizTalk Messaging port we created, which is where we start this new instance of the
schedule from.

Case Study – BizTalk

17

"Get message from queue" Task
The first task following the "Begin" shape is the "Get message from queue" task shown on the left-hand
design surface. The Orchestration port (straddling the double line) "receive_order" is our entry point
from the BizTalk Messaging channel that our receive function sends the order through.

All of the elements shown in the Orchestration Designer were created by running wizards, and they can
subsequently be edited using the same wizards.

Double clicking on the line
to the right of the
"receive_order" port
invokes the Biztalk
Messaging Binding Wizard.
The first two steps in the
wizard specify that the name
of this port is
"receive_order", and that it
is a receive port. The next
step is crucial, as this is
where we specify that this
port creates a new instance
of the schedule:

Clicking on the line to the
left of the "receive_order"
port invokes the
Communication Wizard that
will tie the message we
received to our
Orchestration schedule.
This dialog box is the same
as will be shown for the first
screen of the
Communications Wizard,
regardless of the port
implementation:

TE
AM
FL
Y

Team-Fly®

Chapter 17

18

Note the "time to wait" field. This is the field that tells the XLANG Scheduler how long the schedule
should remain in memory prior to being persisted to disk. In this case, the question is irrelevant as this
is an activation step, and the schedule instance did not exist prior to the message being received. This
field is extremely significant in the case where the task may be waiting for a response from a business
partner, or is part of some long-running process.

The next screen in the
wizard is where we specify
the name we want to use on
the data page (which we'll
look at later) to represent
the message we are
receiving. Referring to the
schedule, you'll notice that
"Order" is the name that
appears inside the small
rectangle inside the
receive_order port. The
label in the small rectangle
tells us at a glance the name
of the message flowing
through a port:

The XML Translation Information step (not shown) specifies that we are receiving an XML message
(rather than a string, which could be an EDI message or some other structured or delimited string).

The next screen is where we
define the message type.
BizTalk Messaging uses this
to identify the message
removed from the queue.
This would be used to
identify documents in the
event that you had multiple
documents being placed in
the same queue:

Case Study – BizTalk

19

The screen following this is
where we provide message
specification information. In
this case, we are validating
the received documents in
order to ensure that they
conform to this
specification. If we accepted
input from only internal
applications where the
documents were
programmatically created,
applications that we can
trust to send sensible data,
we may opt to not have
validation performed:

Note the "Add" button. BizTalk is all about XML, but you don't need to know XML in order to use it.
In some places, such as this, XML is just an implementation detail. The "Document" message field
shown represents the entirety of our inbound XML message. At the schedule level, we don't know
anything about the content of the message, we are just passing it around as a monolithic chunk of data.
However, later in the schedule, we will be making a decision whether to send an email or not based on
whether or not an email ID has been provided. The "Add" button allows us to reach into the document
and surface parts of it by using an XPath expression and navigating the document structure. We know
the document structure at this stage because we know which document specification the document
conforms to. The Email field has been surfaced, and is shown here as a message field with the
corresponding XPath expression beside it.

COM Interop
At long last, we are getting ready to invoke .NET Web Services from BizTalk Orchestration. Before we
do so, we need to take a sidebar look at .NET COM interoperability.

In the real world, there is a massive investment in existing COM objects. When people talk about
interoperability between COM and .NET, most will be talking about new .NET components and
applications that are able to invoke services provided by the legacy COM components. The BizTalk
Orchestration Designer in BizTalk 1.0 predates .NET, and doesn't understand Web Services or .NET
components. It does however understand COM components, and includes a COM binding wizard. So,
our challenge becomes making the COM binding wizard aware of something that we can use to invoke
a .NET Web Service.

We have two choices, we can create a COM object using VB6 or our favorite development tool that
uses the SOAP Toolkit Version 2.0 SP2 to invoke a .NET Web Service (at the time of going to press, the
current version of .NET was beta 2, and due to WSDL issues it was not compatible with versions of the
SOAP Toolkit prior to Version 2 Service Pack 2). Alternatively, we can write a class in .NET that will
be callable by the COM binding wizard. Being forward thinkers, we choose the .NET approach.

Chapter 17

20

In order to keep everything as simple as possible, we will create a separate namespace
(WroxBTSWSStubs) that includes stub interfaces to the three Web Services we will call. All components
and stubs in this example were written in C#.

Let's look at a portion of one of the stubs in order to understand what is required from an
interoperability perspective:

using System;
using System.Runtime.InteropServices;
using System.Xml;

namespace WroxBTSWSStubs
{
 /// <summary>
 /// ChargerStub invokes the Charger Web Service.
 /// </summary>

 [ClassInterfaceAttribute(ClassInterfaceType.AutoDual)]
 [GuidAttribute("537F23E9-BBD4-45ea-920F-41C617AE449C")]
 public class ChargerStub
 {
 ...
 }

Specifying a ClassInterfaceType of AutoDual is required in order for the class to expose an interface
that is COM-callable. The interface will have the same name as the class, prefixed with an underscore.

We have explicitly assigned a GUID (generated for us by the tool in Visual Studio .NET). Although this
step is not explicitly required, it was done in order to ensure binary consistency across multiple
machines and to ease debugging.

A step that is not shown here in code is accomplished through the GUI. Using the Solution Explorer,
edit the namespace properties and ensure that "Register for COM Interop" in the Configuration|Build
properties of the WroxBTSWS project is set to true. The steps required for COM interoperability were
simplified going from Beta 1 to Beta 2.

One last point worth mentioning about COM interoperability, although we don't use it in our example,
is the ComVisible attribute. Once we've followed the steps above, our class will be visible to COM, but
we can use this attribute to make specific methods, classes or attributes hidden to COM.

Once the WroxBTSWSStubs namespace has been built and properly registered on the target machine,
our .NET stubs will be visible to COM.

"Do Credit Card Preauth" Task
The first action that occurs in our orchestration schedule is a credit card pre-authorization.

If you look to the right-hand implementation side of this task, you will see a COM shape. In this
implementation, we take the order we removed from the queue and pass it to our .NET stub, which will
in turn invoke a .NET Web Service.

Case Study – BizTalk

21

The first two screens of the
COM Component Binding
wizard allow us to name the
port and to specify that we
want static instantiation of
our COM component (let
the XLANG Scheduler
instantiate it). Next, we get
to the Class Information
page:

The next screen (not included here) shows us the interface we've exposed from our class, in this case
"_ChargerStub".

The screen after this shows
us a list of available public
methods (including the
default methods exposed by
all .NET objects). This is
where we specify which
methods we will be able to
call from our schedule:

In this case, we only specify the DoPreauth method. Alternatively, we could have specified both the
DoPreauth and ChargeIt (which we will use later) methods, but we will expose these methods
separately in order to keep the schedule visually cleaner and easier to follow.

The final wizard screen (not shown) allows us to set advanced properties. In this case, we just accept the
default values.

Chapter 17

22

Up until this point, in examining the workflow, we have only seen a flow of actions. We haven't really
seen how data flows through the different tasks. The Data page of the Orchestration Designer is where
we control the actual data flow:

This page shows the different messages used in our schedule and establishes the relationships between
them. Also notice the "Port References" box. This list contains one entry for each of the Orchestration
Ports we have defined in our workflow.

For now, we are working with the DoPreauth port. Note the arrow going from "Document" in the Order
message to the strXML parameter of our DoPreauth_in method call. This means that we take the
"Order" we removed from the queue and pass it through as a parameter to our stub.

Now that we know what's being passed to the DoPreauth method of our ChargerStub class, the next
step is to take a look at what it does with it:

public bool DoPreauth(string strXml)
{
 System.Xml.XmlDocument xmldoc = new System.Xml.XmlDocument();
 xmldoc.LoadXml(strXml);
 xmldoc.Save(Console.Out);
 string name =
 xmldoc.SelectSingleNode("Order/Customer/ContactInfo/FirstName").InnerText
 + " " +
 xmldoc.SelectSingleNode("Order/Customer/ContactInfo/LastName").InnerText;

Case Study – BizTalk

23

 string cardnum =
 xmldoc.SelectSingleNode("Order/Customer/Billing/CardNumber").InnerText;
 string expiration =
 xmldoc.SelectSingleNode("Order/Customer/Billing/Expires").InnerText;
 decimal amount = Convert.ToDecimal(
 xmldoc.SelectSingleNode("Order/OrderTotal").InnerText);
 ChargerHost.Charger Charger = new ChargerHost.Charger();
 return Charger.DoPreauth(name, cardnum, expiration, amount);
}

As you can see, the stub is relatively straightforward: we load the passed XML document, extract
required information from it, and invoke the Web Service specified by the ChargerHost web
reference. This reference would have been created as usual, using the Solution Explorer.

Continuing to follow the message flow, the next stop would be the service itself:

using System;
using System.Web.Services;

namespace Charge
{
 /// <summary>
 /// Summary description for Charger.
 /// </summary>
 [WebService(Namespace="http://stellcom.com/webservices/")]
 public class Charger : System.Web.Services.WebService
 {

 ...
 [WebMethod]
 /// <summary>
 /// Simulates a credit card pre-authorization.
 ///Regardless of what is passed, it returns true!
 /// </summary>
 public bool DoPreauth(string name, string cardnum,
 string expiration, decimal amount)
 {
 return true;
 }

 }
}

As you can see, any pre-authorization attempts are blindly accepted. In the real world, of course, at this
point you would call a third party service such as CyberCash or PayFlowPro to do the authorizations,
but this step has been simplified for the sake of the case study. The return value of "true" would
percolate back up to the original method call from the Orchestration schedule, where it would
eventually become the pRetVal Boolean referred to in the data page for the DoPreauth_out message.

Next, lets run the wizard on the left-hand design side of the implementation port. This is the first screen
we see:

Chapter 17

24

In this case, we are specifying that we want to initiate a method call.

This next screen in the wizard lists all of the available methods (one in this case) and allows us to select
the method we want to call from a dropdown list (this is only relevant if we specified more than one
method when we ran the COM binding wizard). Inputs and outputs are also shown:

After we have made this method call, our task is complete, and we have the result generated by the
Web Service on the Boolean pRetVal.

Case Study – BizTalk

25

"PreauthOK" Task
In our business scenario, if the credit
card preauthorization failed, then we
would not want to process the order.
In order to implement this, we have an
Orchestration decision: either continue
on in the flow, or branch and place the
order on an outbound "suspended
order" queue where some other system
would pick it up and act upon it.

The following wizard screen shows
how a rule is implemented in BizTalk
Orchestration:

The result of evaluating this script decision determines the direction message flow will take leaving the
decision point.

If preauthorization fails,
BizTalk will follow the
"else" branch and perform
the "Put on Suspended
Queue" task. The relevant
screen of the Message
Queuing wizard is:

Chapter 17

26

Messages in Message
Queuing have a label
associated with them. As the
XLANG Scheduler will be
putting this message on the
queue, it needs to know
which label to associate with
the message:

Once we've put the message on the suspended queue, we branch to the "End" shape, which terminates
this instance of the orchestration schedule.

Ending
The other steps in the schedule follow the model presented on these preceding pages. We call a service
to ship the order, another to actually charge the credit card and, if we have an email ID, yet another to
send a confirming email.

Note that if we do send an email, then the message flow has forked (the fork branch taken being
dependent on if we have an email ID or not). We need to join the two paths together by using the Join
shape. Join shapes can be a Boolean "AND" join (we need approval by two people in order for flow to
continue past the join), or Boolean "OR" (if either person approves then flow can continue).

Once the two paths have been rejoined, we proceed on to the next step in the schedule flow, which is to
take the order and place it on a "WroxBTSWS_completed" queue. This is done in exactly the same way
that we placed suspended orders on the suspended queue. If you change the return result of the
DoPreauth web service call to "false" then the message will be placed on the
WroxBTSWS_suspended queue instead. The following shows the three queues used in this case study
(all are prefixed with "WroxBTSWS"):

Case Study – BizTalk

27

The final shape in the orchestration schedule is the "End" shape, which terminates this instance of the
orchestration schedule.

Summary
In this case study, we have seen how Microsoft's BizTalk 2000 Server can be used to automate a
business process by orchestrating .NET Web Services. We looked at:

❑ using message queues to loosely couple this application with external systems

❑ using the BizTalk Editor to create document specifications

❑ using BizTalk Orchestration to manage the transmittal and reception of documents between
ourselves and a trading partner.

The sample code is configured for everything to run on one machine, however you can see how easy it
would be to point at external services, such as using a third party credit card service or fulfillment service.

The workflow used was a straightforward serial flow, with no transactions or looping. However, we have
shown enough of how BizTalk Server works that you now understand some of the power it brings to
your development arsenal, and why BizTalk Server is an important pillar in the .NET strategy.

TE
AM
FL
Y

Team-Fly®

Chapter 17

28

Web Services in Your Business

Web Services have the potential to replay history as a microcosm of the Internet. They have many
similarities to the Internet: new protocols like SOAP, doing the same thing but in a different way, lots of
hype, industry support. They have a few differences: obviously being a fish in the fishbowl is one of
them. Yet, history is the best teacher, and it serves us well here.

We aren't looking back to the beginnings of the Internet for our lesson. We need only go to the mid-
nineties. That time when the first entrepreneur went to a banker and laid down a great pitch for a
business. This business had no real motive or profit expectation, yet it used the Internet, so it was
deemed good. This was the beginning of what we called the "Tech Bubble".

The upside of the Internet being such a force in business was that it is a fantastic technology that is easy
to use. The problems came in when investors and customers realized two things. First, just because the
Internet is great doesn't make the business using it great. Second, since it is easy to use, everyone and
their brother are using it if they know what they're doing, or even if they don't.

From this example alone, we can see that Web Services could follow the same path. Businesses can use
SOAP because it is great technology and it is easy to use, although its greatness and ease of use will
never make a bad business plan better, or a difficult solution easier. Yet that same ease of use could
easily propel reams of worthless and potentially damaging Web Services into the Internet.

Our goal here is to prevent that. Lesson one: Web Services are not a hammer for every programming
nail. We have pounded that concept (excuse the pun) since the beginning of the book, and it is still a
focus. The key to building good business solutions with Web Services is knowing when to use them,
when not to use them, and how they fit into business enterprise solutions. We've learned about design
and development, now we need to discuss implementation.

16

Chapter 16

2

Remember the old adage – 'Business drives technology, technology does not drive business'

Just like with the Internet, Web Services are a powerful weapon against business problems that have
communication as their primary focus. To build strong solutions, we must start with the problem, not
the technology. So, we will start here with some business problems that need to be solved. These are the
kinds of problems that Web Services have already solved well in the last 18 months.

Now that we have a starting place for knowing when to use Web Services, we need to fit them into the
larger scope. Specifically, we need to keep out of trouble, and then reap the rewards. So, we'll go over
legal issues, then getting paid – more or less the opposite sides of the same coin.

Once the problems have been solved and the issues have been ironed out, we have finished Web
Services. We'll then take a look at business examples of Web Services. Finally, we'll take a look at
talking to company principals about Web Services, with some ideas for language and examples that may
help you to get the point across to managers who need these solutions, but don't know it yet.

In summary, here is what we are going to cover in this chapter:

❑ Business problems that need solutions

❑ Legal issues with Web Services

❑ Getting paid for your efforts

❑ A few business case studies

❑ Talking to your boss about Web Services

Business Problems That Need Solutions
The core of Information Technology is using available information effectively to get a job done. The
expanse of industries using computers to handle this store of information today is somewhat
overwhelming. Something is common among them, though. All of them are using the technology to
solve their problems. To get something done faster, cheaper, easier, better. Then when one of these new
processes has a problem – solve that too. Generally, computers are tools used to smooth the road ahead,
just as machines were a hundred years ago.

As mentioned above, Web Services solve specific kinds of problems, just as the Internet did for savvy
businesses in 1996. When Netscape coined the term "intranet", many industrious Internet specialists
(author included) were using the web to do just that, and were glad for something to call it! Web
Services are similar – hundreds of home grown solutions at varying degrees of success are out there, and
now a standardizing force has come along to help with the interoperation.

Why did we work to get intranets running in the mid 1990s? Simply put – to get information there faster
and more accurately. We had a problem to solve, and we solved it: long before there was a name for it.
Then, after there was a name, the technology was used to solve problems that just didn't exist. Web
Services can fall into the same trap. They can be used to solve problems that just don't exist.

Web Services in Your Business

3

There is, fortunately, a roadmap; three fairly well understood problems that Web Services solve well.
The first of these is the intranet solution – internal communication between disparate applications inside
your company's network. The second is the extranet solution – exposing business logic to partners and
customers in a controlled fashion. Finally, the third solution is the Internet solution, or sales of a
universally needed service to the masses. It must be mentioned that Web Services are a piece of this
puzzle, not the whole solution, but they can be an important piece indeed.

One more note before we get into the meat of this topic. The strict attitude presented here should not
discourage anyone from creating a new, unforeseen use for a Web Service. Like a metronome in a music
performance, a strict cadence can be the most freeing of all if used properly. Let the ideas here act as a
focal point for your creative problem solving, not as a ceiling to prevent you from looking upward.

Internal to Your Business
Web Services provide an interesting tool in the tool belt of the average enterprise architect. First, they
provide a mechanism to standardize logic throughout the organization. Second, they provide a solution
to the problem of interoperability between various platforms in use inside the enterprise. Both of these
non-traditional uses for Web Services provide a good introduction to SOAP for your organization, and
an easy sale to the management. Let's look at each in turn.

Standardized Logic
When working in the role of an enterprise architect, one of the most difficult problems to face is that of
best practices. A structured development environment can have as many rules and lifecycle plans as
possible, and the code is still at the mercy of the attitude of the reviewers at code review time.

Many project managers and architects solve this dilemma with standard code, in raw or compiled format.
For instance, a common practice is to create a standard DLL that is used for data access. It includes a
standard method for the creation of a data connection object, for the creation of a recordset from a table,
and whatnot. Another example is standard error handling in the form of an included ASP file.

The problem with this is portability. Keeping all of the projects up to date with the standard code is
very hard. MDAC versions change in the middle of a project; or half of your enterprise may be using
ASP 2 and half may be using ASP 3 for example. The code needs to be constantly redistributed to meet
the needs of your organization. While this isn't impossible by any means, it is remarkably inconvenient.
Another problem, specifically for ASP and other un-compiled code, is that of changes by the
developers. It's a common problem, and tough to catch in code reviews.

Web Services provide a simple and straightforward way to provide controlled access to standardized
code that can be used throughout an organization in many cases. An enterprise-level machine, similar to
an Exchange server, can be used to provide internal access to exposed logic for these standardized
tasks, like error handling of database access.

Interoperability Between Platforms
Microsoft didn't create Web Services, and though .NET plays very well with SOAP, it is an open
platform. IBM, Sun, Fujitsu, and many other big players are offering functionality to support XML Web
Services on their platforms. This can be a massive benefit to IT shops with divergent platforms. For
more on the design considerations for this topic, see the Design section in Chapter 8.

Chapter 16

4

Interoperability is a major problem for IT managers. When HTML made an appearance on the Intranet
front around 1996, developers started creating user interfaces that were platform agnostic. With Web
Services, we can create business logic that is platform agnostic. If the corporate database is huge, and an
AS400 is used to store customer data, Web Services can be developed to access the data then touched
by any of the platforms discussed above – any that support SOAP. This platform interoperability will
make a significant impact on the future deployment plans of many organizations.

External to Partners
XML has long been thought of as the new language of business data. A role that Electronic Data
Interchange (EDI) has held for many years, business data exchanges are a sure bet when looking for a
way to streamline your business. A decrease in the cost of each business document goes a long way to
an increase in the bottom line.

For years, companies have held a lock on the secure networks used to transfer EDI files from partner to
partner. The creation of XML was seen as a beginning to the end of the lock. But something remains to be
done. The secure networks that transfer the documents are still necessary, still locked up. This is because
the EDI companies have found ways to increase the value of their document transfer service by creating
small bits of logic on either side to interface, for instance, with the invoicing or shipping system. Enter
Web Services. With a secure channel, the SOAP protocol now provides everything the EDI VAN does:

EDI Message

EDI software

Handles data

transformation

EDI provider

Value added

Network (VAN)

Handles transfer

Business

Transaction in

Client system

Business

Transaction in

Client system

SOAP Message

Local system calls

Web Service on

Remote client

network

Business

Transaction in

remote system

Business

Transaction in

remote system

Web Services in Your Business

5

As shown in the above diagram, the XML system has fewer steps and doesn't require a third party. Here
are some key things to note about the comparison:

❑ Security – with SSL, 128-bit security is possible for use in protecting the document transfer.

❑ XML Document – XML is the anointed successor to EDI, and SOAP is designed to carry an
XML payload.

❑ Exposed business logic – the last piece of the puzzle. Since Web Services by nature expose
business logic, the final lock on the EDI market is broken.

❑ Industry standards – though the data dictionary still needs to be standardized, the
standardization of XML will go a log way toward global acceptance in this world marketplace
we live in.

Microsoft's Foot in the Door
BizTalk is Microsoft's shot at using SOAP and XML to take a bite out of the EDI market. Touted as a
business class message passing system, BizTalk is a good tool for Microsoft-based organizations that
need EDI-like services.

The problem? It's a shot in the dark. There are several differing standards for business document
transfer, and at least with EDI you were sure that your partners could read your format correctly, with
no programming. Read more about BizTalk in Case Study 1.

Making it Happen
So why aren't BizTalk, along with XLang, ebXML, Rosettanet and all the others taking over with their
XML-based message passing? It's because EDI has a massive clinch on a tremendous number of markets.

The background of EDI presses back into the late 1970s. Organizations just beginning to use computers
for business traffic realized that a standard of some type would be necessary in order to streamline the
tremendous amounts of paperwork generated by our growing economy, especially within the federal
government. The standard needed to provide four things:

❑ Hardware independence

❑ Clarity

❑ Reduction in data re-entry

❑ Transaction support

In 1979 the American National Standards Institute (ANSI) gave the X12 standard its stamp of approval
and created an Accredited Standards Committee to oversee the delivery of the standard. The
International Standards Organization, working with the European nations, eventually settled on a
standard called EDIFACT in 1987. Although these two standards are generally not interoperable, both
have continued in joint development since that time.

Both of these standards do the same thing – provide the data schema for tens of thousands of business
documents in scores of industries. Both of these standards have the backing of a major standards
organization. Both of these standards have years of history. Our extranet plans – well, they have none
of these.

Chapter 16

6

So What We Can Really Do?
Realistically, we can't replace EDI tomorrow. There is too much investment and history, and many of
these companies won't change from one protocol to another to create a standard. What we can do is
take a page from EDI's book. The problems that EDI solved in the 70s are here today still for many
companies, and XML Web Services will have a place in solving them.

Let's look at a problem that I am solving right now. A major distributor of computer equipment
provides an interface to its online catalog for value added resellers to use in a number of different ways.
Amongst other options, they can customize a hosted store, or download the catalog nightly to their own
server. Then the VAR can sell directly from the distributor catalog with their markup, and provide their
own interface.

This is a pretty standard scenario in a number of different markets, and can be expanded to many
different arrangements as well. But what if it were implemented as an EDI-like Web Service? The
distributor could open several methods for partner use, replicating a shopping-cart like functionality.
This would have to include requests for lists of product, and finalizing a transaction. The partner could
implement the actual session level stuff. It would look something like this:

Client Computer

Distributor Web Server

1. Request

2. Inventory

3. Web Pages 4. Orders

Retail Web Server

Web Services in Your Business

7

The client makes a request that is handled by our retail web server. The code behind that web server
makes a Web Service call to the distributor web server, getting inventory information that supports the
client request and returns it to the client in the form of a web page. Then when the order is completed,
it is sent to the distributor with a second service, completing the sale.

Solutions like these will come closer to reality as bandwidth gets more stable, but there are a number of
systems that run just this way, only worse, using older technologies – right now. So this is a better
solution, in many ways, than the retail web server generating an EDI purchase order and wiring it to the
distributor. In addition, the SOAP messages via Web Services are scalable and extensible for future
technologies and business problems.

Other Extranet Uses
Hopefully this has gotten your mind working. There is a quantity of EDI-like logic that can be
implemented between partners, even those who don't share the same technology. How about a simple
messaging application, for instance? It could simply be something that can be reused, which accepts
messages in a known format for distribution within an organization. This has a myriad of uses within the
financial and IT sectors of partnering companies.

Even more directly, how about allowing your partner companies to expose some of your logic directly on
their web site? For example, if you make widgets and have a Widget Support application that accepts plain
text queries from clients on your page, how about exposing that as a Web Service. Your retailers could
expose the application with little trouble, and support for your widgets would be even easier to use.

All of this fits into the 'Business to Business' mold that was cast before the mighty crash of 2000. The
truth is that if you are internal to the situation and considering some 'glue' software to help hook your
business to your partners you may be able to roll your own using Web Services and save some cash.
One of the few things that really is easier than it looks!

External to Customers
There are so many opportunities to sell these tools to the outside world; we couldn't possibly talk about
all of them – or even a segment – here. Maybe Wrox will do a book just on ASP.NET Web Services
That Are External To Customers or something. In discussion with my interviewees for this book, we
looked at hundreds of opportunities already out there as test-types of services, including:

❑ Microsoft Passport

❑ .NET My Services

❑ Subscription software systems

❑ Chat Services

❑ Credit Card Services

❑ Pay-Pal like financial services

❑ Mailing list management

❑ Registration services

❑ Conversion services (financial or otherwise)

Chapter 16

8

❑ Shipping calculations

❑ 'Frequent Surfer' services

❑ Stock services

❑ Translators (Even VB.NET to C#!)

❑ Air travel weather

❑ Network Management

❑ Anonymous Remailers

❑ Tip of the Day server

❑ News Headlines

It just goes on and on. We have finally encountered the world of Software as a Service, just as Mr. Gates
envisioned in "Business @ the Speed Of Thought", and as several before him sketched. In fact, Microsoft is
really banking on this, with their Passport and Registration Web Services. They are actually changing their
very successful business model to work with an envisioned New World of business technology.

Smart Services?
A good example of this is the Smart Tags Microsoft is building into Windows and Office XP. A Smart
Tag is a string with some type of information attached to it. A knowledge worker can leverage the
intelligence of applications that support Smart Tags to provide what a human knows intuitively—that is,
the ability to recognize a particular string as type "person's name" and to respond with a list of possible
actions. From that list the user can select an appropriate action. The actions include sending an e-mail
message, to scheduling a meeting with, and getting the telephone number or accessing personal records
of the said person.

By defining a common interface for annotating data within documents, and by providing a standard
architecture for associating actions with this annotated data, developers can supply logic and a set of
consistent actions for data. One analogy is that Smart Tags make tasks "object-oriented," rather than
"application-oriented".

Though the Smart Tags in themselves are a pretty neat technology, imagine these tags as a logical user
interface to Web Services. Even just a corporate custom dictionary that checks the spelling of corporate
products could make a huge difference in the way employees use office technology.

It goes further than that, though. A great example is in the Smart Tag SDK Documentation. Microsoft
suggests a Smart Tag distributed by a bookstore, which references their book library every time a user
reads a book title, author or other reference in an email or web page. Aside from the fact that some of
us would find that annoying, imagine that some would really like the ability to just use
WidgetBooks.com to take a look at a book when their buddy references it in an email. Plus,
WidgetBooks.com would sell a lot more books because of this.

Microsoft has provided the Smart Tag API Version 1 for use with Visual Basic 6 and Visual C++, but
since the Smart Tag supports an XML list for its recognizers and actions, we could easily implement
them as .NET Web Services. Plus, there will most likely be a .NET API by the time this is published.

Web Services in Your Business

9

A Smart Tag recognizer is a piece of code that adds type information to a piece of text sent to it. For
example, a recognizer for our WidgetBooks.com would label "Wrox Press" as type BookPublisher.
At the technical level, using the current API, recognizers are implemented as automation servers,
implementing the IDispatch function. This is no longer necessary in .NET since classes are self-
describing, and Web Services are no different.

Smart Tag actions are user-invoked "verbs" that are associated with data of a particular type. In our
example, "List books by this publisher" might be an action that is implemented by a given piece of
recognized text.

Now let's be clear, Office XP – the prime focus for Smart Tags right now – doesn't support .NET. That
doesn't mean an enterprising company couldn't create an entire catalog of Smart Tags that are run from
their public web server as Web Services.

Legal Issues
Like most technologies, Web Services can be easily mishandled. Just as publish-it-yourself web pages
caused a ton of copyright violations, Web Services have a host of problems of their own. On the
copyright angle, we have the whole Screen Scraping technology, designed to make it easier to expose
information from 'static' web pages as Web Services. At the contractual level, there are a number of
security and Quality Of Service concerns that make the issue of money making services a little harder.
Finally, there is the issue of licensing .NET. Like most issues of this type, however, good planning will
get past the problems.

Screen Scraping and Intellectual Property
Screen scraping is parsing information from a static file, like an HTML file, and exposing the
information as a Web Service. This is a fantastic technology if you own the HTML file in question. If
your competitor owns it, that's another matter. I am neither a lawyer, nor do I play one on TV. There
is, however, a legal way and an illegal way to screen scrape. If you have an application that is presenting
information using ASP or another server-side scripting technology, scraping this information from a
known format may be easier than re-writing the back-end application. A Web Service can make this
information available even back to the hosting application, for a small sacrifice of performance. An
illegal example of this is looking up a stock quote on CNNFN and selling access to the quote as part of
your service. Pretty clear distinction.

Avoiding legal trouble here is fairly easy – restrict yourself from using someone else's information. In a
project I recently looked at, the client had a rather restrictive Point Of Sale system that created text
reports formatted for printing, but didn't provide a CSV formatted version of this information. I
suggested an ASP.NET Web Service under the Go Live license that would expose the information in the
repost using a private method that parsed the known format of the text report:

TE
AM
FL
Y

Team-Fly®

Chapter 16

10

Client Computer

Point Of Sale system

Web Service

Method Call Text Reports

ASP .Net Web

Service

.Net Web Server

Intranet

Screen scraping has another problem other than legal issues: a change in report format breaks your
application, thus your service. If you have control of the starting point though, this is not an issue –
another reason for staying away from using other people's information. HTML does help with this,
though. If you are in an environment that is using Office 2000 or XP to publish documents to an
intranet, it is easy to use screen scraping to get to this information programmatically using the easily-
parsed HTML format.

Security
Another legal consideration is the guarantee of security from you to the users of the service. Security
considerations were covered in Chapters 13 and 14, where we discussed different techniques including:

❑ Encryption

❑ Client Certificates

❑ Windows Authentication

Web Services in Your Business

11

❑ Basic Authentication

❑ SOAP-based header security

❑ Digital Signatures

The fact is, even 128-bit public key encryption can be broken in time. How does one guarantee security
under those circumstances? The same way you guarantee the security of your shopping cart software.

❑ Authenticate users

❑ Encrypt traffic

❑ Monitor usage

❑ Use exception reporting

❑ Maintain physical security

❑ Take care of it if it breaks

Authentication of users seems to be the simplest of considerations, but it is being overlooked in too
many circumstances. If you start the SOAP request in SSL, you can even pass the username and
password as part of the remote method invocation.

While this is moving along, check your logs. 80 % of encroachment can be caught through watching the
exceptions recorded by IIS or your service. If someone is trying to break in, they will likely have to try
a few times before they get it right. Make sure you are ready when that happens. Several products
currently available over the counter (such as Ipswitch WhatsUp Gold) will watch log files and warn the
administrator via pager or email when there is a problem.

Finally, be prepared to make reparation when something does go wrong. Assume the worst, and then
build that into your business plan. Fortunately, the banks are much more Internet friendly than they
once were and will cover losses to crackers under some circumstances – especially when your security is
up to par. However, be ready for the worst, and then hope it doesn't happen.

QOS
Quality of Service, or QOS, is a general term that applies to any kind of product that provides a lasting
benefit to a user. In the software world, it represents everything from availability to scalability to
performance to mean time between failures. With regards to Web Services, QOS generally breaks down
into these areas:

❑ Accuracy

❑ Availability

❑ Stability

While each of these will be taken in turn, the package is a major consideration as well. Generally, be
careful what you guarantee. By a recent statistic, Schwab loses a million dollars a minute when there is a
glitch in its trading system. Consider carefully what kind of service quality you are going to offer and
stick to it.

Chapter 16

12

Accuracy
This is pretty straightforward. Like any other method, you should return accurate information with your
Web Service. Just because it is a slick new technology doesn't let you out of testing, testing and more
testing. In your Quality of Service statement, mention the likelihood of a problem with the information
being returned. Take into account the source of your information. Test over a large span of time and try
to compile statistics. You'll be surprised to find that you aren't 100 % accurate most of the time.

Availability
This is a sticky point. Since the availability of your service depends on so many things, you have to be
careful how you approach the availability statement. Consider all of the points of failure between you
and the client:

❑ Your internal LAN

❑ Your Internet connection

❑ Your firewall

❑ Your ISP

❑ The client ISP

❑ The client firewall

❑ The client Internet connection

❑ The client LAN

If you are producing a service with a requirement for high availability, consider redundancy. Providing
quality of service for a Web Service is just like providing quality of service for a web site, and has
similar benefits. Being able to state with certainty that your service will be available is a major sales
point. Consider the following steps for preventing network-related downtime:

❑ Host from two locations

❑ Provide Network Load Balancing for your IIS Servers, and clustering for your SQL Servers

❑ If you are a single location, bring in connectivity from two ISPs

❑ Ensure stability and security of the physical environment

❑ Avoid single points of failure, like network and raid cards

Stability
Stability in Web Services basically comes down to error handling. You have to consider the possibility
of crashing your IIS server, and of crashing the consuming application. Crashing IIS 5.0 is not likely,
because ASP applications are well encapsulated. Using Windows Scripting Host (WSH), in fact, you can
even set IIS to restart if locked in an endless loop or crashed. The more significant concern is damaging
a client application. Logging of errors for later exception handling is another good move.

Client use stability is simple if a good, understandable error handling routine is established. Make sure
that there is a generic handler, no matter what method you choose. Finally, make sure your
documentation clearly states how to implement traps for known errors on the consumer's side. This will
prevent the 'he said, she said' arguments when the client has problems.

Web Services in Your Business

13

Licensing
In order to produce production software with ASP.NET, you'll need to download the Premium Edition
from MSDN, and accept the terms of the Go Live license at beta.visualstudio.net (keep in mind that
when .NET is released, this will change!). Remember that there are considerations here outside of
licensing; namely, this is beta software and is listed as such. Don't expect everything to work. That
notwithstanding, ASP.NET Premium is fairly stable, and includes these components:

❑ Common Language Runtime

❑ .NET Framework Libraries

❑ ADO.NET

❑ VB.NET

❑ C#

❑ JScript.NET

❑ ASP.NET core objects

❑ Session state objects

❑ Output caching

❑ ASP.NET Security

The bits that support Web Services are in the .NET Framework Libraries. After downloading the
components, you'll need to agree to the terms of the Go Live agreement. This essentially states
the following:

❑ You'll upgrade the server when an upgrade is available

❑ You'll obtain a commercial license when available

❑ You won't use the Microsoft name or logo on your product

❑ You'll include copyright information

❑ You won't sue Microsoft if it breaks

❑ You won't include the re-distributables as part of anything covered by the Open
Source Agreement

This agreement doesn't get us out of buying any licenses if Microsoft determines that some bits require
licenses. It just allows us to produce a licensed Web Service months before .NET is available for
purchase. For more information, search MSDN for "ASP.NET Premium Edition"

Chapter 16

14

Getting Paid
Whether selling to customers or providing value-added services to partners, we'll want to get paid for
our Web Service. Payment for small bits of processing has been a problem since CompuServe and
Prodigy started selling small services and documents online in the eighties. There isn't a good way to do
it, because credit card companies – the primary currency on the Internet – charge a percentage with a
floor for each transaction. If Visa wants 1.9 % with a minimum of forty cents for every transaction, it
doesn't take much out of our profit for the average $200 COM component. But for a single use Web
Service at fifty cents, it eats a massive hole in the bottom line.

A key point in developing a business model for payment for Web Services is defining your customer. In
most cases the customer for a service is the end user – the one who reaps the benefit from using the
service. In the case of Web Services, though, the customer is often the developer who is providing his or
her own service or software to the public. This makes for some interesting twists in design for your
service, as discussed in Chapter 8, and it also provides for some non-traditional payment systems.

Generally, to get paid for your service you'll want to know who is using it. That will be the first on your
task list no matter what. From there you have a couple of options, which we'll cover here.

Accepting Authentication
Authentication itself was covered as part of the chapter on security, Chapter 13. Generally speaking, the
consumer passes in a userID and password, and we check it against our database of users. Users, in this
case, can be the service consumers, or the end users. If they are paying for the service, this is where we
charge them.

But how to charge? The simplest method, like the model adopted by the NorthernLight search engine,
is to keep an account full on behalf of the user, essentially aggregating several future uses of the service
into one credit card transaction. NorthernLight gives your account $10 in 'free' money when you set up
your account. After you use that up in $1.50 white paper purchases, they bill your card for another $10.
This is a simple model that translates nicely to Web Services.

For instance, when the user uses the service, include a private method call as part of the exposed
method that debits their account the set amount. You'll need to use ASP.NET transactions for this –
covered in Chapter 11. When the account gets to a specified level, use a SQL trigger to debit their card
on file for another of the larger set amount.

The problem with this is tracking accounts for users. Even with this simple model, there will be
problems. How long do you store user information? If they haven't used it in five years, do you credit
their card? What if it is gone? If their card fails, and they use the service, do you throw an error? All
tough questions, with no simple answers. This may be more trouble than most developers are interested
in taking on for the creation of a Web Service.

Outright Purchase
When we create a COM component for public use, we sell it through a broker like Component Source.
Will this work for Web Services? As it turns out, it really doesn't.

Web Services in Your Business

15

First, Web Services don't really work the same way as COM components. They are, as the name
implies, a service. Selling them like a product is outside the logical model. Let's look at the technology
there. If you were to physically sell the code behind the service, you are essentially selling a .NET
Component (DLL file) just as if you were selling a COM component. Exposing it as a Web Service
would be at the owner's expense and on their system. This is acceptable, of course, but outside the
scope of the concept of Web Services.

Second, Web Services open up a new and exciting model to those of us who sell software. With a
subscription-based model, clients won't have to buy a ton of software only to use a pound of it. Plus, we
have a fantastic new revenue stream, gaining continuous income from a product that would normally be
a one shot payment.

Micropayments
As mentioned above, Micropayments are a technology sought after since the beginnings of public access
networks. Again, the problem is that credit card companies often charge a fee for each transaction, and
that percentage fee has a floor of some number of cents. If you have a transaction of only a dollar; for
instance, a 75-cent credit card charge will put quite a dent in your profit.

A micropayment is a low-friction electronic commerce system that allows for quality transactions and ease
of use for the consumer. The W3C took on the frightful task of writing a standard for micropayments and
gave up – largely because the definition of micropayment is so diverse from user to user.

For our purposes, micropayments are any small transaction that puts money in our pocket. They need
to be able to handle as many transactions as there are users of our service, at a reasonable cost. We can
manage this two ways – through a third party service, or through our own.

Third Party Micropayment Services
There are a host of third party services, each with their own format, charges, protocol, and amount of
flexibility. This is rather outside the scope of this book, but we'll mention some that worked with the
W3C during their review of the micropayment standard.

❑ Cartio Micropayments

❑ Clickshare

❑ CyberCash: CyberCoin

❑ DigiCash

❑ Enition

❑ Internet Dollar

❑ Jalda

❑ Millicent by Compaq

❑ NewGenPay MicroPayments

❑ OpenMarket

❑ Pay2See

Chapter 16

16

❑ Trivnet

❑ The Ultimus Solution

❑ Wave Systems Corp

❑ PayFlowPro by Verisign

Implementing one of these solutions works essentially in the same way as mentioned in the Accepting
Authentication section above, except we will be communicating with an outside network to register the
user. Another option in this would be the use of a Web Service-specific broker, like SalCentral, who will
even take the authentication off our hands. Either of these would be a good solution for a quick, simple
way to get a body of clients using our service, and paying for the privilege.

Rolling Our Own Micropayment Service
This is a potential service in itself. If you compare the requirements of a micropayment service and the
benefits of a Web Service, you find unerring matches throughout.

❑ A light, quick protocol

❑ Multi-platform support

❑ Secure

❑ Ubiquitous

The only problem is the distributed transaction issue – as things stand we can't include a Web Service as
part of a transaction, which would likely be a requirement. If we could get past that, through XLang or
another protocol, a new breed of services could be born.

Can we convince credit card companies to allow us to do this cheaply? Right now, transaction fees will
eat it alive, but there still is hope. Alternatively, you could use the NorthernLight model above, and
batch smaller transactions into larger ones for the sake of the banks. A host of opportunities abound.

Still, as we'll see, aggregation through subscription seems to be the best model. The micropayment
strategy on the Internet is not mature enough yet for a production system, and rolling you own – while a
fantastic business idea, probably won't be high up on most developer's task lists when trying to get
something else done.

Subscriptions
Sometimes technology works better when it is simple. Subscriptions are the way cable companies,
newspapers and Six Flags have made their money for as long as money has been spent on such things.
Pay one fee to get into the park and all the rides – as many as you can ride – are free. This is
undoubtedly the quickest, simplest and most effective way to get paid for your Web Service.

As part of your authentication information, you should have a user table, either in Active Directory, or
in the SQL Server database. Along with the authorization information, an effective date is all you need
to make the subscription system work.

Web Services in Your Business

17

Information Type

Username VarChar(20)

Password VarChar(12)

Effective date DateTime

A little code in our authentication method that checks the date, and a little code in our payment module
that changes the date when the user pays for the subscription, are all we need to support the system.
The only difficulty here is determining the charge, which is heavily dependent on the business model.
As part of beta testing, we should track average usage, and assure that our subscription charges meet our
costs given a certain number of subscribers. This is especially true if we are paying for our content.

The first argument against the use of a subscription system is that it doesn't have much of a history of
working on the Internet. Many content providers attempting to make money charging subscription fees
have failed or gone to advertising supported models. For our case, however, this is not so much of an
issue. Remember that the consumer of our product – the one paying the fees – is a programmer, or a
company using our service to provide some value-added service to another. Companies have a much
higher incidence of supporting subscription-supported content than do consumers.

Favorites Service Model
The MSDN Architecture team took a tack on the payment issue that may shed light on Microsoft's future
model as a corporation as a whole. They have implemented a licensing model, allowing developers to
license the Favorites service as if it were content. A license is an agreement between a customer and a Web
Service provider regarding use of the Web Service. Since they have defined 'customer' as the developer,
not the end user, the developer becomes a licensee of their Favorites service.

Because the Favorites service also offers a login module for the end user, they have a more complex
system than our simple subscription model above. They are genuinely setting up companies as
licensees, and when the user logs into the licensee, they are also logging into the service. This is not the
usual model, but since they are offering to track each user's favorites, it must be part of the service.

Their licensing system works in this way. As you might imagine, it added a significant amount of
complexity to the rather simple service. When a SOAP request comes into the Web Service, a login
method contacts the Login DLL. This component checks the licensee against the data structure for
licensees – similar to our subscriptions above – then passes the request on to the Favorites service. In
addition to this, there is a public and internal HTTP web site that allows for users to update their license
information, or the phone center to update the license on the customer's behalf.

Chapter 16

18

Public web

Licensing DLL

Intranet

Licensees

Users

Web Service

Login DLL

This model is a very good example of a service that needs to communicate with a body of consumers of
the service along with the end users. You can learn more about the Favorites Web Service at
http://www.coldrooster.com.

A Final Thought on Payment
We've looked at a number of potential solutions for payment, including:

❑ Simple authentication and billing

❑ Outright purchase

Web Services in Your Business

19

❑ Micropayments

❑ Subscriptions

❑ Licensing

What we didn't cover is the simplest method – free services. The Internet was bred on free services, and
Web Services shouldn't overlook that in their effort to become commonplace. What better way to show
off what your software can do than to offer a limited access to the product through a Web Service? By
doing this you can track users, gather a mailing list, test new functionality, get feedback, and make your
sales department very happy. Don't overlook the open model as a possibility for your services.

Business Case Studies
Many organizations are using – or should be using – Web Services in their existing business model.
Here we take a moment to see how what others have done might impact our decision making process.

SalCentral
SalCentral is a centralized brokerage for helping consumers find Web Services. They provide Web
Service creators with an advertising mechanism that offers advanced search and quality assurance.
SalCentral also offers a Web Service of its own: centralized subscription and collection of fees.

Business Challenge
SalCentral saw an opportunity in the new market of Web Services to provide a service of its own,
supporting application designers and programmers. With a firm grasp of "Software As A Service", and
the distributed nature of the World Wide Web, SalCentral set out to provide Web Service creators with
a brokerage service that solves two of the problems discussed in the book: discovery and getting paid.

Software components – the client/server version of Web Services – are easy to sell and distribute. Since
they are downloadable and packageable, they can be burnt to CDs and distributed to existing retailers,
or given to retailers with online paradigms. Web Services don't work that way, and one of the more
significant problems faced in the long term development of Web Services is the location of services
floating in the ether.

Traditional software is also easier to get paid for. Since it is packageable and rarely carefully licensed,
programmers most often follow the outright purchase model discussed earlier in the chapter. Web
Services, with their use-as-needed business paradigm, are more suited to a subscription model. There
are few existing services available for independent developers to collect for use of their services, leaving
them to build a system into each service.

Solution
In a single site, SalCentral provides solutions to both of these pressing problems. As part of their
Authorize function, they provide an authentication and subscription service. As part of their listing
service, they provide a potent search facility. In fact, they are planning on providing a peer-to-peer
information service soon, which will improve their search functionality even more.

TE
AM
FL
Y

Team-Fly®

Chapter 16

20

SalCentral's search functionality uses the documentation features of WSDL to provide almost perfect
searching of Web Services. Their simple registration feature makes good use of the SOAP protocol in
similar ways to UDDI – a protocol they plan to soon support. Collecting some generic data about the
producing company completes their straightforward and efficient data collection procedure, and
searching on the variety of information is fast and accurate. This is a good use of the WSDL format, and
shows a good understanding of the information available.

Web Services will make a mark servicing Web Services, and SalCentral shows this with their Authorize
services. Essentially, they have built their own SOAP subscription model, and a producer of a Web
Services can easily plug it into their own system to assure that users are paying fees for the use of the
service. In addition to the arguments a Web Service normally accepts, the author needs only to add a
username and password, passed them to the Authorize service at SalCentral. This is a fantastic example
of a technology supporting itself, and we should all take note of the efficiency of its use.

Benefits
SalCentral has a broad-reaching set of benefits:

❑ It benefits programmers everywhere by providing an easy-to-use set of tools to discover and
subscribe to powerful Web Services developed by individuals and corporations alike

❑ It benefits Web Service developers by providing a marketing and payment system almost
impossible to achieve individually.

❑ It benefits the Web Service movement at large by showing how the system is supposed to
work, and quieting at least two critic claims – that Web Services are hard to find, and harder
to get paid for.

The Search For Extraterrestrial Intelligence (SETI) At Home
SETI wins the award for the 'Most Likely Candidate For Using A Web Service That Isn't Actually Using
One'. This fantastic distributed client/server application – and others like it – can make good use of
Web Services to slip their information through corporate firewalls without complex proxy protocols.

Business Challenge
The challenge for applications like SETI and United Devices' MetaProcessor is to function normally in
this world of high security. Using non-standard ports, these programs have complicated setup schemes
and often simply fail to work in secure environments. Today's system administrators, ever wary of
crackers, lock down ports used by peer-to-peer and distributed applications because the network
hardware has no pre-existing filters for the information. Providing access to these higher numbers ports
is a security risk.

Solution
Web Services, running on the standard ports 40 and 443, provide an excellent mechanism for these
products to run free of security concerns. In cases like MetaProcessor, where the information may be
sensitive in itself, use of SSL port 443 and 128-bit encryption provides the security needed without
setting off alarms at the network layer.

Web Services in Your Business

21

Benefits
Since many of these programs were conceived before the creation of the SOAP protocol, many versions
are not using this technology, but they should. Web Services have a place inside existing applications
too – a utilization that must not be overlooked. In our design cycle, we must remember that we all have
a secure, open protocol for having our traditional applications communicate with the 'mother ship'.

Microsoft Passport
Microsoft decided to roll its own subscription service, rather than use SalCentral. Passport is the
cornerstone to the .NET My Services platform, providing three services, Single Sign In Service (SSIS),
Passport Express Purchase (PXP), and Kids Passport.

Business Challenge
As part of the software-as-a-service (SAAS) challenge, Microsoft produced the HailStorm initiative.
HailStorm is a set of XML Web Services designed to integrate the oft-disjointed 'silos' of information
managed by most of us who use technology to manage our day-to-day existence. Microsoft's challenge
to implement HailStorm was the same we face in the development of our Web Services –
authentication, legal issues and getting paid.

Solution
Passport is their solution – a globalized set of Web Services designed to funnel all users of the
HailStorm products and sites that use them through a common authentication mechanism. Microsoft
has solved three problems with three subspecies of Passport:

❑ Single Sign In Services

❑ Passport Express Purchase

❑ Kids Passport

With Single Sign In, Microsoft has solved the authentication problems for not only HailStorm, but also
for those who choose to integrate HailStorm services into their web applications. SSIS provides some
basic information to the provider, allowing it to customize the site for that user without having to
maintain a large store of user information.

Express Purchase provides essentially the same service, but with more information collected from the
end user and exposed to the consumer. Like the earlier Microsoft Wallet, PXP collects credit card
information and has user authentication methods built in for shopping functionality. This flexible Web
Service will be used by sites like Buy.com for purchasers of goods, and consumers of HailStorm
products to pay for information storage and retrieval.

Finally, Microsoft took on a few legal challenges with Kids Passport. Many states are producing strict
laws as to what information can be collected from children. Microsoft has provided Kids Passport to
allow children to experience the benefits of a customized Internet experience without having to subject
themselves to giving their private information to everyone who asks.

Chapter 16

22

Benefits
The Passport set of Web Services are again far reaching in their benefits. Microsoft has created a new
paradigm, giving SAAS a path to reality without choking life from the protocols supporting it.

❑ Consumers benefit by having a more customized and centralized Internet experience.

❑ Web Service programmers get their services paid for, and have access to HailStorm silos.

❑ Site designers don't have to maintain expensive client access lists for their domain.

Using These Sketches
Take a minute after you have read this section and look at the web for Web Services in use, or
applications using Web Services. Use the three-point outline (Business Challenge, Solution, and
Benefits) we used above to sketch out the features and benefits. Is this something you can use in your
business? Is there something to learn? Does someone have a really new idea somewhere? Does it make
you really think about your organization and how Web Services can help? Focusing on the successes of
others will assist you in our next topic, talking to the boss.

Talking to Company Principals About Web Services
We have now discussed most of the business issues in place with Web Services. The final area of focus is
developing a methodology to discuss this complex subject with non-technical stakeholders. Most of us
have been in the position of having to talk to our boss about the pros and cons of a technology, or to a
client about why spending the money to upgrade is a good idea. The concepts are the same; the
message is different. Here are a few pointers to help clarify Web Services to the masses.

Features and Benefits not Protocol and Code
Business stakeholders are interested in the bottom line. There is no doubt that SOAP is a fantastic
technology, and it is going to become an industry standard very quickly. The fact is, most business owners
are not interested in that. Some are, but most are interested in the non-technical aspects of Web Services.

❑ They solve the problem of systems from different manufacturers communicating

❑ System manufacturers currently in our IT shop support them already

❑ They are inexpensive to produce and maintain high Return on Investment

❑ They play well with Microsoft products, but are not a Microsoft technology

❑ There is a proven track record of recovering communication costs

❑ Communication is improved without sacrificing security

❑ Web Services fit into the existing Internet strategy

Web Services are a communication protocol, and they should be sold as such. If we stick to the
communication benefits of SOAP, we will make a clearer presentation to end users. In fact, we often
shouldn't even mention XML in most conversations, because there is such a sense of regimented thinking
around that over-used buzzword. Web Services just help machines talk better. That's the take-home.

Web Services in Your Business

23

Leave the Ego On the Doorstep
Despite assurances in the above section, Web Services are a relatively unproven technology. Getting on
the collective IT high horse and guaranteeing that Web Services will solve all the company's problems
might not end well. As technology experts, we are recommending a stretch into a new technology
because of the features and benefits mentioned above. Betting our reputation on a new technology is not
the path to fame and riches. Risk planning takes effect here, even if your organization doesn't follow a
software development cycle. Things can go wrong with any technology, and they are much more likely
to go wrong with new technology.

Suggest to the boss that the organization implement some type of software risk management (SRM).
SRM is a three-cog process that includes:

❑ Identification and analysis of potential risks

❑ Mitigation and control of downstream problems

❑ An Early Warning System that the risks are causing specific problems

Several organizations are dedicated to assisting software companies with SRM, not the least is the
Software Engineering Institute (SEI). Acknowledging that there are risks associated with a new
technology and planning to deal with them will allay some fears of management, and make continuing
discussions much easier.

Make a Plan; Write it Down
Often, experienced software developers don't feel that they have the time to properly document the
software development process for a project. Be aware that doing just that can save hours of discussion
and argument in design meetings with decision makers. Just three documents will make everyone's life
so much simpler:

❑ Project definition – describe what you are trying to do in one page. I even try to do it in 101
words; I call it a "MicroDesign".

❑ Project Specification – actually lay out how you are going to do the project.

� Project Overview

� Business Case

� Recommendations

� Cost – Benefit Analysis

� Risk Analysis

� Assumptions, dependencies and constraints

� Stakeholders

� Deliverables

❑ Test Plan – how we are going to go about making sure the application actually works like we
said it would.

Chapter 16

24

Couch the Discussion in Terms the Client Knows
"Web Services are like …" well OK, part of the reason Web Services are such an important technology
is that they aren't much like anything else. But if we can find a few technologies that Web Services do
resemble, we'll be in a better place.

Web Services are like DCOM. Microsoft's original distributed method call technology allows for the
invocation of an object by a remote computer. If an organization is using distributed technology
already, the IT staff has a major in. The only changes being made are to a standards-based format, from
a proprietary format, and the text based information being transported rather than binary.

Web Services are like peer-to-peer. If a non-technological person uses MS Messenger, then that person
is familiar with peer-to-peer. In fact, the recent (at time of going to press) news that Microsoft and AOL
are arguing over merging their IM technology helps our case. If these tools use Web Services for their
P2P protocol, there would be no argument.

Web Services are like Gentran (or BizTalk, or RosettaNet). That may be a stretch, but it is a closer
match than some may think. EDI and XML are very similar, and Web Services and Gentran both pass
XML around for system use. The parallels that can be drawn there lead us to many interesting uses of
Web Services.

The point is that if we find technology within the organization that Web Services could potentially
replace, in a standard, simple way, our job is that much easier. At their root, Web Services are nothing
more than a standard way to run code on a remote computer. Find the existing system – preferably a
problematic one – that does this already, and the entrance to the conversation about Web Services has
been found.

Focus On the Need and the Solution
Earlier in the chapter we discussed a serious problem faced by the Internet. The technology became a
buzzword, and was used when other technologies might have been better. If in thought and action every
IT manager focuses on the need and the solution rather than the technology behind the solution, this
problem will be averted in the arena of Web Services.

As IT specialists, we try to be solution providers, not solution seekers. Looking for a technology that
solves a problem is so difficult because we are so often mislead by marketing and a misinformed press.
If we focus on the need at hand, and the solutions a technology brings to the table, it is less likely we
will be drawn off track. Presenting that line of reasoning in our conversations will make the job of
talking about Web Services to company principals that much easier.

Web Services in Your Business

25

Summary
In the chapters leading up to this one, we have run the gamut of the technology behind Web Services.
Starting with design, we have looked at intrinsic and associated techniques for their implementation,
finally ending with some thoughts on bringing SOAP to your company. We've really traveled some
ground. Here's a look at what we covered:

❑ Business Problems that Need Solutions

❑ Legal Issues with Web Services

❑ Getting paid for your efforts

❑ A few Business Case Studies

❑ Talking to your boss about Web Services

This 'in your business' chapter started with business problems that need to be solved, and ended with
discussing them with the boss. In the meantime, we covered legal issues, including intellectual property,
security, quality of service and licensing. We also looked at payment for Web Services and determined
that a subscription or licensing system is the best bet, until micropayments makes some headway as a
standard. Finally we looked at some existing services and service wannabes.

Our desire in writing this book is to assist the developer in the trenches with not only being able to
implement Web Services with ASP.NET, but also to implement them well, and for the right reasons. To
that end, we discussed the need for planning before talking, and the potential pitfalls of Web Services.
We also went over the things that Web Services do well, and what they don't. It is our wish that this will
spark some new ideas and debate, and help to make Web Services the technology of the hour, at least.

Chapter 16

26

Exposing Data Through Web
Services

Today, many developers embrace the n-tier approach to building applications, whether it is for desktop
or Web use. The .NET Framework has not really changed this approach other than to provide better
object-oriented languages, common libraries, etc. So the actual strategy to creating business objects is
essentially the same. What the .NET Framework has provided (and made extremely easy) is the ability
to expose business objects over the Internet through Web Services. Why is this a good thing?

❑ it allows access by other OSs

❑ it allows access across firewalls

❑ it allows developers to reuse code very easily

❑ it limits database connections to servers

❑ it enables you to programmatically access objects over the Internet

❑ it empowers businesses to embrace new business models that were previously very hard or
impossible to do

For the most part, exposing internal data to internal applications and Web applications is doable. What
has been more difficult is exposing that internal data to outside applications and servers. Microsoft must
have felt the pain of developers all over the world struggling to solve this problem because, as we will
see in this chapter, they have answered the developer community's cries by providing an easy way to
expose this data using existing Internet standards.

15

Chapter 15

2

In this chapter we will go over several examples to demonstrate how to expose different types of data
sources to the masses through Web Services. We will also look at different ways to pass the data to the
consumer. Here's our list of topics:

❑ Exposing ADO.NET

❑ Creating a strongly-typed Web Service

❑ Creating a nested Web Service

❑ Exposing XML

❑ Exposing Active Directory

Exposing ADO.NET
If you have developed any .NET applications that use ADO.NET, you are probably already aware of
some of the changes that have occurred. For example, the DataAdapter and DataSet objects are
more robust than our options were in the past when it comes to reading, modifying, inserting, and
deleting data. Web Services give developers the ability to provide interfaces to all of these ADO.NET
features, which can be very powerful if architected properly. In the following example, we will return
data to a consumer as a DataSet to show how straightforward it can be to expose data across firewalls.
We will start off by creating a Web Service that calls a stored procedure using the
System.Data.SqlClient namespace and returns a DataSet. Then, we will create a Web page to
display this DataSet.

Creating the "ProductService" Web Service
Open Visual Studio .NET and create a new Visual C# • ASP.NET Web Service project and call it
SupplierService. As you know, by default Visual Studio will create a default Web Service file called
Service1.asmx. Let's delete that poorly named service (we can't just rename the file because Visual
Studio doesn't automatically update all name references within the file) and create a new Web Service
called ProductService.asmx. To create a new Web Service, simply right-click on SupplierService in the
Solution Explorer window, go to Add, and then select Add Web Service. Also, we will need to tell
Visual Studio to run our new ProductService.asmx file, so using Solution Explorer, right-click on the
file and select Set As Start Page.

Before continuing with ProductService.asmx let's stop for a moment to create our stored procedure that
we will be using in this example. We will be using the Northwind database that, by default, is installed
with Microsoft SQL server. If you do not have the Northwind database you may install it by running
"instnwnd.sql" that is located in the c:\Program Files\Microsoft SQL
Server\MSSQL\Install directory. Specifically, we will be working with two tables in the Northwind
database: Products and Suppliers. Below is a screenshot of these tables:

Exposing Data Through Web Services

3

If you're wondering, we used the Diagram feature in SQL Server's Enterprise
Manager to create the screenshot above.

The data we will be returning in our ProductService Web Service will be product information for a
particular supplier. So first, let's take a look at the data contained in the Suppliers table.

Data for "ProductService"
Using the same instance of Visual Studio in which we created the SupplierService project, open Server
Explorer by selecting View | Server Explorer from the menu. Navigate down the Servers tree until you
get to the Suppliers table: Servers | starbucks | SQL Servers | STARBUCKS | Northwind | Tables.
Note that starbucks is my server name. Your server name is likely to be something different. Now,
right-click Suppliers and select Retrieve Data from Table, as shown overleaf:TE

AM
FL
Y

Team-Fly®

Chapter 15

4

This will open a window in the IDE that displays all the data in the Suppliers table. You should see
something like the screenshot below:

For no other reason than I've been reading Bill Bryson's book, In a Sunburned Country, let's use Pavlova,
Ltd. as our supplier in this example. Time to create the stored procedure.
Within our existing SupplierService project, use Server Explorer to navigate to Northwind's stored
procedures. Then right-click on Stored Procedures, select New Stored Procedure, and add the
following code to the new stored procedure:

CREATE PROCEDURE dbo.spGetSupplierProduct
AS
 SELECT
 ProductName, UnitsInStock, UnitsOnOrder, ReorderLevel
 FROM
 Products
 WHERE
 SupplierID = 7

Exposing Data Through Web Services

5

As soon as you save this stored procedure it will change CREATE to ALTER, which is
fine. Please note you can also use SQL Server Enterprise Manager to create this if you
wish. We've decided to use Server Explorer here to keep things simple by just
discussing one application.

Once you have added the code above to the new stored procedure, don't forget to save it. As you can
see, this stored procedure grabs the necessary information about Pavlova's products: name, units in
stock, units on order, and reorder level. Later, we will use this information to determine if Pavlova
needs to ship more product.

Now, it's time to go back to ProductService.asmx in our Visual Studio project SupplierService and add
the code. In the Solution Explorer, right-click on ProductService.asmx and select View Code.

Make the following highlighted changes to the existing code that is automatically generated when we
created ProductService.asmx:

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;
using System.Data.SqlClient;

namespace SupplierService
{
 /// <summary>
 /// Summary description for ProductService.
 /// </summary>
 public class ProductService : System.Web.Services.WebService
 {
 // Local connectionString variable
 private string connectionString =
"integrated security=sspi;initial catalog=Northwind;data source=starbucks";

 public ProductService()
 {
 //CODEGEN: This call is required by the ASP.NET Web Services Designer
 InitializeComponent();
 }

 #region Component Designer generated code
 /// <summary>
 /// Required method for Designer support – do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 }
 #endregion

Chapter 15

6

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {
 }

[WebMethod]
 public DataSet GetPavlovaProduct()
 {
 // Create an instance of a Connection and Command object
 SqlConnection myConnection = new SqlConnection();

 // Create DataSet
 DataSet ProductDataSet = new DataSet();

 try
 {
 myConnection = new SqlConnection(connectionString);
 SqlDataAdapter myCommand = new
 SqlDataAdapter("spGetSupplierProduct", myConnection);

 // Fill the DataSet
 myCommand.Fill(ProductDataSet, "PavlovaList");
 }
 catch
 {
 // TODO: Add Error Handling/Logging
 }
 finally
 {
 // Close database connection if it is still open
 if (myConnection.State == ConnectionState.Open)
 {
 myConnection.Close();
 }
 }
 // Return the DataSet
 return ProductDataSet;
 }
 }
}

First of all, we added a reference to the namespace System.Data.SqlClient which is necessary
because we are connecting to a SQL database. You may also have noticed that we have used SQL
Server's integrated security as a connection string, which is not a good option if:

❑ you do not want anonymous access to a database

❑ your page is not accessible by an anonymous user

❑ your SQL Server is not on the same server as your page.

Exposing Data Through Web Services

7

However, we have elected to use this method in these examples for simplicity. Please modify the
connection string if it does not meet your needs.

We then replaced the Web Service Example with a method called GetPavlovaProduct(). As you
may have already noticed the method GetPavlovaProduct() is very similar to the way we would
create a method that is called from a local client. It connects to a database, executes a stored procedure,
and then compiles the returned data into a DataSet, which the method returns to the caller. The
WebMethod attribute makes this method callable from remote Web clients.

GetPavlovaProduct() also uses a local variable, connectionString, which we declared in the
middle of the code. However, note that you must change the server name starbucks to your own server
name here.

Testing "ProductService"
Now, the moment of truth: testing our ProductService Web Service. Click the menu item Debug and
select Start Without Debugging. This will start up Internet Explorer and display a list of Web
Service methods contained in ProductService.asmx:

Go ahead and click on the hyperlink GetPavlovaProduct.

The next screen shows a sample SOAP, HTTP GET, and HTTP POST request and response, but what
we are concerned with at this point is actually testing GetPavlovaProduct, so click on the Invoke
button under the Test section. This will open another Internet Explorer window which will contain the
XML that will be sent to the caller of GetPavlovaProduct():

Chapter 15

8

Congratulations, you have successfully created a way to expose data to the masses. While you simply
added a, etc. It is now time to few lines of code to turn a standard .NET method into a WebMethod,
Visual Studio .NET has done most of the hidden grunt work like creating the WSDL, SOAP message
move on to building a Web Service client that will actually call this service.

Creating the "ProductSupply" Client
The first Web Service client that we are going to build will be a Web client. This will allow us to quickly
build a Web page that contains a DataGrid control to be populated by our ProductService Web
Service. This provides a nice medium through which to view the DataSet.

Let's start off by opening a new instance of Visual Studio. This time we are going to create a new Visual
C# – ASP.NET Web Application called ProductSupply. Again, let's delete the default WebForm called
WebForm1.aspx and create a new WebForm called index.aspx. In the Solution Explorer, right-click
the file you just created, index.aspx and select Set As Start Page.

In order to begin working with index.aspx, right-click on index.aspx in the Solution Explorer and
select View Designer. Your page will look something like the screen shot below. Notice the Design tab
is highlighted:

Exposing Data Through Web Services

9

At this point it doesn't matter if the pageLayout property is set to GridLayout or FlowLayout.
GridLayout uses styles to position the page objects exactly how you place them on the page whereas
FlowLayout places the objects one after the other from top to bottom. Let's leave the default setting of
GridLayout.

Click on the View menu item and select Toolbox.
Next drag and drop a DataGrid control from the
Web Forms tab in the Toolbox. Place it anywhere
on the page. Right-click the DataGrid control and
select Properties. In the Properties window
change the DataGrid control (ID) from DataGrid1
to ProductDataSet:

Chapter 15

10

Creating the Web Service Proxy
Open the Solution Explorer again, right-click on index.aspx and select View Code to have a look at the
code behind file. Just before we start to add the logic code to index.aspx.cs though, we're going to
create the proxy for our ProductService Web Service. Right-click on References in the Solution
Explorer, and select Add Web Reference. You will then need to type in the URL for the Web Service
in the Address bar. It will be something like this:
http://localhost/SupplierService/ProductService.asmx. Then hit Enter and click Add Reference.

This will add a new item called Web References, to your Solution Explorer. If you double-click Web
References you should then see an icon called localhost. Right-click on localhost and select Rename.
Rename the icon to WebService to recognise what it is more easily. Now we need to create an alias
reference to it in our code behind file:

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;
using ProductSupply.WebService;

Exposing Data Through Web Services

11

This allows us to access methods in our ProductService Web Service just like we would a local business
object. Now we're all set to bind our DataGrid, ProductDataSet. We will be adding this code to the
Page_Load event that is added to the code behind file by default.

 private void Page_Load(object sender, System.EventArgs e)
 {
 // Put user code to initialize the page here
 if (!Page.IsPostBack)
 {
 // Create a new ProductService object
 ProductService ps = new ProductSupply.WebService.ProductService();
 DataSet ds = ps.GetPavlovaProduct();

 // Bind data to DataGrid
 ProductDataSet.DataSource = ds.Tables[0].DefaultView;
 ProductDataSet.DataBind();
 }
 }

All right, now it's time to cross your fingers and test out your work. Again, click on the Debug menu
item and select Start Without Debugging. You should see something like the screenshot below.

Excellent, we've done it. We have created a Web Service that exposes an ADO.NET call and returns a
DataSet to the caller. Then we created a simple Web page that calls the Web Service through our
Product.WebService proxy, which in turn gets displayed by a DataGrid. Now, before moving on to
our next example, let's put some finishing touches on our ProductService Web Service.

Adding a Unique Namespace to our Web Service
In Visual Studio, go back to the SupplierService project that contains the ProductService Web Service.
View this Web Service by clicking on the Debug menu item and selecting Start Without Debugging.
Again, this will pull up our service in Internet Explorer and if we look at it closely it is advising us to
change the default namespace, http://tempuri.org, before we make the Web Service public. The
namespace http://tempuri.org is not a physical URL, but a way to uniquely identify a Web
Service. Though the Web Service namespace is not the same as a component namespace it does play
the same role: uniquely identifying a Web Service to differ from other Web Services and their
WebMethods. The default namespace problem can be remedied with one line of code just before our
class, by use of a special attribute. Right-click ProductService.asmx in the Solution Explorer and select
View Code. Add the following line of code just before the ProductService class.

Chapter 15

12

[WebService(Namespace="http://wrox.com/webservices/")]
 public class ProductService : System.Web.Services.WebService
 {
 // code
 }

Now when we run our Web Service, Debug – Start Without Debugging, we will no longer see the
namespace warning.

Creating a Strongly Typed Web Service
In our previous SupplierService project, we created a WebMethod called GetPavlovaProduct(),
which returned a DataSet to the caller. To be more specific, it returned an untyped DataSet. Untyped
DataSets contain the usual tables, columns, and rows etc., but they are exposed as collections because
there is no corresponding built-in schema. To demonstrate this, if we wanted to access the fourth
ProductName in our example above you would have to write the following code:

string ProductName = ds.Tables[0].Rows[4]["ProductName"].ToString();

This may be perfectly fine in instances that the data returned by your WebMethod is intended to be
used "as-is". In other words, if you anticipate the consumers of your Web Method to simply take the
data and bind it to a control like a DataGrid, DataList, DropDownList, etc. without manipulating it in
any fashion, then an untyped DataSet is all right. For example, if you are providing a Web Service that
contains a WebMethod that returns the world's countries or continents than it is probably a safe bet that
the consumer will, in most cases, use the data "as-is": they may be creating a DropDownList for an e-
commerce site. However, if the service returns data that lends itself to being manipulated or having bits
accessed programmatically then a typed DataSet will probably be your best option. For example, if you
are providing a Web Service that contains a WebMethod that returns all your company's suppliers,
different organizations within your company may want different pieces of that data. Say, maybe, the
sales representatives want to access certain suppliers' information. This means they do not want or need
all the data retuned by the service, rather they want to manipulate it to meet their needs. This task is
much easier with a typed DataSet. To give you a quick look at this, here is how you would access
ProductName in a typed DataSet.

string CompanyName = ds.Products[4].CompanyName;

There are even more advantages that a typed DataSet provides for us, but we will look at those more
closely as we go through our example.

We are going to create a new Web Service, but this time we are going to take advantage of some built-in
tools that Visual Studio .NET provides. Open the SupplierService in Visual Studio and add a new Web
Service called CompanyService.asmx. In the Solution Explorer right-click CompanyService.asmx
and select View Designer. Now we are going to start adding objects from the ToolBox onto the page
instead of programming them by hand. Click on the View menu item and select Toolbox. Click on the
Data tab and double-click SqlConnection. Right-click on the newly created sqlConnection1 object and
select Properties. Change the (Name) property to NorthwindConnection and set the ConnectionString
Property to: integrated security=sspi;initial catalog=Northwind;data source=starbucks.Don't forget to
change starbucks to the name of your server.

Exposing Data Through Web Services

13

Now double-click on the SqlDataAdapter object in the Toolbox. The Data Adapter Configuration
Wizard will then pop-up. The wizard assists the user set up the database connection and commands
(select, insert, update, delete). Begin by clicking the Next button. Now you need to select a data
connection, so click the New Connection... button to create a new connection. Make sure you create a
connection that has the appropriate permissions to read data from the Northwind database. Once you
have selected your connection click the Next button.

The next step in the wizard is to select a query type. In this example we will select the Create new
stored procedures option. This is a better method than using SQL statements because it follows the
three-tier approach, and in many cases is much more efficient. Entire books have been dedicated to
these types of topics, and we won't go into further details here. Click the Next button. In this step we are
provided with a space to type in our SQL statement. For our example we are going to select certain data
from our Suppliers table. Type in the statement below:

select SupplierID, CompanyName, Country from Suppliers

TE
AM
FL
Y

Team-Fly®

Chapter 15

14

As you can see, in the above statement we will be collecting the SupplierID, CompanyName, and
Country from the Suppliers table. Now click the Next button again so we can create the names for our
stored procedure: spSupplierSelect. Everyone has their own approach to naming conventions, here I
have prefixed all the stored procedures with "sp" so I know the object is a user stored procedure. I then
use Supplier so I know what table I am using, followed by the action. This way the four stored
procedures will be grouped together in the stored procedure list for the Supplier table. Again, you may
have your own naming convention, but the important thing is that you are consistent and that it makes
sense to others that may be working with your stored procedures.

Before clicking the Next button, make sure the "Yes, create them in the database for me." option is
selected. The last window simply shows the user the results of their options they have selected in the
wizard. Click Finish. A new object, sqlDataAdapter1, will now show up on the page (if an extra
connection object is also created, just delete this). Before going any further let's change the name. Right-
click on sqlDataAdapter1 and select Properties. In the (Name) property type: SupplierDataAdapter. If
we were going to have multiple data adapters on this page, this would assist us in knowing which data
adapter did what. Our next task is to create a typed DataSet.

Creating a Typed DataSet
There are two ways to create a typed DataSet using Visual Studio: the Component Designer and the
XML Designer. Both give us similar results, but there are some differences so let's take a look at them
more closely.

The Component Designer

If you would like Visual Studio to create the schema and typed DataSet class automatically then the
Component Designer is the way to go. First, you create a data adapter, and then you can generate a
DataSet. The bottom line here is that the Component Designer involves fewer steps than the XML
Designer. However, there are some disadvantages.

❑ You only directly control the data adapter configuration that in turn generates the schema and
DataSet, so you have a lack of control over the schema. However, you can edit the schema
with the XML Designer after it has been created.

❑ After the schema and DataSet have been created by the data adapter, you must manually
recreate the schema and DataSet if you make any modifications to the data being returned by
the stored procedure to keep everything in-sync.

❑ You lose some DataSet functions, such as defining DataRelation objects.

The XML Designer

If you want more control over the schema definition or if you cannot automatically create the schema
from a data source, then the XML Designer is your best bet. The XML Designer allows the user to
directly modify the .XSD file by dragging database elements from the Server Explorer onto the
designer, or creating the schema themselves. Then an instance of a typed DataSet, based on the schema,
can be added. When you modify the .XSD file and save the changes, it will automatically update the
corresponding class file. There are also disadvantages to this method, though:

❑ If you modify the .XSD file, Visual Studio does not automatically update any data adapters
that may interact with the DataSet.

❑ The process may be difficult if you are not familiar with XML and schemas.

Exposing Data Through Web Services

15

So let's look at our situation and make the best decision for which method to use:

❑ We have direct access to our data source, the Northwind database.

❑ Once we have created the schema and DataSet we do not intend to modify it.

❑ We are not joining multiple tables or queries in our DataSet.

Looking at our scenario, our best option is to use the Component Designer to build our typed DataSet. So
let's get started. We already have our data adapter created, SupplierDataAdapter, so this will be quick.

Open CompanyService.asmx in design mode, if it isn't still open from our last exercise. Right-click on
SupplierDataAdapter, and select Generate DataSet, which will create our schema and typed DataSet
class. A window will pop-up asking us if we want to use an existing DataSet or create a new DataSet.
Select new and call it, SupplierDataSet. Before clicking OK, make sure the Suppliers
(SupplierDataAdapter) and Add this dataset to the designer boxes are checked.

So, what has the Component Designer just done for us? Essentially it has done three things by
translating the query types from the stored procedure:

❑ Created an XML schema called SupplierDataSet.xsd, in our SupplierService project.

❑ Created a typed DataSet class called SupplierDataSet.cs, in our SupplierService project.

❑ Created a DataSet called supplierDataSet1, on our CompanyService.asmx page.

Chapter 15

16

SupplierDataSet.xsd

Double-click SupplierDataSet.xsd in the Solution Explorer. Here you will see a table structure of the
generated XML.

If you want to see the XML that this process generated simply click on the XML tab in the lower-left
hand corner of the page. If you look closely you will notice three important lines.

<xsd:element name="SupplierID"
 msdata:ReadOnly="true"
 msdata:AutoIncrement="true"
 type="xsd:int" />
<xsd:element name="CompanyName" type="xsd:string" />
<xsd:element name="Country"
 type="xsd:string"
 minOccurs="0" />

This is the difference between this and our first Web Service example, and is what strongly types our
data elements by using the type attribute. How this helps us will become more apparent when we build
the Web Service client.

We will take a look at the other two objects: SupplierDataSet.cs and supplierDataSet1 in just a minute.

Creating the "GetSupplierList()" Web Method
Open Solution Explorer and open CompanyService.asmx in code view. Again, we need to clean up
some of the unnecessary code that gets created by default. First, remove the Web Service Example
code that is commented out.

// WEB SERVICE EXAMPLE
// The HelloWorld() example service returns the string Hello World
// To build, uncomment the following lines then save and build the project
// To test this Web Service, press F5

// [WebMethod]
// public string HelloWorld()
// {
// return "Hello World";
// }

We then want to specify a new namespace for our Web Service instead of leaving the default,
http://tempuri.org. Just like when we build classes and they have their own namespace, we want
to give this Web Service a different a different namespace as well. Though this isn't absolutely necessary
it keeps us from running into problems if we have two different Web Services that have the same
WebMethod names. Again, there are no hard-set rules for creating Web Service namespaces, to keep it
simple I have elected to use Company Domain, webservices, class name. So, add the following
attribute above the CompanyService class:

Exposing Data Through Web Services

17

[WebService(Namespace="http://wrox.com/webservices/CustomerService")]
public class CompanyService : System.Web.Services.WebService
 {
 // code
 }

Like our first WebMethod we want to return a DataSet to the caller. However, this time, instead of using
an untyped DataSet, we are going to use our typed DataSet, supplierDataSet1. Plus, this time, since we
used the Visual Studio tools to do all the leg work our WebMethod is simply two lines of code.
GetSupplierList() becomes:

[WebMethod]
public SupplierService.SupplierDataSet GetSupplierList()
{
 SupplierDataAdapter.Fill(supplierDataSet1);
 return supplierDataSet1;
}

As we stated, our WebMethod is essentially the same as before except we are returning a typed DataSet
called supplierDataSet1, which is of type SupplierDataSet. Where did the SupplierDataSet type
come from you ask? Ah, this is the voodoo magic that happened when we generated the DataSet from
our SupplierDataAdapter. As was briefly mentioned before, when we used the Component Designer,
Visual Studio .NET does all the grunt work and creates the necessary files for our typed DataSet. The
SupplierDataSet class is just one them.

SupplierDataSet.cs

If you open Solution Explorer and click the Show All Files icon (right-most icon in Solution Explorer)
then expand SupplierDataSet.xsd you will notice the SupplierDataSet.cs file that Visual Studio
was able to create for us. This class uses the System.Runtime.Serialization namespace which is
used to serialize and deserialize objects. What this does for us is create a typed DataSet class based on
the XML schema we created to allow us to access the DataSet objects in a more object-oriented manner.
This will become clearer after we create the Web Service client.

Testing "CompanyService"

Before building the client, let's do a quick test to make sure CompanyService works properly. Open the
Solution Explorer and right-click on CompanyService.asmx and select Set As Start Page. Now click
the Debug menu item and select Start Without Debugging.This will bring up the Web Service
description page in Internet Explorer. Click on the GetSupplierList hyperlink, then click the Invoke
button. This will bring up the XML that will be returned to the caller when the GetSupplierList
WebMethod is called. If you scroll down you should see something like this:

Chapter 15

18

Now that we know everything is working as planned, we can move on to creating the Web Service client.

Creating the Web Service Client for "CompanyService"
Instead of creating a new client for this service let's build on our previous one, ProductSupply. Open the
ProductSupply project in another instance of Visual Studio, right-click index.aspx and select View Designer.

First we are going to add a Label control to our page (I placed mine just above the DataGrid) to help us
demonstrate the difference between an untyped DataSet and a typed DataSet. Right-click on the Label
object and select Properties. Change the (ID) from Label1 to UntypedData. Also, remove Label from
the text property. Now, switch to the code behind page (right-click on index.aspx and select View
Code). We are going to add a bit more to our existing code:

private void Page_Load(object sender, System.EventArgs e)
{
 // Put user code to initialize the page here
 if (!Page.IsPostBack)
 {
 // Create a new ProductService object
 ProductService ps = new ProductSupply.WebService.ProductService();
 DataSet ds = ps.GetPavlovaProduct();

 // Bind data to DataGrid
 ProductDataSet.DataSource = ds.Tables[0].DefaultView;
 ProductDataSet.DataBind();

 // Demonstrate how to access a particular item in an untyped DataSet
 string ProductName = ds.Tables[0].Rows[4]["ProductName"].ToString();
 UntypedData.Text = ProductName;
 }
}

Exposing Data Through Web Services

19

Here, we demonstrate how you would access the data in the DataSet located in the first table, in the fifth
row (remember all arrays are zero-based) of the ProductName column. Then we display the data using
a Label server control. Obviously, this is not a very pretty way to access data, but because we are
accessing an untyped DataSet, which only exposes its objects as collections, we are really left with no
other choice.

Before testing this in a browser you may have to refresh the Web Reference if you made any modifications
to the ProductService Web Service: Right-click Web Service and select Update Web Reference.

Now you can comfortably run index.aspx by clicking on the Debug menu item and selecting Start
Without Debugging. As before, you will see ProductDataSet DataGrid populated with the DataSet
returned by GetPavlovaProduct(), but you will also see the Label server control populated with the
text, Outback Lager.

Open index.aspx in design mode again so we can add a couple
more objects. First add another Label server control to the page just
below the ProductDataSet DataGrid. View the Label's properties,
change the ID to TypedData, and remove Label from the text
property. Now drag a DataGrid server control onto the page just
below the TypedData Label. View its properties and change the ID to
SupplierGrid. The designer should look something like the screenshot
on the right.

Chapter 15

20

The next step is to add another Web Reference to our project. In the Solution Explorer, right-click Web
References and select Add Web Reference. In the following Address field we must supply the URL to
our Web Service description page, which will look something like this:
http://localhost/SupplierService/CompanyService.asmx. Hit Enter on your keyboard, and then click the
Add Reference button. Before going any further, let's change the default Web Service name localhost
to the more meaningful CompanyWebService. If you now expand CompanyWebService in the
Solution Explorer, you see that in addition to the .DISCO and .WSDL file, the SupplierDataSet schema
has also been created. As we now know, this is one of the key players for our typed DataSet.

Open the code behind file index.aspx.cs and add the following namespace alias:

using ProductSupply.CompanyWebService;

Now we want to add the code that creates an instance of the CompanyWebService, fills our typed
DataSet via our GetSupplierList() WebMethod, and binds it to our SupplierGrid. Again, we will
add this to our existing code as shown below:

if (!Page.IsPostBack)
{
 // Create a new ProductService object
 ProductService ps = new ProductSupply.WebService.ProductService();
 DataSet ds = ps.GetPavlovaProduct();

 // Bind data to DataGrid
 ProductDataSet.DataSource = ds.Tables[0].DefaultView;
 ProductDataSet.DataBind();

 // Demonstrate how to access a particular item in an untyped DataSet
 string ProductName = ds.Tables[0].Rows[4]["ProductName"].ToString();
 UntypedData.Text = ProductName;

 // TYPED DATASET EXAMPLE
 //

 // Create a new Company Service object
 CompanyService cs = new ProductSupply.CompanyWebService.CompanyService();
 CompanyWebService.SupplierDataSet supplierDS = cs.GetSupplierList();

 // Bind data to DataGrid
 SupplierGrid.DataSource = supplierDS.Suppliers.DefaultView;
 SupplierGrid.DataBind();

 // Demonstrate how to access a particular item in a typed DataSet
 string CompanyName = supplierDS.Suppliers[4].CompanyName;
 TypedData.Text = CompanyName;
}

As you probably have already noticed, this is very similar to our first web client code, but does contain
a few very important differences. Let's look at the first difference:

Exposing Data Through Web Services

21

// Untyped DataSet
DataSet ds = ps.GetPavlovaProduct();

// Typed DataSet
CompanyWebService.SupplierDataSet supplierDS = cs.GetSupplierList();

In our first example, we simply created an untyped DataSet that was populated from the
GetPavlovaProduct() WebMethod. However, in our second example we created a type called
SupplierDataSet, which is a class that inherits from the base class System.Data.DataSet. You
may remember from our discussion above, that we talked about the SupplierDataSet class and the
SupplierDataSet schema being generated by our SupplierDataAdapter. Where this really comes
into play is when we want to programmatically access specific data in the DataSet. Which brings us to
our next difference:

// Demonstrate how to access a particular item in an untyped DataSet
string ProductName = ds.Tables[0].Rows[4]["ProductName"].ToString();
UntypedData.Text = ProductName;

// Demonstrate how to access a particular item in a typed DataSet
string CompanyName = supplierDS.Suppliers[4].CompanyName;
TypedData.Text = CompanyName;

Here we can see that with a typed DataSet we
can use object-oriented programming
methodologies to access particular data,
instead of accessing data as collections. We'll
come back to this soon, but first let's run our
example to see what we get. Select Debug |
Start Without Debugging.

Chapter 15

22

In this case, it makes no difference to the user whether the developer used an untyped DataSet or a
typed DataSet; the data still gets displayed. Where it does make a difference is to the developer if they
wanted to modify the data gets displayed. We'll look at this closer below.

Let's open index.aspx.cs again and try another example. This time we are going to say, "Hey, Mr.
Fancy-Schmancy Typed DataSet, we want the company name for the company with a SupplierID equal to
six". Since .NET doesn't have built-in coding by speech recognition quite yet here's what we have to do:

// Demonstrate how to access a particular item in a typed DataSet
//string CompanyName = supplierDS.Suppliers[4].CompanyName.ToString();
string CompanyName = supplierDS.Suppliers.FindBySupplierID(6).CompanyName;
TypedData.Text = CompanyName;

We commented out our first CompanyName string and replaced it with another one. Because we have a
typed DataSet that contains a unique key, SupplierID, the SupplierDataSet class created a nice
little method for us called FindBySupplierID(). This method takes one parameter: int
SupplierID, and returns a data row to us, or more specifically a SupplierDataSet.SuppliersRow.
Each SuppliersRow has several methods and properties, one property being CompanyName.

While we're beginning to see the power of the typed DataSet, we have really just scratched the surface.
Don't worry though, we'll touch on this again in our next example.

Creating a Nested Web Service
No matter where you go these days no one is happy with things the way they are. You go out to eat with
a group of friends and at least one of them can't order straight off the menu. "Yeah, can you leave the
onions and peppers off my curry please?" Anyway, as Web Services become more prevalent in the real
world there are bound to be times that the Web Service that you are looking at returns more data than
you need. Enter nested Web Services. Or as Microsoft has coined the term: Federated Services.

In this example, we are going to use one of our previous services, CompanyService. As you'll
remember, this service returns a typed DataSet containing all the suppliers in the Northwind database.
It returned the SupplierID, CompanyName, and Country. While that may be useful for some, we're
going to pretend that we only want certain suppliers from a certain country. Instead of creating a
DataSet that returns suppliers from a particular country, we are going to give the caller the option of
selecting which country they want. This will give us an opportunity to show off some more features of a
typed DataSet.

Building the CountrySupplier Web Service
Open Visual Studio and create a new C# – ASP.NET Web Service called NestedWebService. Delete
Service1.asmx and create a new Web Service called CompanyByCountry.asmx. Right-click on
CompanyByCountry.asmx in the Solution Explorer and select Set As Start Page. Now add the Web
Reference to CompanyService that we created earlier, and which is located at:
http://localhost/SupplierService/CompanyService.asmx. Note that your service may be located in a slightly
different location. As before, we will rename the default Web Service name localhost to something more
meaningful: CompanyWebService. As we have gone over the cleanup steps several times before, I'll leave it
up to you to remove the sample Web Service and add a unique namespace using the WebService attribute.
When you are finished, add the following namespace alias to the Web Service:

Exposing Data Through Web Services

23

using NestedWebService.CompanyWebService;

As mentioned above, this time we are going to allow the Web Service caller to pass the method a
parameter. We want to know which company list they want based on the country column. If this
parameter was simply the string CountryName we would run into problems because developers
would be bound to pass an invalid string which would result in a blank DataSet or worse yet an error. In
other words a consumer could pass a string value of "Mattyville", which is a valid string parameter,
but we all know is not a valid country. To eliminate this problem we are going to add a Country data
type to our Web Service with the following code:

public class CompanyByCountry : System.Web.Services.WebService
{
 public enum Country
 {
 Australia,
 Brazil,
 Canada,
 Japan,
 Spain,
 Sweden,
 UK,
 USA
 }
 // code
}

Now when a developer consumes our service they have to pass in one of our country values. If they are
using Visual Studio .NET or any other editor that provides intellisense then they will be able to easily
select one of these country values. We'll look at this in just a minute.

Notice we only included a partial list of valid countries for this example. Obviously, if this was a Web
Service we were going to expose to the world, we would want to include all valid countries.

Next we add a WebMethod called GetSuppliersByCountry() that first gets a SupplierDataSet
from the CompanyService, and then iterates through all the rows, adding all the matching ones to a
new SupplierDataSet that will be returned to the GetSuppliersByCountry() caller:

[WebMethod]
public CompanyWebService.SupplierDataSet GetSuppliersByCountry(Country
 countryName)
{
 CompanyWebService.CompanyService cService = new
 CompanyWebService.CompanyService();
 CompanyWebService.SupplierDataSet sDS = cService.GetSupplierList();

 // Create a new SupplierDataSet to hold just the data we want
 CompanyWebService.SupplierDataSet newDS = new
 CompanyWebService.SupplierDataSet();

 // Iterate through each SupplierDataSet row
 foreach(SupplierDataSet.SuppliersRow sRow in sDS.Suppliers)

TE
AM
FL
Y

Team-Fly®

Chapter 15

24

 {
 // Check to see if the company is from the country we are after
 if (sRow.Country == countryName.ToString())
 {
 // Add the row to our new dataset if it is from the right country
 newDS.Suppliers.AddSuppliersRow(sRow.CompanyName, sRow.Country);
 }
 }
 return newDS;
}

Again, because we are using a typed DataSet here, our life is made much easier because it provides us
with built-in functionality that we would not get with an untyped DataSet. For example in the above
code the Suppliers typed DataSet provides us a method called AddSuppliersRow.

Time to test our Web Service, select Debug | Start Without Debugging. When we test our Web Service
we must supply a parameter value for countryName. Notice though that we do not have a list of
options, but have to type a known value. Our Country data type won't come into play until we build
the client.

After you click the Invoke button, you will see the XML returned by our service. It looks very similar to
our CompanyService except it only contains the companies that are from the USA. So to recap what
we have done here is take an existing service, CompanyService, that returns all the suppliers and built a
nested service, or federated service, called CountrySupplier that returns a sub-set of the
CompanyService data. In our case, all the suppliers that are from a particular country.

Exposing Data Through Web Services

25

Quick Look at a Web Service Client for the "CompanyByCountry" Service
We have already built a few Web Service clients in this chapter, so it isn't necessary to go into great
detail again. However, I will point out how our Country data type comes into play and how it makes it
much easier for someone to call our service. Let's look at the code:

// Create a new Company
CompanyByCountry nestedService = new CompanyByCountry();

// Set Country value
Country countryName = Country.Canada;

NestedService.SupplierDataSet nsDS =
 nestedService.GetSuppliersByCountry(countryName);
NestedGrid.DataSource = nsDS.Suppliers.DefaultView;
NestedGrid.DataBind();

Essentially, it is the same as our previous examples, but this time we had to create a Country data type
variable and give it a value. This in turn is passed as a parameter in the GetSuppliersByCountry
method. What isn't apparent here is when you create the countryName variable you will see the
following help from Visual Studio's intellisense:

As you can see by creating the Country data type we have made it a snap for callers to provide a valid
value for the countryName parameter of GetSuppliersByCountry().

Though it would be a difficult task to simplify our special order requests at a local restaurant, we have
demonstrated here that it is possible to modify an existing Web Service to better meet our needs and
our customer's needs.

Chapter 15

26

Exposing XML
Let's take a minute to step back and exam another business-to-business example. It's not always
necessary to have a Web Service connect to a database each time it is called. For one, this could cause
unnecessary traffic to your database. For example, if you have a database that, for one reason or
another, does not allow systems to connect to it directly to access information. It would be possible to
export that data to some format, enter XML, and have the service grab the necessary information from
that file, thus easing the load to your database server. To demonstrate this scenario we're going to create
a console application that can be scheduled to run every night. This application will query a database,
grab the data and export it to an XML file that we'll consume through a Web Service. Note that creating
the XML file could also be done by creating a Windows Service or even easier yet, a stored procedure.

Creating the "CreateXmlFile" Console Application
Create a new Visual C# – Console Application called CreateXmlFile in Visual Studio. You know the
drill; delete the default file, Class1.cs and create a new class called ProductList.cs. In the Solution
Explorer open ProductList.cs and add the following namespaces:

using System;
using System.Data;
using System.Data.SqlClient;

All right, just a bit more prep work. We can delete the method that was generated for us,
ProductList(), and add Main(). ProductList.cs should look like this:

using System;
using System.Data;
using System.Data.SqlClient;

namespace CreateXmlFile
{
 /// <summary>
 /// Summary description for ProductList.
 /// </summary>
 public class ProductList
 {
 static void Main(string[] args)
 {
 }
 }
}

Whew, time for the good stuff, and trust me, I think you're going to like how we're going to create this
XML file. First, we're going to connect to the Northwind database as we have in the previous examples.
However, this time we're going to use an inline SQL statement instead of creating a stored procedure. I
would highly suggest using a stored procedure for any production application though. Once we have
connected to the database we will again fill a DataSet with the SqlDataAdapter method Fill(). For
the grand finale, we will use a very handy DataSet method, WriteXML(). That's all we have to do to
create our XML file with data from a database. Let's look at the actual code now:

Exposing Data Through Web Services

27

 public class ProductList
 {
 // Local connectionString variable
 private const string connectionString = "integrated
 security=sspi;initial catalog=Northwind;data source=starbucks";

 static void Main(string[] args)
 {
 string query = "select Products.ProductName,
 Suppliers.CompanyName from Products, Suppliers where
 Products.SupplierID = Suppliers.SupplierID order by
 Products.ProductName";
 SqlConnection myConnection = new SqlConnection(connectionString);
 SqlDataAdapter myCommand = new SqlDataAdapter(query, myConnection);

 DataSet ds = new DataSet();
 myCommand.Fill(ds, "Titles");

 ds.WriteXml(@"c:\ProductList.xml");
 }
 }

How did we do? Time to find out I guess. Execute the application, Debug – Start, then check for
ProductList.xml in the root of your C: drive, it should look something like this:

<?xml version="1.0" standalone="yes"?>
<NewDataSet>
 <Titles>
 <ProductName>Alice Mutton</ProductName>
 <CompanyName>Pavlova, Ltd.</CompanyName>
 </Titles>
 <Titles>
 <ProductName>Aniseed Syrup</ProductName>
 <CompanyName>Exotic Liquids</CompanyName>
 </Titles>
 <Titles>
 <ProductName>Boston Crab Meat</ProductName>
 <CompanyName>New England Seafood Cannery</CompanyName>

...

 <Titles>
 <ProductName>Zaanse koeken</ProductName>
 <CompanyName>Zaanse Snoepfabriek</CompanyName>
 </Titles>
</NewDataSet>

All right, if you weren't impressed with that, then maybe I can impress you with how we create the
WebMethod that grabs this XML data.

Chapter 15

28

Creating the "GetProductList()" Web Method
Just to recap; we have created a console application that will be scheduled to run nightly that grabs data
from our database and sticks it into an XML file. Now it is time to create a new WebMethod to our
existing ProductService Web Service.

Open the SupplierService project containing ProductService.asmx in Visual Studio. With only 8
lines of actual code we will expose our XML file, ProductList.xml, to the world through our
ProductService service. Add the following code to ProductService.asmx (I added it below our other
WebMethod, GetPavlovaProduct):

[WebMethod]
public DataSet GetProductList()
{
 DataSet ds = new DataSet();
 ds.ReadXml ("c:\ProductList.xml");

 return ds;
}

And that's all we have to do to expose our XML file to the world! Don't believe me? We better check,
Debug – Start Without Debugging, in the Internet Explorer browser click GetProductList, then click
the Invoke button. You will see the XML data that will be passed to the caller. Call me weird, but I'd
rather look at data in an HTML table than an XML document, so let's make the necessary changes
(there's only two) to our Web page to display the data returned by GetProductList().

Open the ProductSupply project in Visual Studio. The first thing we need to do is refresh our
ProductSupply WebService proxy. Open the Solution Explorer, double-click Web References, right-
click the WebService icon, and select Update Web Reference. Now open the code behind file for
index.aspx and comment out the following line of code:

//DataSet ds = ps.GetPavlovaProduct();

and replace it with this line:

DataSet ds = ps.GetProductList();

Now we're ready to test again, Debug – Start Without Debugging:

Exposing Data Through Web Services

29

This concludes our XML example. You may have noticed that neither the console application nor
the WebMethod contained any error handling code. This was omitted for brevity, but I would
highly recommend adding some sort of error handling before putting something like this in a
production environment.

Exposing Active Directory
Active Directory is yet another possible data source for Web Services. However, one thing we need to
be careful of when exposing Active Directory as a Web Service is security (covered in Chapter 13). Not
that other data is not worthy of security, just that we may want to be extra careful in this case. At the
same time, there can be instances that providing this sort of data as a Web Service could be very useful.
Let's take a look at a few examples:

❑ Contact information. It may be beneficial for you to expose member data from group X.
Information like email address, phone number, etc.

❑ User Monitoring. Expose user information like: logon name, number of times logged on,
number of bad password attempts, last logon date, etc.

❑ Admin tool. Create several WebMethods to allow administrators to add, modify and delete users.

Obviously, there are many other such examples.

As we have gone over quite a few exercises in this chapter already, we won't cover this example step by
step. However, a full example can be downloaded with the rest of the book's source code. We'll also
assume some level of understanding of Active Directory and won't drill down into all the "why's", as
that is beyond the scope of this book.

The System.DirectoryServices namespace exposes Active Directory to us. It contains many
classes, but for simplicity we will just look at one; the DirectoryEntry class that allows us to access
specific Active Directory data for reading, modifying or even adding. For example, if we wanted to
access the Active Directory Users we would write something like:

DirectoryEntry dirEntry = new
 DirectoryEntry("LDAP://CN=Users,DC=adsd,DC=ebohling,DC=com");

The "MusicListeners" Web Service
What our Web Service will do is return a typed DataSet of all the members of a particular group,
MusicListeners. Plus, it will contain information about each member such as account name, email
address, username, etc. To give you a point of reference, a screenshot of all the members in the
MusicListeners group is below.

Chapter 15

30

So, let's now take a look at the code we need to use to access these members and some of their
information:

private string GetData(string ADobject, string PropertyName)
{
 string strValue = "none";
 DirectoryEntry UserAccount = new DirectoryEntry("LDAP://" +
 ADobject.ToString());

 // Get Property Value
 if (UserAccount.Properties[PropertyName].Count > 0)
 {
 strValue = UserAccount.Properties[PropertyName][0].ToString();
 }
 return strValue;
}

[WebMethod]
public ADService.MLUsers GetMusicListeners()
{
 DirectoryEntry dirEntry = new DirectoryEntry("LDAP://CN=MusicListeners,
 CN=Users,DC=adsd,DC=ebohling,DC=com");

 foreach(Object objValue in dirEntry.Properties["member"])
 {
 string Account = GetData(objValue.ToString(), "cn");
 string Email = GetData(objValue.ToString(), "mail");
 string LogonName = GetData(objValue.ToString(), "sAMAccountName");
 string LogonCount = GetData(objValue.ToString(), "logonCount");
 string Created = GetData(objValue.ToString(), "whenCreated");
 string Changed = GetData(objValue.ToString(), "whenChanged");

 // Add data to data row
 userDS.Users.AddUsersRow(Account, Email, LogonName, LogonCount,
 Created, Changed);
 }
 return userDS;
}

Exposing Data Through Web Services

31

The unfortunate thing, which you may have already noticed, is that the data we access in Active
Directory is in the form of collections, which makes it less elegant than if it were truly object-oriented,
but we can still work with it. What we have done here is first to get the Directory entry for the
MusicListeners group. We then iterate through all of its members using
dirEntry.Properties["member"]. To save a lot of typing and to make our code more streamlined
we have created a private wrapper method that takes our member path, objValue.ToString(), and
property name and returns the appropriate value. Again, not very elegant, but the best we can do in this
situation. After we have gathered all the information we want for a particular member, we add the data
to our typed DataSet userDS. Though it is not obvious here, we used the XML Designer to create a
MLUser.xsd, so we could return a typed DataSet to the caller. The XML Designer was used in this case
because we did not have direct access to the data source.

Creating a Typed DataSet with the XML Designer
Since we used the Component Designer earlier in the chapter let's take a moment to look at how we
create a typed DataSet using the XML Designer. This time we will need to add a DataSet to our project
by following the steps. First, right-click on the project ADService | Add | Add New Item… Then select
Data Set in the list and call it MLUsers.xsd. Then open the Toolbox and drag an element object from
the XML Schema tab. You should now see the following on your screen:

Again, we are using the XML Designer instead of the Component Designer because we cannot
automatically create the XSD file from a data source, so we will create it ourselves. First change
element1 to Users. Then we will add the following string elements: AccountName, Email,
LogonName, LogonCount, Created, giving us the following:

Now, simply save the file. This action will automatically create our MLUsers class, MLUsers.cs. That's
all there is to it. You can view the generated class by expanding MLUsers.xsd in the Solution Explorer.

Chapter 15

32

For our final step, after we have gone through each member of the MusicListeners group, we return the
userDS DataSet.

Though we won't cover it here, you should now be able to create a client of your choice to consume this
Web Service. Again, a sample client has been provided in the book's source code.

Legacy Systems and Applications
Most companies these days have to deal with multiple operating systems, programming languages,
object models and a plethora of other technologies. Yet, at the same time, these companies are striving
to be an e-business. This has caused countless hours of arguments, sleepless nights, and much frustration
to project managers, developers, and anyone else involved in making their company into an e-business.
Many technologies have tried to help in this area, but many still used proprietary pieces, which still
made it a "one-size fits all" solution.

Then along came XML. XML has slowly grown to be a popular way to exchange data between systems.
Just as TCP/IP provides a universal connection to the Internet, XML has now become a standardized
universal language. It is so powerful because of its extensibility and simplicity and the fact that it allows
systems to send and receive data in a predictable way. One of the reasons it has taken so long to
become mainstream is that there were no tools available to assist developers in transporting this data.

Enter Web Services, with which Microsoft created an easy way to transport XML between systems. No
longer does the developer have to create our own solutions or use proprietary technologies. The .NET
Framework makes it as easy as adding a few lines of code to our existing properties and methods to
expose them over the Web; using Internet standards!

As companies adopt .NET and its technologies and move towards using Web Services maybe we will
start to see a change. Maybe we'll see less blood-shot eyed developers walking like zombies to the
vending machines purchasing their tenth caffeinated beverage of the day. Maybe companies can finally
reach that 100% e-business goal. Time will tell.

Summary
ASP.NET Web Services have provided the developer community with a fairly straightforward and
efficient way to expose many data sources. Everything from ADO.NET, files, Active Directory, etc. can
be exposed to create read-only or writeable data. The advantages we gain by exposing these data
sources as Web Services include:

❑ the ability to access information from other Operating Systems

❑ the permission for access across firewalls

❑ the ability for developers to reuse code very easily

❑ the limitation of database connections to servers

❑ the empowerment of business to embrace new business models that were previously very hard
or impossible to achieve

Exposing Data Through Web Services

33

Though we only covered a small portion of the abilities in each of our data sources, this chapter
has given you a starting point from which you can explore the richness of the .NET Framework
and Web Services.

TE
AM
FL
Y

Team-Fly®

Chapter 15

34

SOAP Security

Simple Object Access Protocol (SOAP) is a high-level protocol that can work on top of any low-level protocols
such as HTTP, SMTP, and so on. The authentication techniques that we discussed in the previous chapter will
only work with the HTTP protocol. If we are accessing Web Services using the SMTP protocol to send and
receive SOAP messages then we can't use the above techniques. To overcome this limitation we can use some
custom SOAP techniques to authenticate a user. We have already seen some custom SOAP techniques in
Chapter 6. In this chapter we will concentrate on using these techniques for authentication purposes.

We'll learn the following techniques from this chapter:

❑ SOAP Header - How to use the SOAP Header to authenticate users

❑ Custom Authentication and Authorization – How to use Custom Authentication and
Authorization techniques using the HTTP Modules

❑ Tracing SOAP Messages – How to trace SOAP messages using the SOAP Extensions

❑ Encrypting and Decrypting SOAP Messages –How to encrypt and decrypt the data passed in
the SOAP message body

Let's not waste any more time and jump into the chapter to see the existing world of SOAP.

SOAP Envelope
Before going any further, let's stop for a second and recap some information about the structure of the
SOAP message. We have already had a detailed discussion about the SOAP protocol in Chapter 5, so
we won't repeat it all here, but we'll just have a quick recap. Every SOAP message contains a SOAP
envelope and within the envelope there is a header and a body:

14

Chapter 14

2

The SOAP protocol is extendable and we can add application-specific information to it. For example we
can add application-specific information to the SOAP header and transport it between the client and the
Web Service.

The extensions will only work with SOAP and can't be used with HTTP GET or POST. We can
use HTTP as a carrier for SOAP messages though, and then use the extensions.

When we create a proxy object and access a Web Service using the SOAP protocol it will create a
SOAP envelope and pass the values to the Web Service:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <SayHello xmlns="http://tempuri.org/" />
 </soap:Body>
</soap:Envelope>

When we return a value from the Web Service, it will arrive back as a SOAP envelope.

Custom SOAP Header
We can add custom values to the SOAP header for the purposes of the application. For example, if we add
a username and password variables to the SOAP header then the SOAP envelope will look like this:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Header>
 <SOAPHeaderAuth xmlns="http://tempuri.org/">
 <UserName>SrinivasaSivakumar</UserName>

SOAP Security

3

 <Password>MyPass</Password>
 </SOAPHeaderAuth>
 </soap:Header>
 <soap:Body>
 <SayHello xmlns="http://tempuri.org/" />
 </soap:Body>
</soap:Envelope>

To use the SOAP header in the Web Service, we have to implement our own class that inherits from the
SoapHeader class (available in the System.Web.Services.Protocols namespace). Let's see a simple
example for this, SayHello_CS.asmx in the SoapAuth1 folder of the code download for this chapter:

<%@ WebService Language="C#" Class="Hello" %>

using System.Web.Services;
using System.Web.Services.Protocols;

//A Simple SOAP Header extension class
public class SOAPHeaderAuth : SoapHeader
{
 public string UserName;
 public string Password;
}

public class Hello : WebService
{
 //Public instance of the SOAP Header extension
 public SOAPHeaderAuth objSoapHeaderAuth;

 const string CN_InvalidUserNameOrPassword = "WS1001";

 [WebMethod, SoapHeader("objSoapHeaderAuth",
 Direction = SoapHeaderDirection.InOut,
 Required = true)]
 public string SayHello()
 {
 if (Authenticate(objSoapHeaderAuth.UserName,
 objSoapHeaderAuth.Password) == true)
 return "Hello " + objSoapHeaderAuth.UserName + " and your password is "
 + objSoapHeaderAuth.Password ;
 else
 return CN_InvalidUserNameOrPassword;
 }

 private bool Authenticate(string sUser, string sPwd)
 {
 if (sUser == "SrinivasaSivakumar" && sPwd == "MyPass")
 return true;
 else
 return false;
 }
}

First up we have included the System.Web.Services.Protocols namespace to get access to the
SoapHeader class. Then we've defined a new class (SOAPHeaderAuth) with two public members
(UserName and Password) that inherit from the SoapHeader base class:

HR
Highlight

HR
Highlight

HR
Highlight

Chapter 14

4

using System.Web.Services.Protocols;

//A Simple SOAP Header extension class
public class SOAPHeaderAuth : SoapHeader
{
 public string UserName;
 public string Password;
}

Then we've created a class-level public instance of the class type SOAPHeaderAuth and we've passed
the variable into the SoapHeader constructor in the WebMethod declaration. We've also specified the
SOAP header direction as in and out and SOAP header as being required. This will modify the default
SOAP header and add the custom values to the SOAP header and make the SOAP header bi-directional
and required. Then we've defined a constant to return to the user if the authentication fails:

 //Public instance of the SOAP Header extension
 public SOAPHeaderAuth objSoapHeaderAuth;

 const string CN_InvalidUserNameOrPassword = "WS1001";

 [WebMethod, SoapHeader("objSoapHeaderAuth",
 Direction = SoapHeaderDirection.InOut,
 Required = true)]

In the SayHello method body, we're passing the username and the password to the Authenticate
method. In the Authenticate method, if the username is "SrinivasaSivakumar" and the password
is "MyPass" then we're returning true otherwise we're returning false. If we get a true back from
the Authenticate method then we're returning the username and the password back to the client.
Otherwise we're returning the CN_InvalidUserNameOrPassword constant back:

 public string SayHello()
 {
 if (Authenticate(objSoapHeaderAuth.UserName,
 objSoapHeaderAuth.Password) == true)
 return "Hello " + objSoapHeaderAuth.UserName + " and your password is "
 + objSoapHeaderAuth.Password ;
 else
 return CN_InvalidUserNameOrPassword;
 }

 private bool Authenticate(string sUser, string sPwd)
 {
 if (sUser == "SrinivasaSivakumar" && sPwd == "MyPass")
 return true;
 else
 return false;
 }

If we look at the WSDL file generated for the Web Service we notice that SOAPHeaderAuth has been
added to the SOAP header with all the public members:

<s:element name="SOAPHeaderAuth" type="s0:SOAPHeaderAuth" />
<s:complexType name="SOAPHeaderAuth">
 <s:sequence>
 <s:element minOccurs="1"

SOAP Security

5

 maxOccurs="1"
 name="UserName"
 nillable="true"
 type="s:string" />
 <s:element minOccurs="1"
 maxOccurs="1"
 name="Password"
 nillable="true"
 type="s:string" />
 </s:sequence>
</s:complexType>

To use the SOAP header extensions we need to access the Web Service trough the SOAP protocol. And
to do that, we need to create a proxy object. We will use the SayHello_CS_Build.bat batch file in
the SOAPAuth1 folder to do this:

WSDL /l:CS /n:SayHelloCSNS /out:SayHello.cs�
 http://localhost/ProWebServices/soapauth1/SayHello_CS.Asmx?WSDL
CSC /r:system.dll /r:System.Web.dll /r:System.Xml.dll �
/r:System.Web.Services.dll /t:library /out:SayHelloCS.dll SayHello.cs
Pause

Let's place the SayHelloCS.Dll in the bin folder and build an ASP.NET client for the Web Service,
SOAPAuthClientCS.aspx:

<%@ Import Namespace="SayHelloCSNS" %>
<html>
<head>
<title>SOAP Authentication Web Client</title>
<style type="text/css">
 body {font-face:verdana; font-size:10pt; font-weight:normal}
</style>
</head>
<script language="C#" runat="server">
public void Page_Load(Object sender, EventArgs E){
 try
 {
 SayHelloCSNS.Hello objWebSvc = new SayHelloCSNS.Hello();
 SOAPHeaderAuth objSoapHeader = new SOAPHeaderAuth();

 //Set the Username and Password
 objSoapHeader.UserName = "SrinivasaSivakumar";
 objSoapHeader.Password = "MyPass";

 //Pass the custom SOAP header object
 objWebSvc.SOAPHeaderAuthValue = objSoapHeader;

 lblResult.Text = objWebSvc.SayHello();
 }
 catch (Exception Ex)
 {
 lblResult.Text = Ex.ToString();
 }
}
</script>
<body>
<h3>SOAP Authentication - Web Service Client</h3>

Chapter 14

6

<form runat="server">
Result:
 <asp:Label id="lblResult" runat="server"/>
</form>
</body>
</html>

We've created an object that represents the Web Service (objWebSvc) and the custom SOAP Header
(objSoapHeader). Then we've added the username and password to the SOAP header object:

 SayHelloCSNS.Hello objWebSvc = new SayHelloCSNS.Hello();
 SOAPHeaderAuth objSoapHeader = new SOAPHeaderAuth();

 //Set the Username and Password
 objSoapHeader.UserName = "SrinivasaSivakumar";
 objSoapHeader.Password = "MyPass";

Then we've assigned the SOAP header object to the public property of the Web Services class and
called the WebMethod:

 //Pass the custom SOAP header object
 objWebSvc.SOAPHeaderAuthValue = objSoapHeader;

 lblResult.Text = objWebSvc.SayHello();

The SOAPHeaderAuthValue property in the above code represents the custom SOAP Header class
value. To access the SOAP header value, we append Value to the header class name.

The following screenshot shows the output of the Web Service. The first image shows the result of a
correct log in, the second shows what happens if the username or password is incorrect:

SOAP Security

7

We have specified that SOAP headers are required. So if the client didn't include the custom SOAP
header information then the Web Service will throw a SOAPHeaderException.

Custom Authentication and Authorization
The ASP.NET architecture is extendable and the .NET class framework provides lot of rich features to extend
the HTTP runtime. With custom authentication and authorization we can bypass the default authorization
options provided by ASP.NET and build our own custom modules to authenticate and authorize. This
functionality can be achieved by building HTTP Modules in any of the .NET compliant languages.

Custom authentication enables us to extend existing authentication mechanisms, providing application-
specific or company-specific authentication mechanisms. If your application or Web Service requires some
special authentication procedure then custom authentication is the way to go. Custom authentication gives
low level access to the HTTP layer and it allows us to control the authentication from the HTTP layer.

We're going to build a custom authentication mechanism that uses SOAP header security. In the custom
authentication module, we'll read the SOAP request into a XML DOM object since the SOAP request is a well-
formed XML document and we'll read the username and password from it. Then we will authenticate the users
with the username and password extracted from the SOAP request and assign appropriate roles to them.

Let's write a HTTP Module to authenticate a user for the Web Service. All HTTP Modules should
implement the IHttpModule interface available in the System.Web namespace. Here is the HTTP
module code (WebServiceAuthenticationModule.cs in the HTTPModule subdirectory of
the SOAPAuth2 folder):

using System;
using System.Web;
using System.IO;
using System.Xml;
using System.Xml.XPath;
using System.Text;
using System.Web.Services.Protocols;

Chapter 14

8

namespace Microsoft.WebServices.Security {

 public sealed class WebServiceAuthenticationModule : IHttpModule
 {
 private WebServiceAuthenticationEventHandler _eventHandler = null;

 public event WebServiceAuthenticationEventHandler Authenticate
 {
 add { _eventHandler += value;}
 remove {_eventHandler -= value;}
 }

 public void Dispose()
 {
 }

 public void Init(HttpApplication app)
 {
 app.AuthenticateRequest += new EventHandler(this.OnEnter);
 }

 private void OnAuthenticate(WebServiceAuthenticationEvent e)
 {
 if (_eventHandler == null)
 return;

 _eventHandler(this, e);
 if (e.User != null)
 e.Context.User = e.Principal;
 }

 public string ModuleName
 {
 get{ return "WebServiceAuthentication"; }
 }

 void OnEnter(Object source, EventArgs eventArgs) {
 HttpApplication app = (HttpApplication)source;
 HttpContext context = app.Context;
 Stream HttpStream = context.Request.InputStream;

 // Current position of stream
 long posStream = HttpStream.Position;

 // If the request contains an HTTP_SOAPACTION
 // header we'll look at this message
 if (context.Request.ServerVariables["HTTP_SOAPACTION"] == null)
 return;

 // Load the body of the HTTP message
 // into an XML document
 XmlDocument dom = new XmlDocument();
 string soapUser;
 string soapPassword;

 try {
 dom.Load(HttpStream);

SOAP Security

9

 // Reset the stream position
 HttpStream.Position = posStream;

 // Bind to the Authentication header
 soapUser = dom.GetElementsByTagName("User").Item(0).InnerText;
 soapPassword = dom.GetElementsByTagName("Password").Item(0).InnerText;
 }
 catch (Exception e)
 {
 // Reset Position of stream
 HttpStream.Position = posStream;

 // Throw a SOAP Exception
 XmlQualifiedName name = new XmlQualifiedName("Load");
 SoapException soapException =
 new SoapException("Unable to read SOAP request", name, e);
 throw soapException;
 }

 // Raise the custom global.asax event
 OnAuthenticate(new WebServiceAuthenticationEvent(context,
 soapUser, soapPassword));

 return;
 }
 }
}

First of all we have created a namespace (Microsoft.WebServices.Security) and a public class
(WebServiceAuthenticationModule) that inherits from the IHttpModule module. Then we have
created a private event handler and initialized it with null:

namespace Microsoft.WebServices.Security {

 public sealed class WebServiceAuthenticationModule : IHttpModule
 {
 private WebServiceAuthenticationEventHandler _eventHandler = null;

 public event WebServiceAuthenticationEventHandler Authenticate
 {
 add { _eventHandler += value;}
 remove {_eventHandler -= value;}
 }

In the Init event we're wiring the OnEnter method with the authenticate request. This means
whenever an authentication request comes to the HTTP Module, the OnEnter method will be called. In
the OnEnter method we create HttpApplication, HttpContext, and HttpStream objects. Then
we get the position of the HttpStream in the variable posStream:

 void OnEnter(Object source, EventArgs eventArgs) {
 HttpApplication app = (HttpApplication)source;
 HttpContext context = app.Context;
 Stream HttpStream = context.Request.InputStream;

 // Current position of stream
 long posStream = HttpStream.Position;

TE
AM
FL
Y

Team-Fly®

Chapter 14

10

Then we check that the server variable HTTP_SOAPACTION is present in the server variables collection.
This server variable identifies if the current HTTP Stream is a SOAP message or not. If this is not a
SOAP message we ignore the rest of the method call:

 // If the request contains an HTTP_SOAPACTION
 // header we'll look at this message
 if (context.Request.ServerVariables["HTTP_SOAPACTION"] == null)
 return;

If this is a SOAP message then it is XML-based. Here we are dealing with raw HTTP headers, and there is
no way that we can read the custom SOAP headers using its object model as we did in the .asmx file. The
way to read the information from the HTTP Stream is to parse the XML document. So we create an XML
DOM object and two string variables to get the username and password from the SOAP header:

 // Load the body of the HTTP message
 // into an XML document
 XmlDocument dom = new XmlDocument();
 string soapUser;
 string soapPassword;

Then we load the HTTP Stream into the XML DOM object, find the elements User and Password
from the custom HTTP header and store them into the local variables:

 try {
 dom.Load(HttpStream);

 // Reset the stream position
 HttpStream.Position = posStream;

 // Bind to the Authentication header
 soapUser = dom.GetElementsByTagName("User").Item(0).InnerText;
 soapPassword = dom.GetElementsByTagName("Password").Item(0).InnerText;
 }

If an exception occurs then we throw a SOAPException:

 catch (Exception e)
 {
 // Reset Position of stream
 HttpStream.Position = posStream;

 // Throw a SOAP Exception
 XmlQualifiedName name = new XmlQualifiedName("Load");
 SoapException soapException =
 new SoapException("Unable to read SOAP request", name, e);
 throw soapException;
 }

Finally we raise the WebServiceAuthenticationEvent_OnAuthenticate event in the
Global.Asax file:

 // Raise the custom global.asax event
 OnAuthenticate(new WebServiceAuthenticationEvent(context,
 soapUser, soapPassword));

 return;
}

SOAP Security

11

In the OnAuthenticate method, we bind the Principal object with the User object:

 private void OnAuthenticate(WebServiceAuthenticationEvent e)
 {
 if (_eventHandler == null)
 return;

 _eventHandler(this, e);
 if (e.User != null)
 e.Context.User = e.Principal;
 }

Since the username and the password are transmitted as clear text in the SOAP
message, it is easy to hack the HTTP Stream and read the username and the password.
If your Web Service is HTTP-based then you can very easily fix this problem using SSL.
If you are also relying on non-HTTP clients then custom encryption will be a good
alternative to use. We'll see some samples later of custom encryption.

The WebServiceAuthenticationEvent declaration code is defined in the
WebServiceAuthenticationEvent.cs file, which takes the HttpContext, username, and
password as parameters.:

public WebServiceAuthenticationEvent(HttpContext context, string user,
string password)
{
 _Context = context;
 _User = user;
 _Password = password;
}

Then we define the WebServiceAuthentication_OnAuthenticate event in the global.asax file,
contained in the Server subfolder of SOAPAuth2:

<%@ Import Namespace="Microsoft.WebServices.Security" %>
<%@ Import Namespace="System.Security.Principal" %>

<script runat=server>
Public Sub WebServiceAuthentication_OnAuthenticate(sender As Object, e As
WebServiceAuthenticationEvent)
 'If the user is SrinivasaSivakumar and the Password is MyPass then
 'Authenticate the user and assign the "WebServiceUser" role to it.
 If ((e.User = "SrinivasaSivakumar") AND (e.Password = "MyPass")) Then
 Dim strRoles(1) As String
 strRoles(0) = "WebServiceUser"
 e.Authenticate(strRoles)
 ElseIf ((e.User = "SSivakumar") AND (e.Password = "MyPass")) Then
 Dim strRoles(1) As String
 strRoles(0) = "AdminUser"
 e.Authenticate(strRoles)
 End If
End Sub
</script>

Chapter 14

12

In the WebServiceAuthentication_OnAuthenticate event, we check the username is either
SrinivasaSivakumar or SSivakumar and the password is MyPass. If they match then we pass the
role WebServiceUser or AdminUser to the Authenticate method defined in the HTTP Module.
Let's see the Web Service code, SayHello_CS.asmx in the Server subfolder:

<%@ WebService Language="C#" Class="Hello" %>

using System;
using System.Web.Services;
using System.Web.Services.Protocols;

public class SOAPAuthentication : SoapHeader
{
 public string User;
 public string Password;
}

public class Hello : WebService
{
 public SOAPAuthentication ObjSOAPAuthentication;

 const string CN_NotAuthenticated = "WS1001";

 [WebMethod, SoapHeader("ObjSOAPAuthentication",
 Direction = SoapHeaderDirection.InOut,
 Required = true)]
 public string SayHello()
 {
 string RtnValue = "";

 //If not authenticated
 if (User.Identity.IsAuthenticated == false)
 RtnValue = CN_NotAuthenticated;
 else
 {
 //If authenticated
 RtnValue = "Hello " + Context.User.Identity.Name;

 //If part of the role 'WebServiceUser'
 if (User.IsInRole("WebServiceUser"))
 RtnValue += ". You are part of 'WebServiceUser' role.";

 }
 return RtnValue;
 }
}

We've defined a custom SOAP header class called SOAPAuthentication and declared a public object
of this type in the Hello class. In the SayHello method, we're checking if the HTTP Module has
already authenticated the user. If not, then we're returning the constant back to the user. If the user has
been authenticated, we're checking if he is part of the WebServiceUser role and we're saying hello to
him with or without the role name:

SOAP Security

13

SOAP Extensions
ASP.NET Web Services provide high-level access to SOAP. (We have already had a detailed discussion
about the SOAP protocol extensions in Chapter 6). In fact we don't have to know how to manipulate a SOAP
message to access a Web Service. The .NET Framework takes care of all the SOAP plumbing needed to
make the Web Services work. If, however, you are a developer with a good understanding of SOAP and you
want to get your hands dirty with low-level access to the SOAP protocol, the .NET Frameworks allows that
too. In this section we'll see how to use the SoapExtension base class to do some low-level SOAP message
manipulation such as tracing SOAP messages and encrypting and decrypting SOAP messages.

The SoapExtension base class can be used to extend the SOAP-related infrastructure available with
ASP.NET Web Services. The ASP.NET SOAP extension architecture allows reading or modifying the
SOAP message at specific stages like before serializing, after serializing, and so on. All the SOAP
Extensions should be derived from the SoapExtension base class. The ProcessMessage is the heart
of most SOAP extensions, and this method allows the code to inspect the SOAP message at various
stages. The GetInitializer and Initialize methods provide alternative ways to initialize the
SOAP extensions. For those SOAP extensions that need to modify the SOAP request or SOAP
response, the ChainStream method provides a way to receive the raw data that is sent across the wire.

When the BufferResponse attribute of the WebMethod attribute is set to false, all
SOAP extensions will be disabled for the Web Service method.

What can we do with SOAP Extensions?
When we're exposing or consuming Web Services using SOAP, ASP.NET provides us access to the high
level SOAP protocol and ASP.NET takes care of serializing the data into a SOAP message and de-
serializing the SOAP message into objects and properties. The debugging support for the Web Services
are very limited when using the VS.NET IDE, meaning you can only debug the code not the output of
the SOAP message sent to the client or received from the sever.

Chapter 14

14

To debug the SOAP message sent from the server and received at the client side we have to get down and
dirty with SOAP extensions to debug it. This is just an example, we can do lot of good stuff with SOAP
extensions such as encrypting and decrypting SOAP messages. We will look at some of these later.

Tracing SOAP Messages
Today there aren't any good tracing and debugging tools available to see SOAP messages that are sent
and received by the .asmx files. SOAP Extensions will help us start writing one, since SOAP
Extensions have access to the SOAP message at every stage. We can therefore build a simple utility to
trace SOAP messages and log them in an OS file:

using System;
using System.IO;
using System.Web.Services.Protocols;

[AttributeUsage(AttributeTargets.Method)]
public class TraceExtensionAttribute : SoapExtensionAttribute {

 private string filename = "c:\\SOAPTraceLog.txt";
 private int priority;

 public override Type ExtensionType {
 get { return typeof(TraceExtension); }
 }

 public override int Priority {
 get { return priority; }
 set { priority = value; }
 }

 public string Filename {
 get {
 return filename;
 }
 set {
 filename = value;
 }
 }
}

public class TraceExtension : SoapExtension {

 Stream oldStream;
 Stream newStream;
 string filename;

SOAP Security

15

 public override object GetInitializer(LogicalMethodInfo methodInfo,
 SoapExtensionAttribute attribute) {
 return ((TraceExtensionAttribute) attribute).Filename;
 }

 public override object GetInitializer(Type serviceType){
 return typeof(TraceExtension);
 }

 public override void Initialize(object initializer) {
 filename = (string) initializer;
 }

 public override void ProcessMessage(SoapMessage message) {
 switch (message.Stage) {

 case SoapMessageStage.BeforeSerialize:
 break;

 case SoapMessageStage.AfterSerialize:
 WriteOutput(message);
 break;

 case SoapMessageStage.BeforeDeserialize:
 WriteInput(message);
 break;

 case SoapMessageStage.AfterDeserialize:
 break;

 default:
 throw new Exception("invalid stage");
 }
 }

 public override Stream ChainStream(Stream stream){
 oldStream = stream;
 newStream = new MemoryStream();
 return newStream;
 }

 public void WriteOutput(SoapMessage message){
 newStream.Position = 0;
 FileStream fs = new FileStream(filename, FileMode.Append,
 FileAccess.Write);

 StreamWriter w = new StreamWriter(fs);

 w.WriteLine("---------------------------------- Response at " +
 DateTime.Now);
 w.Flush();
 Copy(newStream, fs);
 fs.Close();
 newStream.Position = 0;
 Copy(newStream, oldStream);
 }

 public void WriteInput(SoapMessage message){
 Copy(oldStream, newStream);
 FileStream fs = new FileStream(filename, FileMode.Append,

Chapter 14

16

 FileAccess.Write);

 StreamWriter w = new StreamWriter(fs);

 w.WriteLine("================================== Request at " +
 DateTime.Now);
 w.Flush();
 newStream.Position = 0;
 Copy(newStream, fs);
 fs.Close();
 newStream.Position = 0;
 }

 void Copy(Stream from, Stream to) {
 TextReader reader = new StreamReader(from);
 TextWriter writer = new StreamWriter(to);
 writer.WriteLine(reader.ReadToEnd());
 writer.Flush();
 }
}

In the above code, we have two classes, TraceExtensionAttribute and TraceExtension,
inherited from SoapExtensionAttribute and SoapExtension base classes. In the
TraceExtensionAttribute class we have one read-only property and two read-write properties to
store the filename, priority, and extension type:

using System;
using System.IO;
using System.Web.Services.Protocols;

[AttributeUsage(AttributeTargets.Method)]
public class TraceExtensionAttribute : SoapExtensionAttribute {

 private string filename = "c:\\SOAPTraceLog.txt";
 private int priority;

 public override Type ExtensionType {
 get { return typeof(TraceExtension); }
 }

 public override int Priority {
 get { return priority; }
 set { priority = value; }
 }

 public string Filename {
 get {
 return filename;
 }
 set {
 filename = value;
 }
 }
}

In the TraceExtension class, we're using the ProcessMessage method to get access to the SOAP
message at four different stages:

SOAP Security

17

❑ BeforeSerialize – BeforeSerialize allows us to get access to the data before it is serialized
into a SOAP message.

❑ AfterSerialize – AfterSerialize allows us to get access to the SOAP message after it is
serialized from the original data. Here we call the custom WriteOutput() method to spool
the SOAP message to the log file.

❑ BeforeDeserialize – BeforeDeserialize allows us to get access to the SOAP message
before it is de-serialized into a .NET object. Here we call the custom WriteInput() method
to spool the SOAP message to the log file.

❑ AfterDeserialize – AfterDeserialize allows us to get access to the .NET object, which is
de-serialized from the SOAP message.

Here is the code for the TraceExtension class discussed above:

public class TraceExtension : SoapExtension {

 Stream oldStream;
 Stream newStream;
 string filename;

 public override object GetInitializer(LogicalMethodInfo methodInfo,
 SoapExtensionAttribute attribute) {
 return ((TraceExtensionAttribute) attribute).Filename;
 }

 public override object GetInitializer(Type serviceType){
 return typeof(TraceExtension);
 }

 public override void Initialize(object initializer) {
 filename = (string) initializer;
 }

 public override void ProcessMessage(SoapMessage message) {
 switch (message.Stage) {

 case SoapMessageStage.BeforeSerialize:
 break;

 case SoapMessageStage.AfterSerialize:
 WriteOutput(message);
 break;

 case SoapMessageStage.BeforeDeserialize:
 WriteInput(message);
 break;

 case SoapMessageStage.AfterDeserialize:
 break;

 default:
 throw new Exception("invalid stage");
 }
 }

Chapter 14

18

The WriteOutput method takes a SOAP message and appends it to a log file with a time stamp:

 public void WriteOutput(SoapMessage message){
 newStream.Position = 0;
 FileStream fs = new FileStream(filename, FileMode.Append,
 FileAccess.Write);

 StreamWriter w = new StreamWriter(fs);

 w.WriteLine("---------------------------------- Response at " +
 DateTime.Now);
 w.Flush();
 Copy(newStream, fs);
 fs.Close();
 newStream.Position = 0;
 Copy(newStream, oldStream);
 }

The WriteInput method also accepts a SOAP message and appends it to the log with a timestamp.

 public void WriteInput(SoapMessage message){
 Copy(oldStream, newStream);
 FileStream fs = new FileStream(filename, FileMode.Append,
 FileAccess.Write);

 StreamWriter w = new StreamWriter(fs);

 w.WriteLine("================================== Request at " +
 DateTime.Now);
 w.Flush();
 newStream.Position = 0;
 Copy(newStream, fs);
 fs.Close();
 newStream.Position = 0;
 }

The Copy method copies data from one stream to another using the StreamReader and
StreamWriter methods:

 void Copy(Stream from, Stream to) {
 TextReader reader = new StreamReader(from);
 TextWriter writer = new StreamWriter(to);
 writer.WriteLine(reader.ReadToEnd());
 writer.Flush();
 }
}

Compile the SOAP Extension that we've just built using the VS.NET IDE and place it in the bin folder of
the Web service. Let's build the Web Service, called Tracing_CS.asmx. It uses the tracing extension:

<%@ WebService Language="C#" Class="Tracing" %>

using System.Web.Services;

public class Tracing : WebService
{

SOAP Security

19

 [WebMethod, TraceExtension(Filename = "C:\\WebServiceTrace.Log")]
 public string StartTracing()
 {
 return "Start Tracing";
 }
}

Here we have a very simple Web Service with a StartTracing WebMethod that returns a string. In
the WebMethod declaration we have added TraceExtension with a filename. This will make sure all
the SOAP calls will be logged in the filename specified. Let's build a simple ASP.NET client,
TraceClientCS.aspx, to access the Web Service:

<%@ Import Namespace="TraceCSNS" %>
<html>
<head>
<title>Tracing Web Client</title>
<style type="text/css">
 body {font-face:verdana; font-size:10pt; font-weight:normal}
</style>
</head>
<script language="C#" runat="server">
public void Page_Load(Object sender, EventArgs E){
 try
 {
 TraceCSNS.Tracing objWebSvc = new TraceCSNS.Tracing();
 lblResult.Text = objWebSvc.StartTracing();
 }
 catch (Exception Ex)
 {
 lblResult.Text = Ex.ToString();
 }
}
</script>
<body>
<h3>Tracing - Web Service Client</h3>
<form runat="server">
Result:
 <asp:Label id="lblResult" runat="server"/>
</form>
</body>
</html>

The output looks like this: TE
AM
FL
Y

Team-Fly®

Chapter 14

20

We can also use the "Network Monitor Utility" (NetMon.exe) to view SOAP messages sent over
the network.

If you open the log file (C:\WebServiceTrace.Log), you'll see the trace messages generated by the
TraceExtension object:

================================== Request at 8/28/2001 2:04:10 AM
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <StartTracing xmlns="http://tempuri.org/" />
 </soap:Body>
</soap:Envelope>

---------------------------------- Response at 8/28/2001 2:04:14 AM
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <StartTracingResponse xmlns="http://tempuri.org/">
 <StartTracingResult>Start Tracing</StartTracingResult>
 </StartTracingResponse>
 </soap:Body>
</soap:Envelope>

If you access the Web Service from HTTP GET or POST you'll not see an entry in the
log file since the tracing extension is based on SOAP Extensions.

So far we've built a SOAP message-tracing tool that logs the SOAP messages into an OS file. We're using
the AfterSerialize and BeforeDeserialize stages of the SOAP message to log them into the file.
To consume this tracing utility all we have to do is declare the TraceExtension with the file name as
parameter to it. This will start tracing the SOAP messages into the filename specified. This utility will
come handy when we're debugging the Web Services or the SOAP messages for potential problems.

Encrypting and Decrypting SOAP Messages
We've just built a custom SOAP extension to trace the SOAP calls received and sent from Web Services.
Now let's build one more SOAP extension to encrypt and decrypt the data transmitted to the client. This
solution is viable if your Web Service transports SOAP messages using non-HTTP protocols such as SMTP.

For example if you use SSL to secure the web services, only the SOAP message transported using the
HTTP protocol can only take advantage of the security and non-HTTP protocol transpiration based
clients can not take advantage of the feature. When we use the custom encryption and decryption we
only decrypt the data (body of the SOAP message).

Let's create a SOAP extension to encrypt and decrypt the data. For the encryption and decryption,
we're going to use the DES Crypto provider with a custom key and vector.

SOAP Security

21

DES stands for Data Encryption Standard and it is one of the many well-known
algorithms available to encrypt and decrypt data. DES is a cipher developed by the U.S.
government in the 1970s to be the official encryption algorithm of the United States. Triple
DES will encrypt the data three times using the DES algorithm. DES is fast and efficient
for bulk data transfers and thus an excellent choice for use in network encryption devices.

We've created an EncryptionExtensionAttribute class that inherits from the
SoapExtensionAttribute base class (this is EncryptionExtensionAttribute.cs in the src
subfolder of the EncryptionSOAPExtension folder in the download). The
EncryptionExtensionAttribute class implements three main properties (Encrypt, Decrypt,
and Target) and corresponding enumeration values for the properties:

public enum DecryptMode {
 None,
 Response,
 Request
}

public enum EncryptMode {
 None,
 Response,
 Request
}

public enum Target {
 Envelope,
 Body,
 Method
}

To encrypt and decrypt, the application will specify which part of the content needs to be encrypted
and decrypted: None, Response or Request. The client can also specify which part of the SOAP
message should be encrypted and decrypted.

The EncryptionExtension class inherits from the SoapExtension base class
(EncryptionExtension.cs in the src subfolder). We've declared two byte arrays to hold the
encryption/decryption key and a vector for the DES Crypto Provider.

//Custom Key for encryption and decryption
private Byte[] key = {0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef};

//Custom vector for encryption and decryption
private Byte[] IV = {0x12, 0x34, 0x56, 0x78, 0x90, 0xab, 0xcd, 0xef};

In the ProcessMessage method, if the SOAP message is at the AfterSerialize stage then we will
encrypt the SOAP message by calling the Encrypt method. If the SOAP message is at the
BeforeDeserialize stage then we will decrypt the SOAP message by calling the Decrypt method:

 //Process the SOAP Message
 public override void ProcessMessage(SoapMessage message) {
 switch (message.Stage) {

Chapter 14

22

 case SoapMessageStage.BeforeSerialize:
 break;

 case SoapMessageStage.AfterSerialize:
 //Encrypt the data before serializing it to the client
 Encrypt();
 break;

 case SoapMessageStage.BeforeDeserialize:
 //Decrypt the data before Deserializing it as .NET Objects
 Decrypt();
 break;

 case SoapMessageStage.AfterDeserialize:
 break;

 default:
 throw new Exception("invalid stage");
 }
 }

In the Decrypt method, we check if the current DecryptMode set by the client is either Request or
Response. If so we start the decrypting process by calling the "DecryptSoap" method and passing the
decryptedStream memory object.

 //Decrypt Data
 private void Decrypt() {
 //Create a new memory stream
 MemoryStream decryptedStream = new MemoryStream();

 //If the Decrypt mode is Request or Response then decrypt
 if ((decryptMode == DecryptMode.Request) || (decryptMode ==
 DecryptMode.Response)){
 TextReader reader = new StreamReader(oldStream);
 TextWriter writer = new StreamWriter(decryptedStream);
 writer.WriteLine(reader.ReadToEnd());
 writer.Flush();

 //Decrypt the SOAP message
 decryptedStream = DecryptSoap(decryptedStream);

 Copy(decryptedStream, newStream);
 } else {
 Copy(oldStream, newStream);
 }

 newStream.Position = 0;
 }

In the DecryptSoap method, we load the stream into a DOM object. Then we use AddNamespace to
add http://schemas.xmlsoap.org/soap/envelope/ to the DOM object. Then we find the
soap:Body tag in the SOAP message and the first child node of the tag:

 //Decrypt the SOAP message
 public MemoryStream DecryptSoap(Stream streamToDecrypt) {

SOAP Security

23

 //Go to the starting position of the Stream
 //and load the stream into a DOM object
 streamToDecrypt.Position = 0;
 XmlTextReader reader = new XmlTextReader(streamToDecrypt);
 XmlDocument dom = new XmlDocument();
 dom.Load(reader);

 //Add the "http://schemas.xmlsoap.org/soap/envelope/" namespace
 //to the DOM document
 XmlNamespaceManager nsmgr = new XmlNamespaceManager(dom.NameTable);
 nsmgr.AddNamespace("soap", "http://schemas.xmlsoap.org/soap/envelope/");

 //Find the SOAP body
 XmlNode node = dom.SelectSingleNode("//soap:Body", nsmgr);

 //Find the first child
 node = node.FirstChild.FirstChild;

Then we call the Decrypt method, which passes the inner text of the current XML node and stores the
return data in a byte array. Then we convert the decrypted byte array to a string and store it in the
string variable. Next we assign the decrypted data to the inner text of the current XML node. Finally we
use the Save method of the DOM object and dump the SOAP content into the MemoryStream:

 //Decrypt the content of the body tag
 byte[] outData = Decrypt(node.InnerText);

 //Store the decrypted data into the string variable
 string sTmp = Encoding.UTF8.GetString(outData);

 //Assign the decrypted value back to the SOAP message
 node.InnerText = sTmp;

 //Create a new memory stream and save the XML DOM
 //document into the memory stream
 MemoryStream ms = new MemoryStream();
 ms.Position = 0;
 dom.Save(ms);
 ms.Position = 0;

 //Return the memory stream back
 return ms;
 }

In the Decrypt method we create a DES Crypto provider object and convert the string to a byte array.
Then we create a new CryptoStream object and pass the MemoryStream and new
CreateEncryptor with the custom key and vector to its constructor:

 //Decrypt Data
 private byte[] Decrypt(string stringToDecrypt) {
 //Create a new DES Crypto provider
 DESCryptoServiceProvider des = new DESCryptoServiceProvider();

 //Convert the input string into byte array for decryption
 byte[] inputByteArray = CovertStringToByteArray(stringToDecrypt);

Chapter 14

24

 MemoryStream ms = new MemoryStream();

 //Create a crypto stream and pass the new memory stream and
 //new decrypter object using then custom key and vector
 CryptoStream cs = new CryptoStream(ms, des.CreateDecryptor(key, IV),
 CryptoStreamMode.Write);

Next we write the decrypted stream into the CryptoStream object. Finally we convert the
MemoryStream object into a byte array and return it back:

 //Write the decrypted stream into the crypto stream
 cs.Write(inputByteArray, 0, inputByteArray.Length);
 cs.FlushFinalBlock();

 //Return the decrypted byte array back
 return ms.ToArray();
 }

We encrypt the data in much the same way using the Encrypt and EncryptSoap methods. Let's
compile the code and place the DLL in the bin folder. Now let's build a Web Service,
SayHello_CS.asmx in the Server folder, which uses the encryption extension:

<%@ WebService Language="C#" Class="Hello" %>

using System;
using System.Web.Services;

public class Hello : WebService
{
 [WebMethod, EncryptionExtension(Encrypt=EncryptMode.Response)]
 public string SayHello()
 {
 return "Hello there, This is an unencrypted message!";
 }
}

This simple Web Service returns the string "Hello there, this is an unencrypted message!". We've
added the EncryptionExtension extension to the WebMethod declaration and specified encryption
mode as Response. This will encrypt the response sent from the Web Service.

Let's now have a look at our ASP.NET client, SOAPAuthClientCS.aspx, to access the Web Service.
We're going to use the EncryptionExtension extension and tracing extension at the client-side to
demonstrate the client-side logging feature:

<%@ Import Namespace="System.Xml.XPath" %>
<%@ Import Namespace="System.Xml" %>
<%@ Import Namespace="SayHelloCSNS" %>
<html>
<head>
<title>SOAP Extension based Encryption</title>
<style type="text/css">
 body {font-face:verdana; font-size:10pt; font-weight:normal}
</style>
</head>

SOAP Security

25

<script language="C#" runat="server">
public class HelloWorld : System.Web.Services.Protocols.SoapHttpClientProtocol {
 //Default Constructor
 public HelloWorld()
 {
 this.Url = "http://localhost/ProWebServices/SOAPAuthServer/SayHello_CS.Asmx";
 }

 [TraceExtension(Filename = "c:\soap-client.log")]
 [EncryptionExtension(Decrypt = DecryptMode.None)]
 [System.Web.Services.Protocols.SoapDocumentMethodAttribute(
 "http://tempuri.org/SayHello")]
 public string SayHello()
 {
 object[] results = this.Invoke("SayHello", new object[0]);
 return ((string)(results[0]));
 }
}
public void Page_Load(Object sender, EventArgs E)
{
 try
 {
 HelloWorld objWebSvc = new HelloWorld();

 lblResult.Text = objWebSvc.SayHello();
 }
 catch (Exception Ex)
 {
 lblResult.Text = Ex.ToString();
 }
}
</script>
<body>
<h3>SOAP Extension based Encryption - Web Service Client</h3>
<form runat="server">
Result:
 <asp:Label id="lblResult" runat="server"/>
</form>
</body>
</html>

In this ASP.NET client we have created a class called Hello that inherits from the base class
System.Web.Services.Protocols.SoapHttpClientProtocol. This will give our class access to
the SOAP client-side protocol:

<script language="C#" runat="server">
public class HelloWorld : System.Web.Services.Protocols.SoapHttpClientProtocol

In the default constructor we set the URL property of the class to the web method's URL:

//Default Constructor
 public HelloWorld()
 {
 this.Url = "http://localhost/ProWebServices/SOAPAuthServer/SayHello_CS.Asmx";
 }

Then we create a SayHello method and register the TraceExtension with the client-side log file
name, EncryptionExtension. We set the decrypt value as None and the SOAP document method
attribute as http://tempuri.org/SayHello:

Chapter 14

26

[TraceExtension(Filename = "c:\soap-client.log")]
 [EncryptionExtension(Decrypt = DecryptMode.None)]
 [System.Web.Services.Protocols.SoapDocumentMethodAttribute(
 "http://tempuri.org/SayHello")]
 public string SayHello()

Then we call the SayHello method of the Web Service and return the result back:

{
 object[] results = this.Invoke("SayHello", new object[0]);
 return ((string)(results[0]));
 }
}

In the Page_Load event, we instantiate an object of type Hello and we call the SayHello method:

public void Page_Load(Object sender, EventArgs E)
{
 try
 {
 HelloWorld objWebSvc = new HelloWorld();

 lblResult.Text = objWebSvc.SayHello();
 }
 catch (Exception Ex)
 {
 lblResult.Text = Ex.ToString();
 }
}

Here is the output:

If you look at the client side log file you'll see the SOAP call log information:

---------------------------------- Response at 8/28/2001 2:54:10 AM
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <SayHello xmlns="http://tempuri.org/" />
 </soap:Body>

SOAP Security

27

</soap:Envelope>
================================== Request at 8/28/2001 2:54:14 AM
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <SayHelloResponse xmlns="http://tempuri.org/">
 <SayHelloResult>34 250 185 76 154 56 47 32 40 47 171 88 100 250 118 32 200
153 214 35 132 83 21 214 211 185 39 248 86 166 134 130 144 236 172 111 5 75 59 196
211 153 83 64 105 12 115 237</SayHelloResult>
 </SayHelloResponse>
 </soap:Body>
</soap:Envelope>

We can see the encrypted data from the Web Service since we set the Decrypt attribute to
DecryptMode.None. Let's go and change this to DecryptMode.Response:

 [TraceExtension(Filename = "c:\\soap-client.log")]
 [EncryptionExtension(Decrypt = DecryptMode.Response)]
 [System.Web.Services.Protocols.SoapDocumentMethodAttribute(
 "http://tempuri.org/SayHello")]
 public string SayHello()

Now let's refresh the ASP.NET client and see the results:

Now we're getting the decrypted data back from the Web Service. If you look at the client-side log file,
you'll still see the encrypted message, since that's what we're getting from the Web Service. It was the
proxy class that did the decryption.

Limitations of the Current Solution
❑ The current solution is based on symmetric key encryption as an algorithm. In the symmetric key

encryption algorithm the same key is used for encryption and decryption. Symmetric encryption
systems are typically used for bulk data encryption. For real world Web Service encryption, we
should use asymmetric encryption where the Web Service and the proxy use different keys.

❑ We should also use the SOAP Header to pass additional information about the encryption
such as the public key for encryption and decryption.

❑ The current implementation only supports encrypting the results from the Web Service and
requests to the Web Service are implemented as clear text.

Chapter 14

28

Summary
In the previous chapter we looked at various aspects of security and how to secure Web Services using the
available security options. In this chapter we concentrated more towards SOAP based techniques such as:

❑ SOAP Header based authentication. We've seen how to pass the credentials using the SOAP
header and how to authenticate the users based on the credentials.

❑ We've also seen how to implement custom authentication using the SOAP Header and HTTP
modules. The beauty of the custom authentication is that it is extendable and the authenticate
event is raised in the global.asax file. So the authentication code stays separate from the
business logic – you don't have to worry distributing the code.

❑ Then we saw how to implement SOAP tracing. This utility is very useful when debugging
SOAP messages.

❑ Finally we saw how to implement custom encryption and decryption of SOAP messages. This
sample keeps the SOAP message's structure as it is and encrypts and decrypts the data with in
the SOAP message body. In this way, the SOAP message can be validated at all points and the
data is hidden from the prying eyes.

If your web services is going to support non-HTTP protocol to transport SOAP messages then the only security
option left is to use the SOAP header based authentication combined with custom encryption and decryption.

SOAP Security

29

TE
AM
FL
Y

Team-Fly®

Authentication

As soon as you start to gather information about designing a Web Service, you must ask yourself: "who
do I want to see this?"The chances are that unless you actively protect your Web Service resources,
they'll be available to anyone with a connection to the Internet. When it comes to Web-based
applications such as Web Services, security plays a major role in implementing these applications. In
the client/server application world, where most of the client and the server are in the same private
network and the network is secure, no one can get into the network from the outside world. Unlike a
client/server application, web applications are deployed in public networks and thus pose a security risk
where servers can be broken into and information stolen: such as details from a customer database,
customers' credit card information, and so on. It is therefore very important to secure our Web Service
(regardless of whether it's internal or external) from hackers, and others who we don't want to have
access to this kind of sensitive information.

Why do we want to secure the Web Service? Well there are three main reasons:

❑ Protecting our Web Service from unauthorized usage – we want to make sure we'll only allow
users who have subscribed for the Web Service to consume it.Protecting the data – we want to
protect the users data stored in the database from the prying eyes. This gives more confidence
to the users who use our service.

❑ Protecting the transmission – we want to protect the data transmitted between the users and
our server, to protect the valuable users data and their privacy.

13

Chapter 13

2

When we're securing the Web Service, we also get these additional benefits.

❑ Personalizing the Web Service for the given user – we want to minimize the data received
from the user to identify them and provide the data they require through the personalization
settings that he or she has already entered. For example, if our Web Service provides general
news and weather information to the user then we can give appropriate local news and
weather information to the user, if we know who the user is.

❑ Keeping track of usage – if the Web Service that you are exposing is based on usage count
licensing – meaning the user will be billed based on the usage count on the site – you may
want to keep track of how may times the given user has accessed the Web Service.

In this chapter, we'll learn all about security and how to secure our Web Services. Web Services are just
like ASP.NET applications and they have access to all the ASP.NET security methods and SOAP
authentication techniques. In this chapter, we'll learn about the following topics.

❑ Windows Authentication Methods

❑ Forms Authentication

❑ Impersonation

❑ URL Authorization

What is Security?
Security is a process that guards private property from the public world and gives access to the private
property by verifying proper identification. The identification can be a simple username and the pass
phase, or digital identity such as a client certificate or smart cards.

When we're dealing with security, there are a few entities to remember. They are:

❑ Credentials – credentials is usually a Username/Password pair that is entered or sent by the
client. We can also count client certificate and smart cards as credentials.

❑ Authentication – authentication is a process that acts on behalf of the user or client, which
accepts the credentials from the user and verifies them against a single or multiple authorities.

❑ Authority – the authority is usually a verification entity such as a Windows NT user
account database or a custom database schema defined by the application where the
credentials can be verified.

❑ Authorization – authorization is a process that verifies whether this person has access to the
resource that they are trying to access.

❑ Privacy – privacy is a process that makes sure the information that we're transmitting can't be
seen or interpreted by anyone other than the original user and the intended recipient.

❑ Non-repudiation - non-repudiation is a technique that provides a foolproof way to securely
encrypt and decrypt the data, and prevent non-repudiation of the original data from the
encrypted data by unauthorized hands.

Authentication

3

Web Service Security Architecture
The security architecture of a Web Service is somewhat different from that of an ASP.NET application.
Typically in an ASP.NET application scenario, there will be one security setting and session
management between the ASP.NET client and the server. In the Web Service scenario, it is applications
that consume Web Services rather than humans directly. Thus, security and session management
considerations should be between applications for Web Services. Consider the following figure:

Web Services Session
management and security

Proxy

Proxy

Web Service

ASP.NET Web
Service Client

WinForms Web
Services Client

ASP.NET File

ASP.NET application
Session management

and security

Internet

Web Services Session
management and security

In the Web Service scenario, the server-side ASP.NET page will consume a Web Service and the result
will be sent back to the client. In this case, we have to maintain two sets of security settings and session
management. The first one is between the ASP.NET application and the client and the next one is
between the ASP.NET application and the Web Service. Consider the following example:

Chapter 13

4

Web Services Session
management and security

Proxy

Proxy

Web Service

ASP.NET Web
Service Client

WinForms Web
Services Client

ASP.NET File

ASP.NET application
Session management

and security

Internet

Web Services Session
management and security

Dependent Web
Service

Dependent Web
Service

Dependent Web
Service

Web Services Session management and security

If the Web Service we're consuming using the proxy is dependent on other Web Services, then the
source Web Service has to maintain the session management and security settings for the other Web
Services that it is consuming.

Security Options Available with Web Services
Web Services support a number of types of security settings for our ASP.NET applications. They are:

❑ Basic Authentication with or without SSL

❑ Digest Authentication

❑ Integrated Windows Authentication

❑ Client Certificate Authentication

❑ Forms Authentication with or without SSL

❑ Custom Authentication and Authorization

Authentication

5

The Basic, Digest and Integrated Windows Authentication methods are provided as a service to Web
Services by IIS (Internet Information Server). The .NET Framework classes provide the Form, Passport
authentication, and SOAP techniques. ASP.NET and Web Services handle the authentication by using
the authentication providers (authentication providers are code modules which have the necessary code
to authenticate a user based on their credentials). The current release of ASP.NET is shipped with
Windows authentication provider, Passport authentication provider and Forms authentication providers.

ASP.NET Authentication Architecture
Before we go any further, let's understand the architecture of ASP.NET security. The following figure
shows the architecture of an ASP.NET application:

Web Client Web ClientWeb Client

Internet

Windows NT/2000 OS

IIS

Web Services

.NET Framework

When a request comes from a web client to the Web Service, it will first reach the web server (IIS) as
shown above. If the Allow Anonymous option is checked in the IIS Microsoft Management Console
(MMC) then no authentication will occur at the server-side. If the web application requires any
authentication such as Basic, Digest or Integrated Windows then IIS will popup a dialog box to collect
the username and password from the user.

Chapter 13

6

If we're passing the username, password and domain information using the Web Service proxy then
the dialog box will not be shown.

If authentication is successful then IIS will pass the web request to the Web Service. If authentication
fails then IIS will throw a HTTP status 401: Access Denied error message to the web client. When we
use the Basic, Digest or Integrated Windows authentication methods, IIS assumes that the credentials
provided by the web client are mapped to a Windows user account. If the Web Service requires Form
or Passport authentication then IIS will pass on the request to the Web Service. Then the Web Service
will authorize or deny the client based on the credentials presented by the client.

IP and DNS Level Security
Web Service administrators take advantage of features that provide Internet protocol (IP) address
validation to secure content. Since IIS knows the IP address of the computer requesting the Web
Service, IIS can use this information to make decisions about security. TCP/IP restrictions are processed
before any attempt for authentication is made.

Pros of IP and DNS Level Security
❑ Using the IP and DNS restrictions, we can allow or deny access to the Web Service based on a

single or multiple IP address and DNS names.

❑ This authentication occurs before any other authentication occurs.

Cons of IP and DNS Level Security
❑ If the clients are behind a proxy server or a firewall then all we'll see is that the connection is

originating from the proxy server or the firewall, not from the user's computer. This means we
could only see a single IP address for set of clients. This will make restricting based on an IP
address highly impossible.

❑ If we're using domain name based restriction then, IIS has to do a DNS lookup find the IP
address, and if the process fails the client will be denied access to the Web Service

❑ The DNS lookup process is time consuming and this could become a bottleneck for the
performance of the Web Service.

Using TCP/IP restrictions gives us a way to single out a group of users, or a single user, who should
have access to our Web Service. We may have, for example, an intranet site that should only be
accessible from a group of IP addresses. As a first line of security, we can configure IIS to reject all
requests that don't fit the IP address criteria. We can grant or deny access for the following criteria:

❑ Any Web Service client connecting from a single IP address

❑ Any Web Service client connecting from a range of IP addresses (including subnet mask)

❑ Any Web Service client connecting from a single host name

❑ Any computer connecting from a particular domain name (like www.aol.com)

Authentication

7

Implementing IP and DNS Security
Implementing IP and DNS name-based security is very simple. Open up the IIS management console,
go to the virtual directory or the web site that you want to secure, right click on it and select the
Properties option. Go to the "Directory Security" tab in the new dialog box and click the "Edit…"
button in the "IP address and domain name restrictions" frame. With the "IP Address and Domain
name restrictions" dialog box we can grant or deny access:

Windows Security
Before implementing Windows security for ASP.NET applications, it's important to understand
Windows Operating System security. Security is unavoidable on the Windows OS. Anything that we
do in Windows is going to involve some kind of security check. For example, if we want to create a
text file or delete a Word document we need permission for that. Mostly we don't notice any security
problems with Windows because we are logging in as an administrator, and the administrator has no
permission restrictions.

The heart of Windows security revolves around a Windows user account, and user groups or roles (a
group in Windows, or role in ASP.NET, is a logical name for a set of users grouped together, or rights
such as Read, Execute, Write, etc). In Windows, all user information is stored in a central place called
the Windows User Account Database. This database can be stored in the local computer or it can be on
a server where it will be called a Domain server or Primary Domain Controller (PDC).

The Domain server is the central place to which all the computers in a network will be connected. For
the examples in this chapter, the domain name is "Sruthi". The following figure shows a simple
Windows architecture for the domain Sruthi.

Chapter 13

8

Sruthi (Domain)

Client 1

Client 2

Client 3

Windows OS/User Accountase
Database

User 1

User 2

User 3

Group 1

Group 2

In the Sruthi domain, there are three users (User 1, 2 and 3) and two groups (Group 1 and 2). The
User 1 belongs to the group 1 and the user 2 belongs to group 2. The user 3 is not a part of any group.
These are three different clients trying to connect to the domain Sruthi. Now you should have good
idea about the users and the groups.

When you install IIS, it creates a user account called iusr_machinename. For example if your
computer name is Sruthi, then you'll see a user account in the name of iusr_Sruthi. IIS uses this
account to give anonymous access to web resources.

Access Control Lists (ACL)
An access control list (ACL) is a table that tells a computer's operating system which access rights each
user has to a particular system object, such as a file directory or individual file. An ACL is a list of
Access Control Entries (ACE) and each ACE will contain the file system object ID and permissions
related to the file system object. The ACL has an entry for each system user with access privileges. The
most common privileges include the ability to read a file (or all the files in a directory), to write to the
file or files, and to execute the file (if it is an executable file, or program). The list is implemented
differently by each operating system based on the file system it is using. The NTFS file system supports
the ACLs and the FAT or FAT32 file system doesn't support it.

Authentication

9

We can view the ACL information for a file or
a directory by viewing the Properties page
of the file or folder.

ACLs provide an excellent way to restrict the privileges of the user. In a secured application, a logged
in user's intention is to access the application. So all he needs is the "Read" privilege. If we give more
options to the user, he can misuse his privilege and tamper with the system. If he had "Full Control"
privilege then he could do anything, including deleting files. This is obviously not desirable.

What is Next?
So for, we've seen some basic architectural information general security concepts including Windows
OS security features, IP and DNS based security and more. In the following sections, we'll take more of
a practical approach and see how to implement the security to the Web Services. Let's start this process
by looking at how to read who is logged into the Web Service.

Reading User Information
The User object (exposed using the Context property of the Web Service) can be used to read
information on a logged-in user. The User object exposes the Identity property. The Identity
property exposes the Name and AuthenticationType properties to get information about the current
logged in user and the type of authentication. For example, the following code will display the current
username and the type of authentication used:

[WebMethod]
public string WhoAmI() {
 return "You are: " + Context.User.Identity.Name + " and you are using "
 + Context.User.Identity.AuthenticationType + " authentication type. "
}

Chapter 13

10

Checking Whether a User has Been Authenticated
The User.Identity property exposes an IsAuthenticated property. This property returns True or
False depending on whether the user is authenticated or not.

if (Context.User.Identity.IsAuthenticated == true) {
 //Authenticated
}
else {
 //Not Authenticated
}

Roles
A role is a common name for a set of permissions like printing a file, creating a file, and so on, and one
or more users belong to a role. It can be created based on a specific functionality or task that they do or
it can be generic. For example, we can group the employees of an organization based on their job
profiles like: "Directors", "Managers", "Administrators", and so on. Alternatively, we could group them
based on the department they are working in like "Finance", "Human Resources", etc.

The Windows OS has a number of built-in roles such as "Administrator", "Power Users", "Users",
"Authenticated Users", etc. We can also custom define roles with Windows.

Roles make it easier to manage uses with the same privileges. Let's say that your Web Service has three
different flavors, like basic, premium, and gold, and you have users in each of the above flavors of the
Web Service. Therefore, managing the privileges of the user will be very simple if we create three
different roles (basic, premium and gold), and assign a user into any of the roles. From our code, we can
hide or show the information based on their privilege.

How to Use Roles
The Windows user account supports roles (although they are called groups in Windows). When we're
using any of the Windows Authentication methods, we can use the Windows NT/2000/XP roles from
our code. These roles can be predefined internal roles of the Windows operating system, or custom
defined application or organization-specific roles.

The User object exposes an IsInRole method, which allows us to verify Windows groups from our
code. Let's see some examples of this. We'll create a Web Service that will check to see if the user is part
of a built-in Windows Operating System role. For your convenience, the code for this example can be
found in the Roles folder of the code download. Map the folder as a virtual directory in IIS, then
assign Basic or Integrated Windows Authentication to the virtual directory. This example will use the
following web.config:

<configuration>
 <system.web>
 <authentication mode="Windows" />
 </system.web>
</configuration>

TE
AM
FL
Y

Team-Fly®

Authentication

11

Now, let's create a Web Service with the class name Roles, and a WebMethod name "GetRoles". This
is Roles_CS.asmx in the Roles folder.

<%@ WebService Language="C#" Class="Roles" %>

using System.Web.Services;

public class Roles : WebService

{

 private string ReadRoles()

 {

 string strRoles = "";

 //Custom Application specific Role

 if (Context.User.IsInRole("SRUTHI\\WebServiceUsers"))

 strRoles = " 'Web Service Users'";

 //Built in Windows OS roles

 if (Context.User.IsInRole("BUILTIN\\Administrators"))

 strRoles += ", 'Administrators'";

 if (Context.User.IsInRole("BUILTIN\\Power Users"))

 strRoles += ", 'Power Users'";

 if (Context.User.IsInRole("BUILTIN\\Users"))

 strRoles += ", 'Users'.";

 else

 strRoles += "You are not part of any role.";

 return strRoles;

 }

 [WebMethod]

 public string GetRoles()

 {

 return "Hello " + Context.User.Identity.Name

 + ". You are consuming '" + Context.User.Identity.AuthenticationType

 + "' authentication and you are part of following roles ("

 + ReadRoles() + ")";

 }

}

We've defined a private method in the Roles class to read the information about the roles. We're using
the IsInRole method of the User object to see if the given user is a member of a role and we're using
the three predefined Windows OS roles and an application-specific custom role (WebServiceUsers) in
our code. Notice that when we're using the Windows built-in roles, we're using the BUILTIN keyword in
the IsInRole method, and when we're using the custom role, we're using the domain name. Here is
how the output looks:

Chapter 13

12

Basic Authentication
When basic authentication is used, IIS will ask the web browser to collect credentials from the user if
we're accessing the Web Service without a proxy. Then the web browser will popup a dialog box to
collect a username and password from the user. If we're accessing the Web Service using a proxy and
we have provided the credentials then the dialog box will not be shown. In this case, the collected
information will be sent back to the server as encoded text. Encoding is not a strong encryption and
anyone can read the username and password information over the wire and hack in to the Web Service.
Consider the following HTTP Header example:

GET /www.Wrox.com/MyInfo.asmx
HOST: www.Wrox.com
HTTP/1.0
Connection: Keep-Alive
Authorization: Basic QWRTAW5pa3RyYYY
Accept: image/gif, image/x-bitmap, image/jpg, image/pjpg,

In the above example, we're accessing the MyInfo Web Service from www.wrox.com. In the HTTP, the
word Basic says that we're using basic authentication and the junk text next to the word Basic is the
Base-64 encoded version of the username/password pair. The domain name, username and the
password are encoded in "BASIC: Domain\Username:Password" format and transmitted with the
Authorization HTTP header.

The encoded username/password information is sent to the IIS server. Then the server will compare the
username/password against the Windows NT/2000/XP user account database. If the submitted
credentials match the Windows NT/2000/XP user account database then IIS will send the requested
Web Service result back to the client. Otherwise IIS will send "HTTP status 401 – Access Denied" back
to the client.

Pros of Basic Authentication
❑ Easy to implement and almost all Web Servers support it, including IIS.

❑ No development required – a few mouse clicks inside the IIS MMC will implement basic
authentication.

Authentication

13

❑ Supported by almost all browsers.

❑ Supported by all proxies and firewalls.

Cons of Basic Authentication
❑ Username and password is sent in encoded format (Clear Text).

❑ Username and password is passed with every request.

❑ Can't be used against a custom authority such as a database.

Why and When
Basic authentication is a part of HTTP 1.0 protocol and most of the browsers, proxies and firewalls
support this authentication method. In spite of the wide support, basic authentication still sends the
username and password in clear text format. Moreover, basic authentication is also very fast when
compared with other authentication methods. Therefore, this brings security concerns to the Web
Service. If your Web Service is dealing with any highly sensitive data like online banking, or stock
trading, you should not use basic authentication.

We can fix this problem when we combine basic authentication with SSL. We'll see more details
about this later.

Implementing Basic Authentication
Implementing basic authentication is very simple. We have to set up basic authentication for the Web
Service from the IIS Microsoft Management Console (MMC). Then we create a Web.config file to
reflect the authentication procedure that we're using. That's it.

Let's create a simple Web Service that says "hello" to whoever logs in to the Web Service. For your
convenience, you can find the following code in the code download. This is the SayHello_CS.Asmx
file, which you can find in the BasicAuthServer folder.

<%@ WebService Language="C#" Class="Hello" %>

using System.Web.Services;

public class Hello : WebService
{
 [WebMethod]
 public string SayHello()
 {
 return "Hello " + Context.User.Identity.Name + ". You are consuming '"
 + Context.User.Identity.AuthenticationType + "' authentication.";
 }
}

Chapter 13

14

Let's create a Web.Config file to use Windows authentication.

<configuration>
 <system.web>
 <authentication mode="Windows" />
 </system.web>
</configuration>

Let's map the current folder as an IIS Virtual folder. Now let's create a proxy for the Web Service with the
following batch file, SayHello_CS_Build.bat. Please note that you may have to edit this file and change
the path to the WSDL file, dependent on where you install the code for this example on your system:

WSDL /l:CS /n:SayHelloCSNS /out:SayHello.cs
http://localhost/ProWebServices/basicauthserver/SayHello_cs.asmx?WSDL

CSC /r:system.dll /r:System.Web.dll /r:System.Xml.dll /r:System.Web.Services.dll
/t:library /out:SayHelloCS.dll SayHello.cs
Pause

Place the SayHelloCS.dll when it has been created into the bin folder. Now we need a simple
ASP.NET client, BasicAuthClientCS.aspx, to access the SayHello Web Service.

<%@ Import Namespace="System.Net" %>
<%@ Import Namespace="SayHelloCSNS" %>
<html>
<head>
<title>Basic Authentication Web Client</title>
<style type="text/css">
 body {font-face:verdana; font-size:10pt; font-weight:normal}
</style>
</head>
<script language="C#" runat="server">
public void Page_Load(Object sender, EventArgs E){
 try
 {
 SayHelloCSNS.Hello objWebSvc = new SayHelloCSNS.Hello();
 objWebSvc.Credentials = new NetworkCredential("SrinivasaSivakumar",
 "MyPass", "SRUTHI");
 lblResult.Text = objWebSvc.SayHello();
 }
 catch (Exception Ex)
 {
 lblResult.Text = Ex.ToString();
 }
}
</script>
<body>
<h3>Basic Authentication - Web Service Client</h3>
<form runat="server">
Result:
 <asp:Label id="lblResult" runat="server"/>
</form>
</body>
</html>

Authentication

15

In the Page_Load event, we're passing the Windows 2000 username, password and the domain name to the
Web Service's proxy object using the NetworkCredential class (available in the System.Net
namespace). This will avoid the messy popup dialog box from the browser that collects user information.

Before trying this example, be sure to change the domain, username and the password on the
BasicAuthClientCS.aspx file.

Now we have to set up basic authentication for the Web Service. Go to the IIS MMC, expand the web
sites tree and find our virtual directory. Select the SayHello_CS.Asmx file and right click on it. Select
the Properties option from the shortcut menu. You'll see a new dialog box. Go to the File Security tab
and click the Edit button in the Anonymous Access and Authentication Control section. In the
Authentication Methods dialog box, deselect the Anonymous access and Integrated Windows
authentication check boxes and check the Basic authentication (password is sent in clear text) check
box and click Yes to continue. Then click the Edit … button and enter your domain name.

Click OK in each dialog box to finish basic authentication setup. Now when we run the ASP.NET Web
Service client we will see something like the following in our browser window:

Chapter 13

16

Do remember to setup basic authentication in IIS after creating the proxy DLL. If you
try to create the proxy DLL file after setting up basic authentication you will get an
"HTTP 401.2 – Unauthorized " error.

The Page_Load event creates an object of the type of the Web Service from the proxy. Then it creates
a new NetworkCredential object, passes the username, password, and domain name to the
constructor, and assigns the NetworkCredential object to the Credentials property of the Web
Service object. Then we call the SayHello method of the Web Service object.

SayHelloCSNS.Hello objWebSvc = new SayHelloCSNS.Hello();
objWebSvc.Credentials = New NetworkCredential("SrinivasaSivakumar",
"MyPass","SRUTHI");
lblResult.Text = objWebSvc.SayHello();

When this method is called, the Credentials property will pass the information to IIS and IIS will
compare the supplied credentials against the user account database. If the supplied credentials match
then IIS will forward the request to the Web Service and the Web Service will return the data back.

Digest Authentication
Digest authentication offers the same features as basic authentication, but transmits the credentials in a
different way. The authentication credentials pass through a one-way process referred to as hashing. The
result of hashing cannot feasibly be decrypted. Additional information is added to the password before
hashing so that no one can capture the password hash and reuse it. This is a clear advantage over basic
authentication because the password cannot be intercepted and used by an unauthorized person.

Hashing is a set of mathematical calculations (algorithms) that can be used to encrypt and decrypt
data safely. The MD5 (Message Digest 5) and SHA1 (Secure Hash Algorithm 1) are two well-
known one-way hashing algorithms. When using one-way hashing algorithms the value can't be
rehashed back to the original value.

Authentication

17

Pros of Digest Authentication
❑ Easy to implement, like basic authentication. We've already seen how easy it is to implement

basic authentication for our Web Service.

❑ Supported by all proxies and firewalls.

❑ Username/password is never sent as clear text.

Cons of Digest Authentication
❑ Only supported by Windows 2000/IIS 5 and above, not available with IIS 4. If you are using

Windows NT operating system then you can't use this authentication method.

❑ Only supported by modern web browsers such as Internet Explorer 4.0 and above and
Netscape 4.0 and above.

❑ The Windows Server OS should be using the Active Directory (AD) to store all the Windows
user account database information or the server should have access to the Active Directory to
lookup the user account information.

❑ Can't be used against a custom authority such as a database. When we use Digest
authentication the credentials will be always compared against the Windows user account
database stored in an Active Directory. We can't compare the credentials against a custom

authority such as a text file or a database.Why and When
Digest authentication is a part of HTTP 1.1 protocol and W3C, which addresses the problem faced in
the basic authentication. This is a safer authentication option when compared with basic authentication.
Since digest authentication uses Active Directory, it is a more scalable solution. We can use this
authentication method for slightly more secured applications, such as email accounts or calendar
applications, etc.

Implementing Digest Authentication
To implement digest authentication we need to install Active Directory where IIS is installed, or have
access to an Active Directory Server. If you have all that is required for digest authentication then you
can follow the same steps we followed for basic authentication and instead of checking the Basic
authentication (password is sent in clear text) check box, simply check the Digest authentication for
Windows domain servers check box. The same code that we used for basic authentication will work for
this too, including the web.config and the Web Service client and server code.

If you are interested in how to setup digest authentication check out the Microsoft Support
Knowledge Base article at
http://support.microsoft.com/support/kb/articles/Q222/0/28.asp for more
information.

For more information about Digest authentication, see the specification RFC 2069 at
http://www.ietf.org/rfc/rfc2069.txt.

Chapter 13

18

Integrated Windows Authentication
Integrated Windows authentication (previously known as NTLM or Windows Challenge/Response
authentication) is similar to digest authentication but uses more sophisticated hashing. The beauty of
Integrated Windows authentication is that the username and password are not sent over the network.
Integrated Windows authentication supports both the Kerberos V5 authentication protocol and the
challenge/response protocol. If Active Directory Services is installed on the server and the browser is
compatible with the Kerberos V5 authentication protocol, both the Kerberos V5 protocol and the
challenge/response protocol are used – otherwise only the challenge/response protocol is used.

When we request a web site that consumes Integrated Windows authentication, the web server will send
a random number back to the web browser. Then the client will send the username, domain name and a
token back to the server. The token contains the encrypted password with the random number. Then
the Web server will send the username, domain, and token to the Domain Controller. The Domain
Controller will verify the validity of the credentials and sends a response back to IIS.

Pros of Using Integrated Windows Authentication
❑ Easy to implement and supported by IIS. We've already seen how easy it is to implement

basic authentication for our Web Service.

❑ No development required. All we have to do is a couple of mouse clicks here and there and
Integrated Windows authentication is ready to use.

❑ Password is never sent over the network. The password will be transmitted from the client IIS
to the PDC as a hash value, so the privacy of the password is guaranteed.

Cons of Using Integrated Windows Authentication
❑ Only supported by Internet Explorer Version 2.0 and above. Other browsers like Netscape

and Opera don't support Integrated Windows authentication.

❑ Integrated Windows authentication doesn't work with proxy servers.

❑ Additional TCP ports needs to be opened in the firewall to use Integrated Windows
authentication. (Every protocol uses a port to operate. For example, port 80 is used by the
HTTP protocol).

❑ Can't be used against a custom authority such as a database. When we use basic authentication
the credentials will always be compared against the Windows user account database. We can't
compare the credentials against a custom authority such as a text file or a database since it
uses the Windows user account database to do so.

Why and When
Integrated Windows authentication is Microsoft's extension to the HTTP protocol and is only supported
by IIS and IE. The Integrated Windows authentication is used in the Intranet scenario in today's the
web applications, since it is only supported by IE and other browser like Netscape don't support this
authentication method. More over each corporation has a standard for browsers and if IE happens to
the standard then there is no problem in using this authentication method.

Authentication

19

However, Web Services are different. Since the Integrated Windows authentication happens at the
server side, there is no browser involved in this authentication. Therefore, it is safe to use the Integrated
Windows authentication with Web Services. Nevertheless, be aware of the additional TCP ports that
need to be opened for this authentication. Most of the companies may hesitate to open these ports, since
they can brink security bleach to their internal network.

Implementing Integrated Windows Authentication
To implement integrated windows authentication we can follow the same steps we followed for basic
authentication and instead of checking the Basic authentication (password is sent in clear text) check
box, we check the Integrated Windows authentication check box. The same code that we tried for basic
authentication should work for this too, including the web.config and the Web Service client and
server code.

Let's run the ASP.NET Web Service client to access the Web Service using integrated windows
authentication.

In the above screenshot, we can see that the authentication type is specified as 'Negotiate'. We've
already seen that, when using the "Integrated Windows Authentication" either NTLM or Kerberos
V5 protocol will be used. In the above screenshot, NTLM is used as the authentication protocol,
since the server being used does not have Active Directory installed on it.

Forms Authentication
If your Web Service is going to be used by a large number of users, and if you are concerned about
scalability and security then Forms authentication is for you. Forms authentication allows you to
authenticate the user against any custom authority such as a database or an Active Directory. Forms
authentication is fully customizable, provides built-in features to manage cookies, and takes care of all
the complexities involved with encrypting, decrypting, validating as well as if the user is not authorized
then transferring the user to the login page, and so on.

Chapter 13

20

When we request a web site that consumes Forms authentication, the web server will pass the request to
the ASP.NET runtime. The ASP.NET runtime will check if the web request contains a valid cookie as
specified in the web.config file. If the cookie exists in the web request, then the ASP.NET runtime
will pass the request to the Web Service page. If the cookie doesn't exist then the ASP.NET runtime will
pass the web request to the login page defined in the web.config file.

Pros of Using Forms Authentication
❑ Easy to implement – all we have to do is define the web.config file and build the

authenticating mechanism using a database or Active Directory, etc.

❑ No development required – the ASP.NET runtime takes care of all the details of managing
the cookie.

❑ Custom authorities supported – can be used against a custom authority such as a database or
Active Directory

Cons of Using Forms Authentication
❑ Cookie needed – Forms authentication uses cookies to authenticate users and the code will fail

if the client does not support cookies.More memory and processing power – Forms
authentication requires more memory and processing power since it is dealing with
external authorities such as a database or Active Directory.

Why and When
Forms authentication is the very popular authentication method used in today's sites including,
Amazon.com, Yahoo.com, etc. Forms authentication brings the flexibility of validating the credentials
against any authority such as a database or Active Directory or a simple XML file. Base on your
requirement, you can choose the authority and you can scale the Web Service. Therefore, we can use
this authentication method with all the applications. If you want more security then consider SSL with
this authentication options. The only pitfall in this approach is that the client needs to accept cookies,
and if the client has turned off the cookies then the authentication will fail.

Implementing Forms Authentication
Forms-based authentication is founded on cookies. When a user logs into our ASP.NET application
using Forms authentication, ASP.NET will issue an authentication cookie that will be sent back and
forth between the server and client during the web requests. If the authentication cookie type is
persistent then a copy of the authentication cookie will be stored on the user's hard drive and whenever
they visit the ASP.NET Web Service, again they can be pre-authenticated based on it. If the
authentication cookie type is non-persistent, then the authentication cookie will be destroyed at the end
of the browser or client's session. In this case when they visit the ASP.NET Web Service again, we can't
pre-authenticate the user, and they have to provide their credentials all over again.

TE
AM
FL
Y

Team-Fly®

Authentication

21

For example, if you visit ASPToday.com or CSharpToday.com sites, they use persistent cookies. Once
you've checked the "Remember my password" checkbox before clicking the "Login" button, the server
will place a persistent cookie on the computer and you never have to present your credentials when
visiting ASPToday.com or CSharpToday.com site from the same computer. This gives you the freedom
of visiting the sites without presenting the credentials repeatedly. There is also a pitfall in this method. If
someone else has access to your computer then they will also be able to visit the sites without presenting
the credentials with your identity. Therefore, the rule of thumb is, if the information stored in the site is
sensitive then don't place a persistent cookie.

When using Forms authentication, ASP.NET will redirect the request to the login page defined in the
web.config file. This will be a problem for Web Services, since the client will be requesting a SOAP
response from the Web Service. To fix this problem we have to specify the login page
(SayHello_CS.asmx) to be same as the Web Service page:

<configuration>
 <system.web>
 <authentication mode="Forms">
 <forms name=".WebSvcDemo" loginUrl="SayHello_CS.asmx"
 protection="All" timeout="60" path="/" />
 </authentication>
 </system.web>
</configuration>

All we have done here is make the login page the as same as the Web Services page
(SayHello_CS.asmx), so that this will not redirect the unauthorized uses to a different login page. The
following table describes the possible values for the forms tag:

Tag Attribute Description

name Name of the authentication cookie. If you are hosting more than one ASP.NET
application from your web server, make sure you give different names to each
of the authentication cookies that you're using.

loginurl The login page where unauthenticated users should be redirected. This
loginurl can be on the same server, or a different one. If the loginurl is on
a different server then both the servers should use the same decryptionKey
parameter in the machineKey tag.

Protection This is used to protect the authentication cookie. The protection tag has four
possible values (All, Encryption, Validation, None).

When you set the value as All, both the validation (the cookie will be
validated against the original content placed in the cookie before transmitting
to the client) and encryption (cookie will be encrypted using the Triple-DES or
3DES algorithm, before transmitting to the client, and the cookie will be
decrypted after receiving from the client) will be performed against the
authentication cookie to protect it from prying eyes. For validation and
decryption, the values specified in the validationKey and decryptionKey
parameters of the machineKey tag will be used. The value All is the default,
and suggested, value for this parameter.

Table continued on following page

Chapter 13

22

Tag Attribute Description

When you set the value as None, the cookie will be transferred between the
client and the server as plain text and you can turn off encryption and
validation with the machineKey tag.

When you set the value as Encryption, the cookie will be decrypted as per
the value specified in the decryptionKey of the machineKey tag and the
content of the cookie will not be validated.

When you set the value as Validation, the cookie will be validated when
received from the client as per the value specified in the validationKey of
the machineKey tag, and the content of the cookie will not be encrypted and
decrypted. It is always a good idea to use 'All' as the value for the protection
tag, since it uses all the goodies available to protect the authentication cookie.

Timeout The timeout value for the cookie to expire since the last request was made. The
default value is 30 minutes.

The next problem is when the client submits the credentials: we don't want to transfer the client back to
a different page and we want to set the authentication cookie at the same time. We're going to solve the
problem by using the SetAuthCookie method of the FormsAuthentication class. The
SetAuthCookie method takes two parameters, the first one is the username and the next one is the
Boolean value to place a persistent or non-persistent cookie. Let's create a Web Service,
SayHello_CS.asmx in the FormsAuthServer folder in the download, to use forms
authentication.

<%@ WebService Language="C#" Class="Hello" %>

using System.Web.Services;
using System.Web.Security;

public class Hello : WebService
{
 const string CN_NeedToLogin = "WS1001";
 [WebMethod]
 public string SayHello()
 {
 if (Context.User.Identity.IsAuthenticated == true)
 return "Hello " + Context.User.Identity.Name + ". You are consuming '"
 + Context.User.Identity.AuthenticationType
 + "' authentication.";
 else
 return CN_NeedToLogin;
 }
 [WebMethod]
 public bool Login(string sUsername,string sPwd)
 {
 if (sUsername == "SrinivasaSivakumar" && sPwd == "MyPass")
 {
 FormsAuthentication.SetAuthCookie(sUsername,true);
 return true;
 }
 else
 return false;

Authentication

23

 }

 [WebMethod]
 public string Logout()
 {
 if (Context.User.Identity.IsAuthenticated == true)
 {
 FormsAuthentication.SignOut();
 return "OK";
 }
 else
 return "You've not logged in.";

 }
}

We've created a Web Service with three web methods to login, say hello and logout of the Web Service.
In the login method, we verify the credentials supplied with SrinivasaSivakumar and MyPass and if
they match then we set the authentication cookie. If they don't match then we just send false back.
The authentication cookie that we're setting is persistent and if the client didn't call the logout method
then the cookie would stay in the client hard drive and the client will be re-authenticated when he calls
the SayHello method.

If the user directly calls the SayHello method, then we check to see if the user has already logged in
and if not we return the constant CN_NeedToLogin back to the client. Here is the "Login" view.

Chapter 13

24

Here is the "SayHello" method call view.

In this example, we have hard coded the username and the password. We can also store the credentials
in the web.config file and authenticate the users against it. You can find the code for this example in
the FormsAuthServer1 folder in the code download:

<configuration>
 <system.web>
 <authentication mode="Forms">
 <forms name=".WebSvcDemo" loginUrl="SayHello_CS.asmx"
 protection="All" timeout="60" path="/">
 <credentials passwordFormat="Clear">
 <user name="SrinivasaSivakumar" password="MyPass" />
 </credentials>
 </forms>
 </authentication>
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
</configuration>

Here we have added a username and a password to the web.config file using the credentials tag.
We can modify the Login method a little bit to check against the web.config file to authenticate. For
that we're going to use the Authenticate method of the FormsAuthentication class.

[WebMethod]
 public bool Login(string sUsername,string sPwd)
 {
 if (FormsAuthentication.Authenticate(sUsername, sPwd) == true)
 {
 FormsAuthentication.SetAuthCookie(sUsername,true);
 return true;
 }
 else
 return false;

 }

Authentication

25

In this example, we have stored the passwords in the web.config file as clear text. We can also store
the passwords in both one-way hash formats, SHA1 and MD5, as supported by the credentials tag.
You can find the code for this example in the FormsAuthServer2 folder of the code download:

<configuration>
 <system.web>
 <authentication mode="Forms">
 <forms name=".WebSvcDemo" loginUrl="SayHello_CS.asmx"
 protection="All" timeout="60" path="/">
 <credentials passwordFormat="SHA1">
 <user name="SrinivasaSivakumar"
 password="E9363073B4EC360E68C7642823CAFC559402E76C"
 />
 </credentials>
 </forms>
 </authentication>
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
</configuration>

We have changed the passwordFormat attribute of the credentials tag to "SHA1" and we have
stored the hashed password in the password attribute of the user tag. We can use the
HashPasswordForStoringInConfigFile method of the FormsAuthentication class to generate
the hashed password to store in the web.config file.

For high performance, highly scalable web sites we need a database or an Active Directory to
authenticate the users against. To see a sample of this, we're going to create a SQL Server 2000 database
with the name "WebServicesAuthDB" and we're going to add a single table called "Tbl_MA_Users".
This table will have four columns Username, Pwd, Firstname and Lastname, and we've inserted a
single record with the following values. For your convenience, there is a SQL script,
WebServicesAuthDB.sql, which will create the database in the FormsAuthServer3 folder of the code
download, where you can also find the rest of the code for this example:

We are simply going to change the login method to authenticate the user from the database rather than
hard coding the username and password as we have done previously:

[WebMethod] public bool Login(string sUsername,string sPwd)
{
 SqlConnection dbConn = new SqlConnection("server=localhost;uid=sa;pwd=;"
 + "database=WebServicesAuthDB;");

Chapter 13

26

 //Open the connection
 dbConn.Open();

 //Create a SQL Command object
 SqlCommand SQLCmd = new SqlCommand("SELECT Pwd FROM Tbl_MA_Users "
 + "WHERE UserName = '" + sUsername + "'", dbConn);

 //Create a datareader, connection object
 SqlDataReader SQLDr = SQLCmd.ExecuteReader(CommandBehavior.CloseConnection);

 //Get the first row and check the password.
 if (SQLDr.Read())
 {
 if (SQLDr["Pwd"].ToString() == sPwd)
 {
 FormsAuthentication.SetAuthCookie(sUsername,true);
 return true;
 }
 else
 return false;
 }
 else
 return false;

 //Close the DataReader
 SQLDr.Close();
}

Please note that the Login WebMethod is still an HTTP call and potentially anyone can read the
username and password over the wire. We can easily fix this problem using SSL, as we'll see next.

Secured Socket Layer (SSL)
The Secure Socket Layer 3.0 and Transport Layer Security (TLS) 1.0 protocols (commonly referred to
as SSL) are the de facto standard for secure communication over the Web. Using SSL, data that's passed
between server and browser is encrypted using Public Key Infrastructure (PKI) techniques.

Public Key Infrastructure encryption/decryption is based on pairs of keys – that is, a
private key and public keys. The private key will be stored in the server side (in the
SSL scenario) and the public key will be available at the client side. The server sends
data in the encrypted form using its private key and the client receives the data and
decrypts it using its public key. If someone in-between the client and the server gets
the data, he or she will not be able to decrypt it without the public key of the
encrypted private key. In the same way, the client sends the encrypted data using the
public key and the server will decrypt it using its private key. Nobody in the middle
can decrypt the data without the private key.

Authentication

27

In that way, no one intercepting TCP/IP packets over the Internet can interpret the transmitted content.
To use SSL in a commercial web site we must first obtain a SSL certificate from a Certification
Authority (CA) such as VeriSign or Thawte.

Both VeriSign and Thawte are issuing trial SSL certificates for test purposes. Try the
following links to get a test certificate:

https://www.verisign.com/products/site/index.html

http://www.thawte.com/getinfo/products/server/contents.html

Getting a SSL certificate is two-phase process. First, we have to generate a Certificate Signing Request
(CSR) from IIS. When we create a CSR using IIS, it will create a certificate-signing request in a file, and
a private key. The generated CSR should be sent to the Certification Authority to get an SSL certificate.
For more information about implementing SSL read the following articles:

Generating a CSR for Your Web Server Certificate

http://www.verisign.com/support/csr/microsoft/v04.html (For IIS4)

http://www.verisign.com/support/csr/microsoft/v05.html (For IIS5)

Installing a SSL Certificate on IIS

http://www.verisign.com/support/install/microsoft/v40.html#global (For IIS4)

http://www.verisign.com/support/tlc/class3_install_docs/microsoft/iis5g.html (For IIS5)

In the Secure Socket Layer (SSL) 3.0 and Transport Layer Security (TLS) 1.0 protocols, public key
certificates and embedded trust points in browsers are the key cornerstones. Client/server applications
use the TLS "handshake" protocol to authenticate each other and to negotiate an encryption algorithm
and cryptographic keys before an application starts transmitting data. The handshake protocol uses
public key cryptography, such as RSA or DSS, to authenticate and transmit data. Once a channel is
authenticated, TLS uses symmetric cryptography, such as DES or RC4, to encrypt the application data
for transmission over the private or public network. Message transmission includes a message integrity
check, using a keyed message authentication code (MAC), computed by applying a secure hash function
(such as SHA or MD5).

When a user connects to a web site using SSL, they download the server SSL certificate obtained from a
CA. The server certificate on the server holds an attribute about the issuing authority. The issuing
authority should match with one of the root certificates already installed on the user's computer by IE or
Navigator. When you install IE or Navigator a number of trusted root certificates will be installed into
your computer as part of the installation. When the server certificate is downloaded to the client's
computer, it'll be matched against a root certificate already present in the client's computer. If the server
certificate is from a valid CA and it is trustworthy, then secure communication will begin between the
server and the client. If the server certificate is not trustworthy then the browser will prompt a message
box and inform the user about the untrustworthiness of the server certificate. From the message, the
user may wish to continue browsing the site or leave the site.

Chapter 13

28

Server

Server
Certificate

Root
Certificate

Server
Certificate

Client

Internet

Pros of SSL
❑ Server Identification – when a user wants to use a highly sensitive Web Service that deals with

his or her personal data such as medical records or 401K retirement benefit information, the
user may or may not trust the online site unless the Web Service has been verified and
certified by an independent third party security company. This could give the customer the
confidence they need to use the Web Service.

❑ Data Integrity – data integrity is assurance when transmitting between client and the server
when SSL is used.

❑ Confidentiality – when data is transmitted over an unprotected network, SSL gives the data
privacy by assuring the transmitted data can only be read by the specific client.

Cons of SSL
❑ Performance – performance will be the one consideration that we have to be aware of when

we're planning a SSL implementation. When SSL is used, the whole channel between the
client and the server is secured and the data is transmitted in the encrypted format. Therefore
the client and server have to process an encrypt and a decrypt operation for each web request
and this will affect performance.

❑ Need to open SSL port – By default SSL works on the port number 443 and if the user is
behind a firewall then, the port 443 needs to be opened for the HTTPS traffic if not already
opened.

❑ HTTP to HTTPS – SSL uses the HTTPS protocol and if the user is trying to access the secured
resource using HTTP instead of HTTPS then, the user will receive the "HTTP 403.4 -
Forbidden: SSL required" error message. We can fix this writing a custom ASP.NET file that
transfers the user from HTTP to HTTPS and install it as the replacement on IIS server for the
403.4 error or we can add the "customErrors" tag in the web.config file. However, these
options are very cumbersome.

❑ Extra Cost – we need to spend some extra money to buy the SSL certificates and to renew the
certificate when it expires.

Authentication

29

Why and When
SSL is an excellent way to protect the communication with the server and the client. SSL can be
combined with other authentication methods such as basic, Digest, Integrated Windows authentication,
Forms authentication, etc to make it more secure. 100% of today's secure site use SSL to protect their
communication between the client and the server. SSL can be used with any Web Service that needs
bulletproof security. Nevertheless, we pay a performance penalty when using SSL. Since SSL uses
strong Encryption and decryption to protect the communication between the server and the client, this
is slow. So, make sure you switch on SSL where it is really needed.

Basic Authentication with SSL
The clear text password problem faced by basic authentication can be fixed when using basic
authentication with SSL. When SSL is used in conjunction with basic authentication the whole channel
is secured and no one can read the username and password as it is passed between the client and the
server. Once you've received a SSL certificate from a valid CA such as VeriSign or Thawte and
installed the certificate then setting up basic authentication for a web site or virtual directory is very
simple, as we'll now see.

Go to the IIS MMC and expand the tree to reach the desired virtual directory or web site. In our
example, we'll setup SSL for the previous basic authentication virtual directory, BasicAuthServer.
Right click on the virtual directory or web site, select the Properties option and go to the Directory
Security tab. In the Secure Communications frame, you'll see two enabled command buttons, "View
Certificate…" and "Edit…"

Chapter 13

30

Click the "Edit…" button. You'll see the "Secure Communications" dialog box. Check the "Require
secure channel (SSL)" check box.

If the SSL certificate you have received from the CA is 128-bit certificate then you can check the "Require
128-bit encryption" checkbox. Click the OK button on the open dialog boxes to finish setting up SSL. Now
all our client applications will require the use of SSL (HTTPS – HTTPS is a secured HTTP protocol and it'll
be used when SSL is required by the server) to access the BasicAuth virtual directory.

TE
AM
FL
Y

Team-Fly®

Authentication

31

If you've installed a test certificate from VeriSign or Thawte and if you try to access the basic
authentication examples, substituting https for http in the path, you'll see a warning dialog box from the
browser about the untrustworthiness of the SSL certificate:

Click Yes to continue using the secure channel or View Certificate, as shown in the screenshot. We're
seeing this message because the SSL certificate was generated with different a site name (sruthi) and
we're accessing the SSL certificate using localhost.

Chapter 13

32

Since we're using a secured channel, we have to recompile the proxy DLL to use HTTPS instead of
HTTP. For this we have to change the batch file that we used to build the proxy DLL:

WSDL /l:CS /n:SayHelloCSNS /out:SayHello.CS
https://localhost/ProWebServices/basicauthserver/SayHello_CS.asmx?WSDL

CSC /r:system.dll /r:System.Web.dll /r:System.Xml.dll /r:System.Web.Services.dll
/t:library /out:SayHelloCS.dll SayHello.CS

We have simply changed the WSDL file reference to build a new proxy class source. This is the only
change that we need to make to use the SSL version of the Web Service.

Remember to remove the check next to basic authentication and check the anonymous box in IIS before
creating the new proxy DLL, and then to reapply basic authentication after building the proxy DLL.

Client Certificates Authentication
Server certificates are to identify the trustworthiness of the server and Client Certificates to identify a
client to the server. A CA issues both client and server certificates after verifying their identity. When
the client is requesting a web resource, it can also send Client Certificates along with the request. The
server can then determine who the client is and authorize or deny them.

You can purchase a Client Certificate from VeriSign or Thawte. Thawte is issuing Client Certificates free
of charge with your email address and without your name in the subject line (the subject line will include
the name as "Thawte Freemail Member" instead of your name, as shown below). After confirming your
identity using a notary in your area, your name will be shown in the client certificate. On the other hand,
VeriSign gives a 60-day evaluation Client Certificate for test purposes with your name on it.

Authentication

33

You can obtain Client Certificates at the following sites:

http://www.verisign.com/client/enrollment/index.html

http://www.thawte.com/getinfo/products/personal/contents.html

Client Certificates are usually installed on web clients such as browsers and email clients. You can view
all the Client Certificates installed in IE if you click "Tools | Internet Options…" and in the new dialog
box go to the Content tab.

Click the "Certificates…" button. As you can see, the example browser has two Client Certificates
installed in IE6:

Chapter 13

34

Why and When
Client Certificates are a step forward in securing applications. The Client Certificates are always
used with SSL and we can always trust a Client Certificates are issued by a valid CA, since CA
verifies the identity of the user before issuing it. Client Certificates adds one more layer to the
security of our applications.

Sometimes we can't trust the user with just username and the password pair. If we really want to
identify the user and trust him, then Client Certificates are the way to go. Each Client Certificate has
a subject line which will tell all about them, including their name, email address, etc. We can extract
the users name or email address from the certificate and authenticate them based on that. In this case,
there is no need to login to the application with a username and password. All we need to have is a
valid client certificate.

Configuring Client Certificate
Client Certificate configuration is part of SSL configuration. When we are configuring SSL, we select
either the "Accept client certificates" or "Require client certificates" option button.

Authentication

35

If we select "Accept client certificates", the client certificates are not mandatory, and if there is a client
certificate available at the client side it'll be transmitted to the server. When you select the "Require
client certificates" option the client certificate is necessary when a web request is issued to the server. If
there is no client certificate included as part of the request then IIS will deny access to the client and
will throw a "HTTP 403.7 – Forbidden" error.

Chapter 13

36

Steps to Follow in Client Certificate Authentication

❑ Require Client Certificate – when a web request is sent from the client to the server, the server
will check if the client is sending a client certificate. If the client certificate is not a part of the
web request then access to the web resource will be declined.

❑ Perform public key and digital signature match – if the web request includes a client certificate then
the server will check if the public key found in the client certificate matches the digital signature.

❑ Is it valid today? – if the user has a client certificate then the server will check the valid from
and to dates of the client certificate with the servers date to make sure the client certificate is
valid today.

❑ From a valid CA – then the server will check if the client certificate is from a valid issuer such
as VeriSign or Thawte.

❑ Validate the digital signature – finally the server will validate the digital signature with the
public key of the CA.

If all the above steps were successful then the request will be forwarded to the WebMethod in the .asmx file.

How to Read the Content of a Client Certificate
The ClientCertificate property of the Request object can be used to obtain information about the
submitted client certificate. Let's see a simple example. We're going to expose a Web Service,
GetClientCertificateInfo_CS.asmx in the ClientCertificate folder of the code download,
that will return information about the submitted client certificate.

<%@ WebService Language="CS" Class="GetClientCertificateInfo_CS" %>

using System;
using System.Web.Services;
using System.Web.Security;

public class ClientCertificateInfo
{
 public string Issuer;
 public bool IsValid;
 public int KeySize;
 public string Subject;
 public string SerialNumber;
 public string Cookie;
 public int SecretKeySize;
 public DateTime ValidFrom;
 public DateTime ValidUntil;
}

public class GetClientCertificateInfo_CS : WebService
{
 [WebMethod]
 public ClientCertificateInfo GetInfo()
 {
 ClientCertificateInfo objCrti = new ClientCertificateInfo();

Authentication

37

 objCrti.Issuer = Context.Request.ClientCertificate.Issuer;
 objCrti.IsValid = Context.Request.ClientCertificate.IsValid;
 objCrti.KeySize = Context.Request.ClientCertificate.KeySize;
 objCrti.Subject = Context.Request.ClientCertificate.Subject;
 objCrti.SerialNumber = Context.Request.ClientCertificate.SerialNumber;
 objCrti.Cookie = Context.Request.ClientCertificate.Cookie;
 objCrti.SecretKeySize = Context.Request.ClientCertificate.SecretKeySize;
 objCrti.ValidFrom = Context.Request.ClientCertificate.ValidFrom;
 objCrti.ValidUntil = Context.Request.ClientCertificate.ValidUntil;

 return objCrti;
 }
}

We have created a Web Service with the class name GetClientCertificateInfo and we have
exposed a WebMethod with the name GetInfo. The GetInfo WebMethod returns an object type of
ClientCertificateInfo. The WebMethod simply reads the client certificate information from the
Request object and assigns it to the objCrti object.

Since the client certificate is already stored in IE, when we access the Web Service, IE will
automatically send the client certificate to the Web Service and the information about the certificate will
be read by the Web Service. Here is how the output looks:

How Do We Authenticate a User?
The subject property of the client certificate will provide information about the user. For example, the
example client certificate has a subject of "CN=Srinivasa Sivakumar,
E=srinivasasivakumar@india.com". We can extract the username and the email address from the
subject and authenticate the user against a database or Active Directory or any other user store. Here is
a simple example:

Chapter 13

38

<%@ WebService Language="C#" Class="Hello" %>

using System;
using System.Web.Services;
using System.Web.Security;

public class Hello : WebService
{
 //*
 //* Internal Error Message: Unable to find the user name
 //*
 const string CN_InvalidUserName = "WS1010";
 [WebMethod]
 public string SayHello()
 {
 string strUserName = Context.Request.ClientCertificate.Subject;

 //**
 //* 1. Extract the name from the client certificate
 //**
 try
 {
 //* Make sure there are no commas in the Subject line. If
 //* there is a comma then get the index of it
 int i = strUserName.Indexof(",");

 if (i > 0)
 {
 //* The user name excluding the CN= attribute. You'll
 //* get something like 'Srinivasa Sivakumar' as the output
 strUserName = strUserName.Substring(strUserName.Indexof("CN=") + 3,i-3);
 }
 else
 {
 //The user name found
 strUserName = strUserName.Substring(strUserName.Indexof("CN="));
 }

 //Authenticate the user
 if (CheckTheUser(strUserName) = true)
 return "Hello " & strUserName & "!!!";
 else
 return CN_InvalidUserName;
 }
 catch (Exception Ex)
 return Ex.ToString();
 }
 }

 private bool CheckTheUser(string strSubject)
 {
 //Can also be checked agaiest a DB
 if (strSubject == "Srinivasa Sivakumar")
 return true;
 else
 return false;
 }
}

Authentication

39

In the WebMethod we have extracted the username from the subject line of the client certificate and
we've passed the username to the CheckTheUser method. Then we have hard coded the username
check and if the user is "Srinivasa Sivakumar" then we say hello to him. Otherwise we return the error
code "WS1010", that is CN_InvalidUserName (Username not found).

Let's test the code to make sure it works fine:

Let's now build a proxy DLL for the Web Service with the SayHello_CS_Build.bat batch file, and
access the Web Service using SOAP.

WSDL /l:CS /n:SayHelloCSNS /out:SayHello.cs�
http://localhost/ProWebServices/15a/ClientCertificate/SayHello_cs.asmx?WSDL

CSC /r:system.dll /r:System.Web.dll /r:System.Xml.dll�
/r:System.Web.Services.dll /t:library /out:SayHelloCS.dll SayHello.cs
Pause

Now place the SayHelloCS.DLL file in the bin folder.

Exposing the Client Certificate to the Proxy
If we're using the Client Certificates from IE to login to the application or Web Service, IE will take
care of sending the Client Certificates and all the details about this. Since we're accessing the Web
Service using a proxy DLL there is now way our proxy DLL will know where is the Client Certificates.
Therefore, we have to export the Client Certificates into a file and place it somewhere the proxy DLL
can use it.

Let's create an ASP.NET web client for the Web Service. Before that, we have to expose the client
certificate to the proxy DLL so it can use the client certificate when it tries to access the Web Service.
To expose the client certificate to the proxy, go to the certificate dialog box in IE as we did before
through the Internet Options menu. Select a client certificate that you want to export and click the
"Export…" button. You'll see the "Certificate Export Wizard" and click Next on the wizard screen.

Chapter 13

40

In the next wizard screen, select the "No. Do not export the private key" option and click Next.

Select the "Base-64 encoded X.509 (.CER)" option and click Next. You'll be prompted to enter a file
name. Give a file name like ClientCerti.cer or MyCertificate.Cer and click Next. You'll see a
summary screen:

TE
AM
FL
Y

Team-Fly®

Authentication

41

Click the Finish button. The client certificate will be exported to a file. Let's place the exported
certificate file (.CER) in the ASP.NET client's folder.

Let's create an ASP.NET client to access the Web Service using the client certificate. For your
convenience, this file is included in the code download. It is SayHelloClientCS.aspx in the
ClientCertificate folder.

<%@ Import Namespace="System.Security.Cryptography.X509Certificates" %>
<%@ Import Namespace="SayHelloCSNS" %>
<html>
<head>
<title>Client Certificate Authentication Web Client</title>
<style type="text/css">
 body {font-face:verdana; font-size:10pt; font-weight:normal}
</style>
</head>
<script language="CS" runat="server">
public void Page_Load(Object sender, EventArgs E){
 try
 {
 //An object type of the Web Service
 SayHelloCSNS.Hello objWebSvc = new SayHelloCSNS.Hello();

 //Read the client certificate from the file
 //into the object variable of the type X509Certificate
 X509Certificate objClientCerti =
 X509Certificate.CreateFromCertFile(Server.MapPath("ClientCerti.cer"));

Chapter 13

42

 //Add the client certificate to the
 //Web Service object
 objWebSvc.ClientCertificates.Add(objClientCerti);

 //Call the SayHello Method
 lblResult.Text = objWebSvc.SayHello();
 }
 catch (Exception Ex)
 {
 lblResult.Text = Ex.ToString();
 }
}
</script>
<body>
<h3>Client Certificate Authentication - Web Service Client</h3>
<form runat="server">
Result:
 <asp:Label id="lblResult" runat="server"/>
</form>
</body>
</html>

Client Certificates Authentication Using Windows
Account Mapping

Client certificates can be mapped to a windows user account. This process makes the authentication
process easy. The mapping can be one-to-one or many-to-one. One-to-one mapping is mapping a
single client certificate to a windows user account, and many-to-one mapping is mapping multiple
client certificates to a single user account using a criterion. The one-to-one mapping is best if a single
user is going to use the Web Service. If multiple users from a corporation are going to use the Web
Service, then the many-to-one mapping is useful and we can assign the same rights to all the users in
the corporation.

The drawback is that we can't personalize the Web Service on an individual basis.

The Client Certificate with Windows user account mapping solves the authentication problem,
since the Client Certificate will be automatically read by IIS and logs the user in with a Windows
identity. This is a good option if you are using any of the "Windows" authentication methods with
SSL and Client Certificate and you don't want to take care of the details of authenticating the user
with Client Certificates.

We can use the IIS MMC to do the configuration. Start the IIS MMC, find the virtual directory that you
want to use client certificates and go to the client certificate configuration dialog box as before.

Authentication

43

Click the "Enable client certificate mapping" check box and click on the "Edit…" button.

Click the "Add" button, select the exported client certificate file and click the OK button.

Chapter 13

44

The client certificate should be exported by selecting the "Base-64 encoded X.509
(.CER)" file format.

In the new dialog box, give a descriptive name for the mapping, select the windows user account, type a
password into the dialog and click the OK button. You can see the mapping on the screen now. On the
right side of the screen, you can see the issuing authority and the subject name in the client certificate.

The descriptive name you type should be unique for each entry.

Authentication

45

Click the OK button to finish mapping the client certificate to a windows user account. Let's create a
simple Web Service to say hello to the logged-in user. You can find this file, SayHello_CS.asmx, in
the ClientCertificate-WindowsAuth folder of the code download.

<%@ WebService Language="C#" Class="Hello" %>

using System.Web.Services;
using System.Web.Security;

public class Hello : WebService
{
 const string CN_NeedToLogin = "WS1001";
 [WebMethod]
 public string SayHello()
 {
 if (Context.User.Identity.IsAuthenticated == true)
 return "Hello " + Context.User.Identity.Name + ". You are consuming '"
 + Context.User.Identity.AuthenticationType
 + "' authentication.";
 else
 return CN_NeedToLogin;
 }
}

Here is how the output looks:

Many-To-One Mapping
Many to one mapping can be used when the Web Services users are from a primary entity and all of
them have a common identity on their Client Certificate. Let's say, all the users from "Wrox Press" have
client certificates with the company name on it and they want to access a 401K Web Service, then it's
easy for the Web Services admin to map all the "Wrox Press" employees in to a single windows user
account and assign privileges to it including ACL. This makes the Admin person's life easier.

Many to one mapping can be based on exact match on subject line of the client certificate or wild card-
based mapping. Go to the client certificate mapping dialog box as before, go to the "Many-to-1" tab and
click the "Add…" button.

Chapter 13

46

Give a descriptive name for the mapping and click "Next >" button. In the next screen, click the
"New…" button.

Authentication

47

Select "Subject" from the "Certificate Field" dropdown box, and select "O" from the "Sub Field". Then
type the criteria as "Wrox Press*" and click the OK button. This will filter all the users with a client
certificate subject line as "O=Wrox Press Inc." or "O=Wrox Press Ltd.". We can also use the OU field in
the subject line to filter the users based on their department. Click "Next", select the windows user
account, type the password, and click the "Finish" button.

We can also use this screen to deny access to clients that have the same criteria.

This many-to-one mapping will make sure whoever has a client certificate with the subject line text as
"O=Wrox Press Inc.", "O=Wrox Press Ltd.", etc will be running under the windows user account
"SRUTHI\SrinivasaSivakumar".

Impersonation
By default, ASP.NET applications and Web Services run on the "NT AUTHORITY\SYSTEM" identity:
even if users are logging in as anonymous users or with a valid Windows username. Impersonation is a
process that allows the code to run under a different identity to that of the currently logged-in user. The
impersonate attribute of the identity tag in a configuration file allows us to do this. By default the
impersonate attribute is set to False, so the code runs on the "NT AUTHORITY\SYSTEM" identity.

When the Web Service runs on the "NT AUTHORITY\SYSTEM" username, it'll have all rights and your
code will not break. For non-secure sites, this setting is fine. However, if you are using a secured site
and you want to control the access permissions for those users who access your Web Service then you
may want to consider impersonating your Web Service in a different Windows username and apply
strict ACL on the username.

Chapter 13

48

WindowsPrincipal Object
When any of the Windows authentication methods (Basic, Digest, and Integrated Windows
Authentication) are used, Web Services attach a WindowsPrincipal object (from the
System.Security.Principal namespace) to the request. This object contains a
WindowsPrincipal class that exposes an Identity property and an IsInRole method that allows
you to check Windows user/group membership information.

The only difference between the WindowsPrincipal and User objects is that the User object's
properties represent the user who logged in and the WindowsPrincipal members represent the
system user account under which the code is running. The WindowsIdentity class represents the
current Windows User account that the system is using to run the code.

Let's see a simple example for this. We'll create a Web Service that will say hello to the logged in user
and it'll also say under whom the current account is running. Make the Impersonation folder into a
virtual directory in IIS, and assign Basic authentication to it. The Impersonation folder contains a
web.config with the following code:

<configuration>
 <system.web>
 <authentication mode="Windows"/>
 <!-- This is the Default value -->
 <identity impersonate="false" />
 </system.web>
</configuration>

Now, let's look at our Web Service, SayHello_CS.Asmx, in the Impersonation folder.

<%@ WebService Language="C#" Class="Hello" %>

using System.Web.Services;
using System.Security.Principal;

public class Hello : WebService
{
 [WebMethod]
 public string SayHello()
 {
 //Create a new Windows Principal object
 WindowsPrincipal objWinPrn =
 new WindowsPrincipal(WindowsIdentity.GetCurrent());

 return "Hello " + Context.User.Identity.Name + ". You are consuming '"
 + Context.User.Identity.AuthenticationType + "' authentication. "
 + "This Web Service is running under the Windows user account '"
 + objWinPrn.Identity.Name + "' and is consuming '"
 + objWinPrn.Identity.AuthenticationType + "' authentication. ";
 }
}

Authentication

49

We've created an object of type WindowsPrincipal and passed WindowsIdentity.GetCurrent() to
the constructor of the WindowsPrincipal class. The WindowsIdentity.GetCurrent() retrieves the
username which is used by the system to run the code. In the return statement, we're accessing the
username and the authentication type from the WindowsPrincipal object. Here is how the output looks:

You can clearly see that the currently logged-in user is "Srinivasa Sivakumar" and he is consuming
"Basic" authentication. However, the Web Service is running under the name "NT
AUTHORITY\SYSTEM" and using "NTLM" authentication.

Let's Impersonate
There are two ways we can impersonate the application. The first way is just to set the impersonate
attribute of the identity tag to true in the web.config file. When you do this, the Web Service will
run on the identity of the user who logged in:

<configuration>
 <system.web>
 <authentication mode="Windows"/>
 <identity impersonate="true" />
 </system.web>
</configuration>

Here is how the output looks:

Chapter 13

50

If the virtual directory is using anonymous access then the output will look like this.

The next option is to impersonate the Web Service with a different username. For example, you may
have defined an ACL for a user and you want to impersonate the Web Service with that particular
username. We can do that too. Just change the identity tag in the web.config file:

<configuration>
 <system.web>
 <authentication mode="Windows"/>
 <identity impersonate="true" userName="Admin" password="MyPass" />
 </system.web>
</configuration>

Here is how the output looks:

URL Authorization
URL Authorization is a service provided by the URLAuthorizationModule to control access to
resources such as .asmx, .aspx, etc. It is very useful if you want to allow or deny certain pages in your
ASP.NET Web Service to selected people, or roles. For example, you may want to restrict a Financial
Web Service to users with the "Financial" role assigned to their profile and deny access to others.
This can be achieved very easily with URL Authorization.

URL Authorization can be configured in the web.config file with the <allow> and <deny> tags. The
<allow> and <deny> tags support the "users", "roles" and "verb" attributes. We can add multiple
users and groups by separating them with commas.

TE
AM
FL
Y

Team-Fly®

Authentication

51

There are two special characters – asterisk/star (*), and question mark (?) –
supported by the URLAuthorizationModule. The asterisk (*) stands for all users,
and the question mark (?) stands for anonymous users.

For example, we can allow the user "SrinivasaSivakumar" and the role "Financial" to access our
Web Service and deny all anonymous users from using our Web Service:

<configuration>
 <system.web>
 <authorization>
 <!--Allow the user SrinivasaSivakumar -->
 <allow users="SrinivasaSivakumar" />
 <!--Allow the roles Financial -->
 <allow roles="Financial" />
 <!--Deny all anonymous users -->
 <deny users="?" />
 </authorization>
 </system.web>
</configuration>

We can also allow and deny access based on the HTTP verb. For example if you want to restrict people
from using the HTTP POST method to access the Web Service then just add a deny tag to the
web.config file with the verb as POST and users as *. This will deny everyone from using HTTP
POST to access the Web Service.

<configuration>
 <system.web>
 <authorization>
 <!-- Deny HTTP Post for all the users -->
 <deny verb="POST" users="*" />
 </authorization>
 </system.web>
</configuration>

We can also restrict URLAuthorization for a single file or directory. For example, the following code
restricts access to FinancialWebService.Asmx.

<configuration>
 <location path="FinancialWebService.Asmx">
 <system.web>
 <authorization>
 <!--Allow the user SrinivasaSivakumar -->
 <allow users="SrinivasaSivakumar" />
 <!--Allow the roles Financial -->
 <allow roles="Financial" />
 <!--Deny all the anonymous users -->
 <deny users="?" />
 </authorization>
 </system.web>
 </location>
</configuration>

Chapter 13

52

The ASP.NET application doesn't verify the path that we've
specified in the path attribute. If the given path is invalid
then ASP.NET will not apply the security setting.

Summary
As we learned in this chapter, Web Services security architecture is based on application-to-application
communication rather than application to user communication. Web Services can be secured using
various methods. In this chapter, we discussed the following:

❑ IP and DNS security – How to filter the users using the IP and DNS security. This includes
how to grant or deny access to clients with IP or DNS name.

❑ Windows authentication methods – We saw how to implement windows authentication
methods such as Basic, Digest and Integrated Windows Authentication methods. We've also
seen when and why we should use these authentication methods, and pros and cons of them.

❑ Forms authentication method – Then we discussed the forms authentication method and how
to use it, including when, why and the pros and cons of it.

❑ Basic authentication with SSL – Then we looked at how to make the basic authentication
more secure using the SSL.

❑ Client Certificate authentication – We then saw how to read a client certificate and how to
authenticate a user using client certificates.

❑ Client Certificates and Windows user account – We then looked at how to map a single or
multiple Client certificate(s) into Windows user account, including one-to-one or many-to-one
mapping.

❑ Impersonation – Then we saw what impersonation is, and how to use it and view it using the
WindowsPrincipal object.

❑ URL Authorization – Finally, we saw what URL Authorization is, and how to protect the Web
Service using this method.

Authentication

53

Chapter 13

54

Data Caching

"Your competitor is on the next page!" should be the slogan that every web application developer,
vendor or content provider should follow in the Internet arena. If you don't provide the service at the
speed that the customer is expecting then someone else will, and you'll lose business.

Whenever we're planning or building an application or a Web Service the first thing that should come
to mind is "How can we increase performance and make this Web Service scalable?" There are many
ways we can do this. One of these is caching.

Caching is an important technique for building highly available and scalable Web sites. Using caching
techniques, such as caching in memory frequently used data or data structures that are expensive to
create, can significantly boost a Web Service's performance – instead of reconstructing the data at every
request from a relatively slow data-source such as a database or a legacy system.

Below is a breakdown of what we'll cover in this chapter:

❑ Output Caching – we'll start with a basic output-caching example and we'll see how it can
improve performance. We'll also see the pitfalls of this technique.

❑ Data Caching – we'll see how to use the Cache object and how to use it in Web Services to
cache arbitrary objects such as DataSets.

❑ Dependency Caching – we will also see how to do take advantage of dependency caching
using file dependency, key dependency and time-based dependency.

❑ Callback – when an item is removed from cache storage, the .NET runtime can fire an event
back to us and say this item has been removed from the cache. We'll learn about the callback
events in detail.

Let's get started with an overview of caching.

12

Chapter 12

2

Caching Overview
Caching is a very broad term in the world of the Internet. Caching happens everywhere on the Internet,
from your browser to the proxy server to web caching servers, and so on. All this caching happens on
the Internet to improve the performance of web sites/applications and to give the best possible
experience to the end users.

What is a Cache?
A cache is a buffer that holds the data frequently used by the applications in a faster consumable
containers such as OS memory, files, database, etc. For example, if an application is depend on an
external data source and it consumes data from the external data source whenever the application is
used then, it is wise to cache the external data internally in memory or in a file or in a local database.

The memory based caching technique is the fastest and most widely used by the applications to improve
performance and this technique is 100% supported by .NET Framework. The memory-based cache is an
in-memory data store that can store temporary objects such as a file, database query result or any arbitrary
object, with or without an expiry policy. The expiry policy could be time-bound or data value-based or file
change-based. Accessing an in-memory data store is always faster (probably in the order of hundreds or
even thousands of times faster based on the hardware and software configuration of the server) than
accessing the database from a database server or a file from network storage or from a file server.

Pros and Cons of Caching
Pros:

❑ No need the reprocess the same request or the database query again and again to produce the
same result.

❑ Faster response time close to static page (since the Cache holds the processed data).

❑ Reduces the network traffic between the Web Service and the database server or file server.

❑ Reduces the workload on the database server or file server.

Cons:

❑ The first time caching happens the application will take a little more time to respond.

❑ Caching will not work on personalization-based applications. For example, if the cached data
is based on the user then there is no meaning in caching the data for a specific user.

❑ If the nature of the caching data changes rapidly then the caching will not make sense in that
case. Most of the time the application will try to cache the data and the clients will receive
inconsistent data. This could create a bottleneck in the application.

❑ More powerful hardware and more memory on the server are needed.

❑ Finding the best possible caching policy to cache the output of the Web Service or arbitrary
objects using the Cache object.

Data Caching

3

Output Caching
Output caching is a caching technique that caches the entire page output (either an ASP.NET page or a
Web Service) for a specified time period. Web Services support output caching by using an attribute
(CacheDuration) of the WebMethod declaration.

For a heavy traffic Web Service, automatic time-based caching makes perfect sense. Even setting a
caching interval as low as five minutes could give a big performance benefit to the Web Service. Let's
say we have 20 requests per minute. Without caching, this would result in 100 Web Service results
generated in a five-minute period. With caching, we only generate the Web Service once, and the next
99 requests will be served from the cache.

Let's see an example for Web Service output caching. Fire up your favorite text editor and type the
following code, or alternatively download the code for this chapter from http://www.wrox.com, and
open up OutputCache1.asmx:

<%@ WebService Language="C#" Class="OutputCache1" %>

using System.Web.Services;
public class OutputCache1 : WebService{

 //*
 //* Set output caching time for 60 seconds
 //*
 [WebMethod(CacheDuration=60)]
 public string GetServerDateTime() {
 return "Current Date/Time = " + System.DateTime.Now.ToString();
 }
}

Next, save this file, naming it OutputCache1.asmx, in a virtual directory. This example creates a class
named OutputCache1 with a single method: GetServerDateTime. The GetServerDateTime
method returns the current date and time at the server.

Testing Our Web Service

Point Internet Explorer at the OutputCache1.asmx file on your web server:

Chapter 12

4

If we click the refresh button a few times we'll continue to see the same date and time returned from the
server for 60 seconds. After that the output cache will be discarded and a new cache will be build on a
request to the Web Service.

Let's look at the code closely. We've created a simple Web Service with the class name as
OutputCache1, which inherits from the WebService class. Then we have a standard WebMethod,
which doesn't take any parameters and returns the current data and time at the server as a string.

 [WebMethod(CacheDuration=60)]

We've used the CacheDuration attribute of the WebMethod to set the output cache time as
60 seconds.

If you are using the Beta2 of the .NET Framework then caching is only supported in the "Microsoft
ASP.NET Premium Edition" of the Framework. You can find download links at www.asp.net. If
you are using the RTM or the final version then caching will be enabled based on the operating
system that you are using.

ASP.NET supports a similar kind of output caching using the OutputCache directive. However, ASP.NET
provides broader support with attributes such as VaryByParam, VaryByHeader, VaryByControl and
VaryByCustom for output caching. Web Services don't support these attributes and by default, Web
Services output caching reacts to the VaryByParam="*" attribute. That is, vary by all parameters.

Let's see an example of this. Let's assume that we're exposing a traffic report Web Service, which takes
the highway number (such as I90, I94) and the direction (East, West) of travel to provide the traffic
information. Our traffic Web Service relies on an external source and let's says our external source
provides the traffic data every three minutes. If this is the case then it won't make any sense to query the
data from the data source for every request. Hence we can cache the output of the Web Service for
three minutes. This will save lot of querying and processing time for the Web Service, reducing the
stress on the server and improving the output performance of the Web Service.

Here is the code for the Web Service, Traffic1.asmx:

<%@ WebService Language="C#" Class="Traffic" %>

using System.Web.Services;

public class TrafficInfo {
 public string HighWayNumber;
 public string DirectionOfTravel;
 public string TrafficInformation;
 public string LastUpdated;
}

public class Traffic : WebService{

 //*
 //* Set output caching time for 180 seconds
 //*
 [WebMethod(CacheDuration=180)]
 public TrafficInfo GetTrafficInfo(string sHighWayNum, string sDirection){

 //Create a string array to return the
 //traffic information
 TrafficInfo objTrInfo = new TrafficInfo();

Data Caching

5

 //Assign the Highway number and the
 //direction of travel to the object
 objTrInfo.HighWayNumber = sHighWayNum;
 objTrInfo.DirectionOfTravel = sDirection;
 objTrInfo.LastUpdated = System.DateTime.Now.ToString();

 //*
 //* Let's hardcode a few US HighWays near Chicago
 //*
 switch(sHighWayNum){
 case "I90": //For Interstate Highway 90
 if (sDirection == "East")
 objTrInfo.TrafficInformation =
 "Kennedy inbound from O'hare Airport to the Loop – 42 minutes";
 else
 objTrInfo.TrafficInformation =
 "Kennedy outbound from the Loop to O'hare Airport – 27 minutes";
 break;
 case "I94": //For Interstate Highway 94
 if (sDirection == "North")
 objTrInfo.TrafficInformation =
 "Edens outbound from the Loop to Deerfield Rd – 41 minutes";
 else
 objTrInfo.TrafficInformation =
 "Edens inbound from Deerfield Rd. to the Loop – 63 minutes";
 break;
 default: //For other Highways
 objTrInfo.TrafficInformation = "No information available at this time.";
 break;
 }

 //Return the TrafficInfo object
 return objTrInfo;
 }
}

Let's see how the Web Service looks in IE.

Chapter 12

6

Enter the highway number as "I90" and direction as "East" and click the Invoke button. You'll see the
XML output from the Web Service with a timestamp. Run the Web Service for another combination
like "I90" and "West":

If we look at the <LastUpdated> attribute of the Web Service, each parameter change will have a
different timestamp unless they are accessed at the same time. This is because each WebMethod
parameter change stores something different in the cache.

Web Service Client

Web Service Client

Web Service Client

Web Service Client

Web Service Client

Web Service Client

Output Cache Memory

Cache 1:
Highway: I90

Direction: East
Expires: 180 Sec.

Cache 2:
HIghway: I90

Direction: West
Expires: 180 Sec.

Cache 3:
HIghway: I94

Direction: South
Expires: 180 Sec.

Cache 4:
HIghway: I94

Direction: North
Expires: 180 Sec.

W
eb

 S
er

vi
ce

I90 and East
I90 and West

I94 and North

I94 and South
I94 and North

TE
AM
FL
Y

Team-Fly®

Data Caching

7

In the above figure, the Web Service is getting five calls with four different argument combinations. If
we look at the output cache memory we have four different outputs stored in cache based on the four
different combinations of the Web Service arguments. Each of these output cache storages will be
cached for 180 seconds. Within the three-minute caching period, if a new request comes with the same
Web Service argument combination, then the output will be returned from the cache. If that particular
argument combination didn't have an output cache then the Web Service request will be processed and
the result will be sent back to the client. At the same time, the generated Web Service output will be
cached for three minutes in the output cache memory.

When using output caching in a web farm environment, the output cache only applies to the server
where it was created. This cache will not affect the cache state of the other servers on your web farm.

Potential Pitfalls of Output Caching

Since the output cache is based on the variation of incoming arguments to the WebMethod, you should
be very careful when planning such implementations. Let's say, if your Web Service argument values
can vary from 1000 to 10000 then you'll end up creating between 1000 and 10000 cache storages of
your Web Service output based on the argument variations and this could be a performance bottleneck
for the Web Service. You should also note that when using in-memory caching the server needs lots and
lots of memory.

So before planning for output caching implementation, find out how many number of parameter
variations are possible for the Web Services and find out how many cache items will be created based
on that. If you think the server hardware can handle the number of cache items then the output caching
Web Service implementation will be ok. But this raises a new problem.

For example if our Web Service is based on the ItemCode parameter and we have item codes from
Itm1 to Itm10000 in the database. If the Web Service receives the item codes – whether they are in
the database or not – it will create an output cache container for the item code. A Web Service client
could bring the Web Service down by sending different types of items codes to the WebMethod, and
end up consuming all the memory in the server. Ultimately this could become something like a denial
of service attack for the Web Service. There is no way to control this kind of attack. The best way to
handle this, if the Web Service is a secured Web Service, is by denying access to the web client, if you
know the IP address of the client. For more information about security read Chapters 13 and 14.

Data Caching
The output caching is declarative, in the sense we just declare the output caching duration and the Web
Services takes care of caching output of the Web Service for the different variations of the input
parameters. It also takes care of the expiration and recreation of the cache item. There is not coding
here and we can't manipulate the caching via code.

On the other hand, data caching is explicit and purely manageable from the code. The code controls
what kind of data gets cached into the cache memory pool. Data caching provides more control over
caching like how the cache will be created and were it will be stored and when it will expire. Our code
can remove the cache item from the memory when needed.

Chapter 12

8

Using the Application Object for Caching
Like ASP.NET applications, Web Services can have access to both the Application and Session objects.

The Application object is global to the web application (In the web farm scenario it global to the web
application on the current server) and every piece of code in the application has access it. On the other
hand the Session variable can only be accessed by the code if the WebMethod enables the
SessionState attribute.

Those of us with a background in ASP can remember the use of "Application" and "Session"
objects as cache containers to store frequently used data in our ASP applications. In the same way, we
can use the Application object to cache some frequently used data for Web Services.

We can also use the Session object to cache some user specific data. The Session object can only be
used if the Web Service uses the personalization for the Web Services and session state is enabled.
Otherwise we'll end up caching the same duplicate data for each and every user for the Web Service.
For more information about the session state, read Chapter 10 Managing State.

In ASP we couldn't store objects written in VB6 in the application scope due to the threading
(apartment model multithreading) and the serialization/marshalling limitations imposed by VB6.
The only objects that were eligible to be stored in the application scope were free threaded or "Both"
threaded objects. With VB.NET all the components are by default free threaded and we can use
these components in the application scope without any performance problems.

Application-scope variables can be used to store both non-structured (or scalar) data such as a number
or a string and structured data (as an object reference) such as an XML document. Let's see an example
of this. Let's say we want to write a Web Service that exposes the entire range of product categories
back to our clients. Our clients will call this Web Service to get the updated range of product categories
for their web sites. We're going to expose a "GetProductCategories" WebMethod and this will read
the famous Northwind SQL Server database and return all the categories back to the client in an
ADO.NET DataSet.

Here is the code for ApplicationExample1.asmx:

<%@ WebService Language="C#" Class="ApplicationExample1" %>

using System;
using System.Data;
using System.Data.SqlClient;
using System.Web.Services;

public class ApplicationExample1 : WebService{

 //*
 //* Store some data in the application object
 //*
 [WebMethod]
 public DataSet GetProductCategories() {
 //If the application variable is not set then
 //call the SetApplicationData() function to
 //add the Category DataSet to the
 //application variable
 if (Application["CategoriesDataSet"] == null) {

Data Caching

9

 SetApplicationData();
 }

 //Return the DataSet back to the client
 return (DataSet)Application["CategoriesDataSet"];
 }

 private bool SetApplicationData() {
 //Build the Database connection string
 string ConnStr = "server=localhost;uid=sa;pwd=;database=Northwind";

 //Create a new connection object
 SqlConnection SQLConn = new SqlConnection(ConnStr);

 //Create a new SQL Data Adapter object
 SqlDataAdapter SQLAdp = new SqlDataAdapter("SELECT CategoryID, CategoryName, "
 + "Description FROM Categories",
SQLConn);

 //Create a new Dataset object
 DataSet SQLDS = new DataSet();

 //Fill the Dataset object using the SQL Data Adapter object
 SQLAdp.Fill(SQLDS, "Category");

 //UnLock the application
 Application.Lock();

 //Store the DataSet in the Application memory
 Application["CategoriesDataSet"] = SQLDS;

 //UnLock the application
 Application.UnLock();

 //return true back to the calling function
 return true;
 }
}

In the WebMethod we're checking if the Application object holds a valid DataSet object in the
CategoriesDataSet variable. If not, we're calling the SetApplicationData method to add the data
to the application variable.

 if (Application["CategoriesDataSet"] == null) {
 SetApplicationData();
 }

In the SetApplicationData method we're opening a connection to the SQL Server and creating a
SQLDataAdapter object to read all the categories from the Categories table in the Northwind database.

//Build the Database connection string
string ConnStr = "server=localhost;uid=sa;pwd=;database=Northwind";

//Create a new connection object
SqlConnection SQLConn = new SqlConnection(ConnStr);

//Create a new SQL Data Adapter object
SqlDataAdapter SQLAdp = new SqlDataAdapter("SELECT CategoryID, CategoryName, "
 + "Description FROM Categories", SQLConn);

Chapter 12

10

We then declare a new DataSet object and fill it with the results from the SQLDataAdapter object.
Then we lock the application, assigning the DataSet object to the Application object and unlocking
the Application object. Since the application variables are global and each line of code in the
application has access to these variables, there is a chance that more than one client request could try to
modify the same application variable at the same time. This would raise the concurrency issue and so to
avoid it we're using the lock and unlock statements. We then return a true flag back to the
GetProductCategories method.

//Create a new Dataset object
DataSet SQLDS = new DataSet();

//Fill the Dataset object using the SQL Data Adapter object
SQLAdp.Fill(SQLDS, "Category");

//UnLock the application
Application.Lock();

//Store the DataSet in the Application memory
Application["CategoriesDataSet"] = SQLDS;

//UnLock the application
Application.UnLock();

//return true back to the calling function
return true;

Now let's build a proxy for the above Web Service and deploy it in the bin folder. See Chapter 3 for
more details on building a Web Service Proxy class. The following file,
ApplicationExample1Build.bat, can be found in the bin folder of the code download and should
be run from the command line. You may need to alter the path of to the WSDL file according to where
you have installed the code on your server. Please note that the line breaks in the following commands
are only for the sake of readability:

WSDL /l:CS /n:AppExpNamespace /out:ApplicationExample1.cs
http://localhost/ProWebServices/CS/ApplicationExample1.asmx?WSDL

CSC /r:system.dll /r:System.Web.dll /r:System.Xml.dll /r:System.Web.Services.dll
/r:System.Data.dll /t:library /out:ApplicationExample1.dll ApplicationExample1.CS

Finally let's build a web client for the Web Service and access it. The following code is
ApplicationExample1Client.aspx in the download:

<%@ Page Language="C#" Debug="true" %>
<%@ Import Namespace="AppExpNamespace" %>
<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.SqlClient" %>
<html>
<script language="CS" runat="server">
 void Page_Load(object src, EventArgs e) {
 AppExpNamespace.ApplicationExample1 objWS = new
AppExpNamespace.ApplicationExample1();
 try {
 DataSet objDS = objWS.GetProductCategories();
 AppCacheDG.DataSource = objDS.Tables["Category"].DefaultView;
 AppCacheDG.DataBind();

Data Caching

11

 }
 catch (Exception Ex){
 Msg.Text = Ex.ToString();
 }
 }
</script>
<body style="font: 10pt verdana">
 <h3>DataSet Cached on Application Object</h3>
 <form runat="server">
 <asp:DataGrid id="AppCacheDG" runat="server"
 BackColor="#FFFFFF"
 BorderColor="black"
 ShowFooter="False"
 CellPadding=3
 CellSpacing="0"
 Font-Name="Verdana"
 Font-Size="8pt"
 HeaderStyle-BackColor="Gray"
 EnableViewState="false">
 <HeaderStyle ForeColor="#FFFFFF"/>
 <AlternatingItemStyle BackColor="Silver"/>
 </asp:DataGrid>

<asp:Label id="Msg" runat="server" />
 </form>
</body>
</html>

If we navigate to this file in our browser we should see the following output:

Everything works fine so far. However, the categories stored in the database table could change, and
with the current implementation of the Web Service, there is no way of knowing if any of the categories
in the database has changed recently. One way of doing this is to create a time-based expiration for the
application cache and to refresh the application cache after the time has expired. For example, we can
refresh the categories application variable every ten minutes to make sure the categories we are
outputting reflect the change in the categories table.

Chapter 12

12

To create a time-based expiration scheme, we have to add one more application variable and check the
variable every time we access the WebMethod as in the following code, ApplicationExample2.asmx:

<%@ WebService Language="C#" Class="ApplicationExample2" %>

using System;
using System.Data;
using System.Data.SqlClient;
using System.Web.Services;

public class ApplicationExample2 : WebService{

 //*
 //* Store some data in the application object
 //*
 [WebMethod]
 public DataSet GetProductCategories() {
 //If the application variable is not set then
 //call the GetProductCategories() function to
 //add the Category DataSet to the
 //application variable
 if (Application["CategoriesDataSet"] == null) {
 SetApplicationData();
 }
 else {
 //If the datetime stored in the application variable + 10 minutes
 //is greater than the current server time then refresh the DataSet
 //store in the application object.
 if (DateTime.Compare(((DateTime)Application["TimeStamp"]).AddMinutes(10),
DateTime.Now) < 0)
 SetApplicationData();
 }

 //Return the DataSet back to the client
 return (DataSet)Application["CategoriesDataSet"];
 }

 private bool SetApplicationData() {
 //Build the Database connection string
 string ConnStr = "server=localhost;uid=sa;pwd=;database=Northwind";

 //Create a new connection object
 SqlConnection SQLConn = new SqlConnection(ConnStr);

 //Create a new SQL Data Adapter object
 SqlDataAdapter SQLAdp = new SqlDataAdapter("SELECT CategoryID, CategoryName,
Description FROM Categories", SQLConn);

 //Create a new Dataset object
 DataSet SQLDS = new DataSet();

 //Fill the Dataset object using the SQL Data Adapter object
 SQLAdp.Fill(SQLDS, "Category");

 //UnLock the application
 Application.Lock();

 //Store the DataSet in the Application memory
 Application["CategoriesDataSet"] = SQLDS;

Data Caching

13

 //Store the timestamp of the application

 Application["TimeStamp"] = DateTime.Now;

 //UnLock the application

 Application.UnLock();

 //return true back to the calling function

 return true;

 }

}

In this code example, we've added one more application variable called "TimeStamp" that stores the
timestamp value of the cache time in the "SetApplicationData" method.

 //Store the timestamp of the application
 Application["TimeStamp"] = DateTime.Now;

We've added one more condition in the WebMethod, which checks if the timestamp stored in the
database, plus ten minutes, is greater than the current time. If the time is greater, then calling the
SetApplicationData method will refresh the DataSet stored in the Application object. If we
build an ASP.NET client for the Web Service as we did before and view it in the browser, we can see
that we get exactly the same output:

Everything is fine so far. Now let's open the Northwind database and insert a new row to the Categories
table using SQL Server Enterprise Manager, with "Frozen Foods" as the CategoryName and
"Frozen food items" as the Description. If we now refresh the ASP.NET web client after ten
minutes we will see the newly inserted category in the DataGrid.

Chapter 12

14

This time-based checking ensures we can only view refreshed data every ten minutes. There is,
however, a pitfall to the above approach. If, say, the Categories table changes within the ten minutes
and if our Web Service serves 300 requests without refreshing the data then all 300 requests will receive
inconsistent data.

Using the Cache Object for Caching
The .NET Framework provides a Cache class in the System.Web.Caching namespace. An instance of
the Cache class is created per application domain and the Cache class instance is available to the Web
Service via the Context property of the WebService class. The Cache object provides easy-to-use
methods to cache expensive data using key/value pairs and to retrieve it later using the key.

The Cache object is functionally equivalent to the Application object. However, the Cache object
provides much more flexibility in manipulating the cached data.

❑ The Cache object provides options to expire the cached content based on a timeframe. The
expiration time can be an absolute time such as a specific date/time combination or a sliding
expiration, such as adding a specified number of minutes, hours or days to the current
DateTime and expiring the content based on the timeframe. When a request comes in
between the time the item is cached and the time it expires, then the sliding timeframe will be
reset again. This is also possible with the Application object, but we have to write some
code to validate the timestamp. On the other hand the Cache object provides built-in support
for timeframe-based cache expiration.

❑ The Cache object provides options to expire the cached content based on a dependency such
as a file or key combination. For example, if your Web Service depends on an XML file data
feed and you want to refresh all the subsequent Web Service requests immediately after the
XML file is changed, then file-based dependency caching is the way to go. If, however, you
want to change the caching based on the key supplied to the Web Service then key-based
dependency caching is the way to go.

Data Caching

15

❑ The Cache object also allows us to set priorities to cached items, and, based on the priority of
the cached item, that item will stay in or be removed from the memory in the event of there
being insufficient memory on the server.

❑ The Cache object automatically removes unused cached items from the memory.

❑ The Cache object also allows us to set a callback function when an item is removed from the
cache memory for any reason.

Caching With the Cache Object
In its simplest form, we can use the Cache object as we used the Application object previously. We
just call the Cache object's constructor with a key name and set the key to the value that we want to
cache. For example, if we modify the previous application cache code, we get the following,
CacheExample1.asmx:

Before seeing an example let's discuss about the Context property of the WebService class. The
Context property provides access to the HttpContext class. We need to use the Context
property to access the Cache object, since we can't directly create an object type of the Cache class,
and an instance of the Cache class is created for each application domain.

<%@ WebService Language="C#" Class="CacheExample1" %>

using System;
using System.Data;
using System.Data.SqlClient;
using System.Web.Services;
using System.Web.Caching;

public class CacheExample1 : WebService{

 //*
 //* Store some data in the application object
 //*
 [WebMethod]
 public DataSet GetProductCategories() {
 //If the cache variable is not set then
 //call the SetCacheData() function to
 //add the Category DataSet to the
 //cache variable

 if (Context.Cache["CategoriesDataSet"] == null) {
 SetCacheData();
 }

 //Return the DataSet back to the client
 return (DataSet)Context.Cache["CategoriesDataSet"];
 }

 private bool SetCacheData() {
 //Build the Database connection string
 string ConnStr = "server=localhost;uid=sa;pwd=;database=Northwind";

Chapter 12

16

 //Create a new connection object
 SqlConnection SQLConn = new SqlConnection(ConnStr);

 //Create a new SQL Data Adapter object
 SqlDataAdapter SQLAdp = new SqlDataAdapter("SELECT CategoryID, CategoryName,
Description FROM Categories", SQLConn);

 //Create a new Dataset object
 DataSet SQLDS = new DataSet();

 //Fill the Dataset object using the SQL Data Adapter object
 SQLAdp.Fill(SQLDS, "Category");

 //Store the DataSet in the Cache object
 Context.Cache.Insert("CategoriesDataSet",SQLDS);

 //return true back to the calling function
 return true;
 }
}

As you can see the changes we've made are only very simple. We've changed the class name
(CacheExample1) to reflect what we're doing. We've changed the method name from
"SetApplicationData" to "SetCacheData". Then we're adding the dataset SQLDS using the
Context.Cache with the key "CategoriesDataSet".

 //Store the DataSet in the Cache object
 Context.Cache["CategoriesDataSet"] = SQLDS;

You will also notice that we're not using the lock and unlock methods when we're
writing to the Cache object. This is because the Cache object handles the locks
internally. If more than one thread tries to write to the same Cache object then the
first process will win and acquire the lock.

Reading Cached Items in the Cache Object
The Cache object itself provides a collection to read all the items in the cached objects. This will be
useful if you want to see what is in the cache. Let's write a simple Web Service that lists what is in the
Cache object's memory pool, CacheExample1a.asmx:

<%@ WebService Language="C#" Class="CacheExample1a" %>

using System;
using System.Collections;
using System.Web.Services;
using System.Web.Caching;

public class CacheExample1a : WebService{
 [WebMethod]
 public ArrayList GetCacheList(bool blnShowSystem) {

TE
AM
FL
Y

Team-Fly®

Data Caching

17

 //ArrayList variable to read all the Cache items
 ArrayList AryLst = new ArrayList();
 string StrKey = "",strName="";

 try {

 //Loop through the Cache collection
 foreach (Object objCheItem in Context.Cache) {

 strName = objCheItem.ToString();
 AryLst.Add(strName);
 //if(strName.Substring(0, 7) != "System.")
 //{
 //AryLst.Add(Context.Cache[strName].ToString());
 //}
 }
 //Loop through the Cache collection
 /*foreach (Object objCheItem in Context.Cache) {
 //If Show System Cache Object
 if (blnShowSystem = true)
 AryLst.Add((Cache)objCheItem.Key);
 else {
 //Get the Cache Key
 StrKey = objCheItem.Key.ToString();

 //Ignore all the cache items with key as "System."
 if (StrKey.Length > 7 && StrKey.Substring(0, 7) != "System.") {
 //If the Cache item Key length is more than 19
 if (StrKey.Length > 19) {
 //Ignore all the cache items with the key ISAPIWorkerRequest.
 if (StrKey.Substring(0, 19) != "ISAPIWorkerRequest.")
 (context.cache)AryLst.Add(StrKey);
 }
 else
 AryLst.Add(StrKey);
 }
 }
 }*/
 }
 catch (Exception Ex)
 {
 AryLst.Add(Ex.ToString());
 }

 //Return the DataSet back to the client
 return (ArrayList)AryLst;
 }
}

We have here a very simple Web Service that exposes a single WebMethod GetCacheList. The
GetCacheList WebMethod returns an ArrayList with all the cache keys in it. The ASP.NET runtime
uses the Cache object to cache ASP.NET-specific information, so we're giving an option for the clients
to filter the System Cache items using the Boolean argument blnShowSystem variable. The System
Cache items usually start with "System." or "ISAPIWorkerRequest." and we're excluding such
entries when the "blnShowSystem" variable is set to false.

Chapter 12

18

Here is how the output of the Web Service looks when we input each of the two arguments in turn,
false being the window on the left, true on the right:

Time-Based Cache Expiration
The Cache object exposes Add and Insert methods to add items to the Cache object. The Add
method is available in one flavor while the Insert method is overridden multiple times and both do
the same thing. The Cache object provides two ways to implement time-based cache expiration:
absolute expiration and sliding expiration. Absolute expiration expires the cache content (the object
associated with the key is removed from the cache) on a specific date and time. Sliding expiration
expires the cache content a specified number of minutes, hours or days after the time of the last request.

We have already implemented time-based caching with the Application object. In order to achieve
this functionality we wrote code to timestamp the cache and we checked the cached time for every
request. With the Cache object time-based cache expiration is very easy. Here we'll use one of the
overrides of the Insert method for caching:

Syntax

Context.Cache.Insert(Key, Value, Dependencies, Absolute Expiration,
 Sliding Expiration)

The first two arguments, Key and Value, are the usual key/value pair to cache the content. Don't worry
about the third parameter Dependencies right now; we'll cover it later in this chapter. The fourth and
the fifth arguments of the Insert method provide the time-based caching facility.

Data Caching

19

Absolute Expiration

Let's see a simple example for this, CacheExample2.asmx:

<%@ WebService Language="C#" Class="CacheExample2" %>

using System;
using System.Data;
using System.Data.SqlClient;
using System.Web.Services;
using System.Web.Caching;

public class CacheExample2 : WebService{

 //*
 //* Store the DataSet in the Cache object
 //*
 [WebMethod]
 public DataSet GetProductCategories() {
 //If the cache variable is not set then
 //call the SetCacheData() function to
 //add the Category DataSet to the
 //cache variable

 if (Context.Cache["CategoriesDataSet"] == null) {
 SetCacheData();
 }

 //Return the DataSet back to the client
 return (DataSet)Context.Cache["CategoriesDataSet"];
 }

 private bool SetCacheData() {
 //Build the Database connection string
 string ConnStr = "server=localhost;uid=sa;pwd=;database=Northwind";

 //Create a new connection object
 SqlConnection SQLConn = new SqlConnection(ConnStr);

 //Create a new SQL Data Adapter object
 SqlDataAdapter SQLAdp = new SqlDataAdapter("SELECT CategoryID, CategoryName,
 Description FROM Categories", SQLConn);

 //Create a new Dataset object
 DataSet SQLDS = new DataSet();

 //Fill the Dataset object using the SQL Data Adapter object
 SQLAdp.Fill(SQLDS, "Category");

 //Store the DataSet in the Cache object for 10 minutes
 Context.Cache.Insert("CategoriesDataSet", SQLDS, null,
 DateTime.Now.AddMinutes(10), TimeSpan.Zero);

 //return true back to the calling function
 return true;
 }
}

Chapter 12

20

In this code example we're just changing the class name and the way we're adding the dataset to the Cache
object. The key and value pair remains the same. We've passing "Nothing" ("null" in C#) to the third
argument Dependencies, since this cache is not dependant on anything other than time. For the fourth
argument, we're adding ten minutes to the current date time and passing it. This will make sure the cache will
expire in ten minutes from the current time. The fifth argument is set to zero (since the last parameter is
expected as an object type of TimeSpan) meaning we're not using any sliding expiration for this cache. We
can also set NoSlidingExpiration instead of Zero for the last parameter.

//Store the DataSet in the Cache object for 10 minutes

Context.Cache.Insert("CategoriesDataSet", SQLDS, null,

 DateTime.Now.AddMinutes(10), TimeSpan.Zero);

So the cache will expire ten minutes after it was inserted into the Cache object.

Sliding Expiration

Sliding expiration is useful if you want to cache the content as long as there is demand for it. For
example we may want to cache some data while there is still demand for it, such as a summary of a
sports score for a sports Web Service. When we are using sliding expiration, the expiration time for the
cached item will be reset to the specified time each time it is requested. For example, if we've specified
a sliding expiration of ten minutes and if there is a request for the cached item at the ninth minute then
the item will be cached for another ten minutes from the time it was last accessed. We have converted
the above example to use sliding expiration, see CachingExample3.asmx in the download.

In this code example we've just changed the class name and used the sliding expiration technique to
expire the data inserted in the Cache object. To disable absolute expiration we're passing the
Cache.NoAbsoluteExpiration field of the Cache class. Then for the sliding expiration argument
we're specifying the time span as ten minutes:

//Store the DataSet in the Cache object for 10 minutes

Context.Cache.Insert("CategoriesDataSet", SQLDS, null,

 Cache.NoAbsoluteExpiration, TimeSpan.FromMinutes(10));

When we use the Cache.NoAbsoluteExpiration argument, the maximum possible
DateTime value of 12/31/9999 11:59:59 PM will be used, which is equivalent to
DateTime.MaxValue.

Dependency-Based Cache Expiration
Dependency caching is very good if the cached content depends on an external resource such as an OS
file or a cache item or time. Let's take the traffic Web Service example that we've seen previously. If the
traffic Web Service depends on an XML file feed that we get from the traffic information provider every
three minutes then we may want to refresh the cache in the Web Service as soon as we've received a
new file. In this kind of scenario, file-based dependency caching is very useful.

Let's see an example for file-based dependency caching. Here we have an abridged version of the XML
file we are going to use, TrafficFeed.xml.

Data Caching

21

<?xml version="1.0"?>
<TravelTimes>
 <TravelInfo>
 <Highway>Kennedy</Highway>
 <Direction>East</Direction>
 <From>O'Hare Airport</From>
 <To>Loop</To>
 <TravelTime>62 (mins)</TravelTime>
 </TravelInfo>

 ...

 <TravelInfo>
 <Highway>Edens</Highway>
 <Direction>North</Direction>
 <From>Deerfield Rd</From>
 <To>Loop</To>
 <TravelTime>73 (mins)</TravelTime>
 </TravelInfo>
 </TravelTimes>

Now we need a Web Service that consumes the TrafficFeed.xml file. This is CacheExample4.asmx
in the download:

<%@ WebService Language="C#" Class="CacheExample4" %>

using System;
using System.Data;
using System.Web.Services;
using System.Web.Caching;

public class CacheExample4 : WebService{

 //*
 //* Store the Traffic information in the Cache object
 //*
 [WebMethod] public DataSet GetTrafficInfo() {
 //If the Cache variable is not set then call the SetTrafficInfo()
 //function to add the Traffic Info to the Cache variable
 if (Context.Cache["TrafficInfo"] == null) {
 SetTrafficInfo();
 }

 //Return the DataSet back to the client
 return (DataSet)Context.Cache["TrafficInfo"];
 }

 private bool SetTrafficInfo() {
 //Create a new DataSet object
 DataSet objTrafficDS = new DataSet();

 //Read the XML file into the DataSet object using the ReadXml method
 objTrafficDS.ReadXml(Server.MapPath("TrafficFeed.xml"));

 //Create a new dependency object
 CacheDependency objDep = new
 CacheDependency(Server.MapPath("TrafficFeed.xml"));

 //Store the DataSet in the Cache object which depends on the

Chapter 12

22

 //TrafficFeed.xml file
 Context.Cache.Insert("TrafficInfo", objTrafficDS, objDep);

 //return true back to the caller
 return true;
 }
}

In this example we've used a different implementation of the Insert method of the Cache object. In
the SetTrafficInfo method, we're declaring a new DataSet object and we're filling the dataset with
the data from the XML file (TrafficFeed.xml).

//Create a new DataSet object
DataSet objTrafficDS = new DataSet();

//Read the XML file into the DataSet object using the ReadXml method
objTrafficDS.ReadXml(Server.MapPath("TrafficFeed.xml"));

Then we're creating an instance of the Dependency class and passing the XML file path to its constructor.

//Create a new dependency object
CacheDependency objDep = new CacheDependency(Server.MapPath("TrafficFeed.xml"));

Then we're using the Insert method of the Cache object to insert the DataSet with the XML dependency object.

//Store the DataSet in the Cache object
//which depends on the TrafficFeed.xml file
Context.Cache.Insert("TrafficInfo", objTrafficDS, objDep);

As before, we need to build a proxy class for the Web Service, compile it as a DLL and place it in the
bin folder. There is a batch file in the bin subfolder, CacheExample4Build.bat, to accomplish this.
Again, you may need to alter the path to the Web Service according to where you have installed it on
your server.

Next, we need to build a simple ASP.NET client, CacheExample4Client.aspx, and access the
Web Service.

<%@ Page Language="CS" Debug="true" %>
<%@ Import Namespace="CacheExp4Namespace" %>
<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.SqlClient" %>
<html>
<title>Caching Client</title>
<script language="CS" runat="server">
 void Page_Load(object src, EventArgs e) {
 CacheExp4Namespace.CacheExample4 objWS = new
CacheExp4Namespace.CacheExample4();

 try{
 DataSet objDS = objWS.GetTrafficInfo();
 AppCacheDG.DataSource = objDS.Tables(0).DefaultView;
 AppCacheDG.DataBind();
 }

Data Caching

23

 catch (Exception Ex)
 {
 Msg.Text = Ex.ToString();
 }
 }
</script>
<body style="font: 10pt verdana">
 <h3>DataSet Cached on Cache Object</h3>
 <form runat="server">
 <asp:DataGrid id="AppCacheDG" runat="server"
 BackColor="#FFFFFF"
 BorderColor="black"
 ShowFooter="False"
 CellPadding=3
 CellSpacing="0"
 Font-Name="Verdana"
 Font-Size="8pt"
 HeaderStyle-BackColor="Gray"
 EnableViewState="false">
 <HeaderStyle ForeColor="#FFFFFF"/>
 <AlternatingItemStyle BackColor="Silver"/>
 </asp:DataGrid>

<asp:Label id="Msg" runat="server" />
 </form>
</body>
</html>

Here is how the output of the Web Service looks:

Let's open the TrafficFeed.XML file and change the travel time of the last record from 73 minutes to
35 minutes.

Chapter 12

24

 <TravelInfo>
 <Highway>Edens</Highway>
 <Direction>North</Direction>
 <From>Deerfield Rd</From>
 <To>Loop</To>
 <TravelTime>35 (mins)</TravelTime>
 </TravelInfo>
</TravelTimes>

Now refresh the Web Service client.

In the previous traffic Web Service example, we used the output cache to cache the output of the Web
Service for three minutes. There are a few pitfalls of using output caching in this example, which is
based on an XML file. In the output caching example, we cached the output for three minutes
regardless of whether the data in the XML file has changed or not. If the traffic data in the Web Service
did change during the three minutes it is cached, the users who initiate requests during those three
minutes will not see the updated traffic information until the output cache is expired and a new output
cache has been created. However, if we use file-based dependency caching then our users will always
get up-to-date traffic information and don't have to worry about refreshing the Web Service every now
and then to make sure they have the latest information.

Directory Dependency Cache
Cache objects also support a directory-level cache dependency. We can change the above example to
depend on a directory-level cache dependency instead of on a file.

// Create a new dependency object for a directory
CacheDependency objDep = new CacheDependency(Server.MapPath("."));

Data Caching

25

Multiple Files Dependency Cache
The Cache object also allows using multiple file-based dependency caching. If we're caching information
based on more than one file then multiple dependency caching is the perfect fit in this scenario.

Let's expand out previous example to use multiple files dependency caching. Let's expose one more
WebMethod from the same Web Service for weather information that depends on the
WeatherFeed.XML file. Let's assume the traffic feed data will also change whenever the weather feed
data arrives. Now we have two dependency files for the TrafficInfo cache item and the cache should
be refreshed if neither one of the XML files change. Here is an abridged version of the weather
information XML file, WeatherFeed.XML.

<?xml version="1.0" ?>
<WeatherInfo>
 <WeekDay>
 <Day>Sunday</Day>
 <MaxTemp>81 F</MaxTemp>
 <MinTemp>63 F</MinTemp>
 <Weather>A secondary surge of cooler air arrives on brisk northeast winds.
Abundant sunshine prevails.</Weather>
 </WeekDay>

 ...

 <WeekDay>
 <Day>Saturday</Day>
 <MaxTemp>80 F</MaxTemp>
 <MinTemp>60 F</MinTemp>
 <Weather>Bright sunshine and comfortable humidities start a pleasant
weekend.</Weather>
 </WeekDay>
</WeatherInfo>

Now we create the Web Service to consume the XML files, CacheExample5.asmx.

<%@ WebService Language="C#" Class="CacheExample5" %>

using System;
using System.Data;
using System.Web.Services;
using System.Web.Caching;

public class CacheExample5 : WebService{

 //*
 //* Store the Traffic information in the Cache object
 //*
 [WebMethod] public DataSet GetTrafficInfo() {
 //If the Cache variable is not set then call the SetTrafficInfo()
 //function to add the Traffic Info to the Cache variable
 if (Context.Cache["TrafficInfo"] == null) {
 SetTrafficInfo();
 }

Chapter 12

26

 //Return the DataSet back to the client
 return (DataSet)Context.Cache["TrafficInfo"];
 }

 //*
 //* Store the Weather Information in the Cache object
 //*
 [WebMethod] public DataSet GetWeatherInfo() {
 //If the Cache variable is not set then call the SetWeatherInfo()
 //function to add the Weather Info to the Cache variable
 if (Context.Cache["WeatherInfo"] == null) {
 SetWeatherInfo();
 }

 //Return the DataSet back to the client
 return (DataSet)Context.Cache["WeatherInfo"];
 }

 private bool SetTrafficInfo() {
 //Create a string array and load the two XML
 //file paths into it.
 String[] strFilesArray = new String[2];
 strFilesArray[0] = Server.MapPath("TrafficFeed.xml");
 strFilesArray[1] = Server.MapPath("WeatherFeed.xml");

 //Create a new DataSet object
 DataSet objTrafficDS = new DataSet();

 //Read the XML file into the DataSet object using the ReadXml method
 objTrafficDS.ReadXml(Server.MapPath("TrafficFeed.xml"));

 //Create a new dependency object
 CacheDependency objDep = new
 CacheDependency(Server.MapPath("TrafficFeed.xml"));

 //Store the DataSet in the Cache object which depends on the TrafficFeed.xml
file
 Context.Cache.Insert("TrafficInfo", objTrafficDS, objDep);

 //return true back to the caller
 return true;
 }

 private bool SetWeatherInfo() {
 //Create a new DataSet object
 DataSet objDS = new DataSet();

 //Read the XML file into the DataSet object using the ReadXml method
 objDS.ReadXml(Server.MapPath("WeatherFeed.xml"));

 //Create a new dependency object using the XML file path
 CacheDependency objDep = new
 CacheDependency(Server.MapPath("WeatherFeed.xml"));

TE
AM
FL
Y

Team-Fly®

Data Caching

27

 //Store the DataSet in the Cache object which depends on the
 //WeatherFeed.xml file
 Context.Cache.Insert("WeatherInfo", objDS, objDep);

 //return true back to the caller
 return true;
 }
}

This code is very similar to the previous example, but we've changed the class name (CacheExample5)
of the Web Service and added a new WebMethod (GetWeatherInfo) and a private method
(SetWeatherInfo).

We've also changed the SetTrafficInfo method, to depend on more than one file. In the
SetTrafficInfo method we've created a string array with two elements and we've stored the XML
files paths in the array elements:

C#

//Create a string array and load the two XML
//file paths into it.
String[] strFilesArray = new String[2];
strFilesArray[0] = Server.MapPath("TrafficFeed.xml");
strFilesArray[1] = Server.MapPath("WeatherFeed.xml");

VB.NET

'Create a string array and load the two XML
'file paths into it.
Dim strFilesArray(1) as String
strFilesArray(0) = Server.MapPath("TrafficFeed.xml")
strFilesArray(1) = Server.MapPath("WeatherFeed.xml")

It is important to note that there is a difference in the way VB.NET and C# arrays
work. You will notice that in VB.NET code, we've declared a string array of 1, which
would create two elements of 0 and 1 in the string array. But in C# we've declared a
string array of 2, which would create two elements of 0 and 1 in the string array and
accessing the array element 2 will throw an IndexOutOfRange exception.

The DataSet object is created in the same way as before and we read the XML file into the DataSet using
the ReadXml method. Then we pass the string array to the CacheDependency object's constructor.

//Create a new dependency object
CacheDependency objDep = new
 CacheDependency(strFilesArray));

This dependency object will make the cache depend on the two XML files listed in the string array.
Then we've inserted the DataSet into the cache object as usual.

Chapter 12

28

We now create a proxy for the Web Service using the batch file CacheExample5Build.bat in the
bin folder as before. Now we can create a client to consume the Web Service,
CacheExample5Client.aspx:

<%@ Page Language="CS" Debug="true" %>
<%@ Import Namespace="CacheExp5Namespace" %>
<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.SqlClient" %>
<html>
<script language="CS" runat="server">
 void Page_Load(object src, EventArgs e) {
 CacheExp5Namespace.CacheExample5 objWS = new
 CacheExp5Namespace.CacheExample5();

 try{
 DataSet objDS = objWS.GetTrafficInfo;
 AppCacheDG.DataSource = objDS.Tables(0).DefaultView;
 AppCacheDG.DataBind();

 DataSet objDS1 = objWS.GetWeatherInfo;
 AppCacheDG1.DataSource = objDS1.Tables(0).DefaultView;
 AppCacheDG1.DataBind();
 }
 catch (Exception Ex) {
 Msg.Text = Ex.ToString();
 }
 }
</script>
<body style="font: 10pt verdana">
<form runat="server" ID="Form1">
 Traffic Information
 <hr color="#000000">
 <asp:DataGrid id="AppCacheDG" runat="server" BackColor="#FFFFFF"
 BorderColor="black" ShowFooter="False" CellPadding="3"
 CellSpacing="0" Font-Name="Verdana" Font-Size="8pt"
 HeaderStyle-BackColor="Gray" EnableViewState="false">
 <HEADERSTYLE ForeColor="#FFFFFF" />
 <ALTERNATINGITEMSTYLE BackColor="Silver" />
 </asp:DataGrid>

 Weather Forecast
 <hr color="#000000">
 <asp:DataGrid id="AppCacheDG1" runat="server" BackColor="#FFFFFF"
 BorderColor="black" ShowFooter="False" CellPadding="3"
 CellSpacing="0" Font-Name="Verdana" Font-Size="8pt"
 HeaderStyle-BackColor="Gray" EnableViewState="false">
 <HEADERSTYLE ForeColor="#FFFFFF" />
 <ALTERNATINGITEMSTYLE BackColor="Silver" />
 </asp:DataGrid>

 <asp:Label id="Msg" runat="server" />
</form>
</body>
</html>

Data Caching

29

We've added two DataGrids and we're populating the first DataGrid with the traffic information and the
second with weather information.

If we change anything in the TrafficFeed.xml file the TrafficInfo cache item will expire and our
code will rebuild the cache again. If we change the WeatherFeed.xml file then both the cache items
will expire and our code will rebuild them.

File-Based and Time-Based Dependency Cache
We can also use both the time-based dependency and the file-based dependency at the same time. The
time-based dependency expiration can be either absolute expiration or sliding expiration. Just change
the Cache.Insert code in the previous example to add absolute time based expiration
(CacheExample6.asmx in the download):

//Make the cache object depend on both the TrafficFeed.xml,
//WeatherFeed.xml and time. The cache will be refreshed whenever any
//of the XML files change or every 10 minutes.
Context.Cache.Insert("CategoriesDataSet", objTrafficDS, objDep,
 DateTime.Now.AddMinutes(10), TimeSpan.Zero);

Chapter 12

30

Key-Based Dependency Caching
The Cache object also supports a key-based dependency, meaning one cache item can depend on
another cache item and when the first cache item changes the second cache item will expire. For
example, we could expose a financial information Web Service, and that could have two web methods
to send financial data and financial news. Let's say our Web Service depends on an external source for
the data feed and the external source provides the financial data and news in two separate XML files.
We may want to cache both the XML files and we may want the financial news XML file cache to
depend on the financial data XML cache. This will make sure whenever we're refreshing the financial
data cache item we'll also refresh the financial news cache item. Here are how abridged versions of the
financial data (FinData.xml) and financial news (FinNews.xml) data feed XML files look:

FinData.xml

<?xml version="1.0" ?>
<FinancialData>
 <Exchange>
 <Name>NYSE</Name>
 <AdvancingIssues>1,532</AdvancingIssues>
 <DecliningIssues>1,181</DecliningIssues>
 <UnchangedIssues>261</UnchangedIssues>
 <TotalIssues>2,974</TotalIssues>
 <NewHighs>89</NewHighs>
 <NewLows>20</NewLows>
 <UpVolume>186,857,856</UpVolume>
 <DownVolume>130,259,632</DownVolume>
 <UnchangedVolume>14,090,040</UnchangedVolume>
 <TotalVolume>N/A</TotalVolume>
 </Exchange>

 ...

 <Exchange>
 <Name>Bulletin Board</Name>
 <AdvancingIssues>329</AdvancingIssues>
 <DecliningIssues>440</DecliningIssues>
 <UnchangedIssues>324</UnchangedIssues>
 <TotalIssues>1,093</TotalIssues>
 <NewHighs>13</NewHighs>
 <NewLows>27</NewLows>
 <UpVolume>79,504,000</UpVolume>
 <DownVolume>120,649,296</DownVolume>
 <UnchangedVolume>8,917,700</UnchangedVolume>
 <TotalVolume>N/A</TotalVolume>
 </Exchange>
</FinancialData>

FinNews.xml

<?xml version="1.0"?>
<FinancialNews>
 <HourlyNews>
 <Time>08:00 AM</Time>
 <News>The tone in pre-market trading remains firmly negative with the S&P
futures currently 7.10 points below fair value while the Nasdaq 100 futures are
15.50 points below fair value. This is, however, a slight improvement from earlier
levels. The Cisco downside guidance, lack of visibility and expectation for a more
challenging environment in Europe and Asia have weighed. A subsequent downgrade in

Data Caching

31

 the European telecom sector by Merrill Lynch and a sizeable warning for Emulex
(taking other storage stocks lower) have also pressured.</News>
 </HourlyNews>

 ...

 <HourlyNews>
 <Time>10.00 AM</Time>
 <News>The Dow is still holding on to a negative bias but the Nasdaq has inched
back in positive territory as the headline culprits behind the early session
weakness (CSCO, EMLX) have staged solid recoveries off their early session lows.
The networking and storage stocks have pushed higher with these stocks and
continued strength is being seen among the semiconductor/comm IC stocks. The
Nasdaq has held again near the 2010/2000 support range once again and given the
extent of the recent four day slump, is certainly due for some type of short term
upswing. Volume continues at a modest pace with market internals now mixed. DOT
+0.6%, XOI +0.3%, SOX +1.3%, NYSE Adv/Dec 1376/1173, Nasdaq Adv/Dec
1426/1482</News>
 </HourlyNews>
</FinancialNews>

Let's build the financial Web Service, CacheExample7.asmx:

<%@ WebService Language="C#" Class="CacheExample7" %>

using System;
using System.Data;
using System.Web.Services;
using System.Web.Caching;

public class CacheExample7 : WebService{

 //*
 //* Store the Financial information in the Cache object
 //*
 [WebMethod] public DataSet GetFinancialData() {
 //If the Cache variable is not set then call the SetFinancialInfo()
 //function to add the Financial to the Cache variable
 if (Context.Cache["FinancialData"] == null)
 SetFinancialInfo();

 //Return the DataSet back to the client
 return (DataSet)Context.Cache["FinancialData"];
 }

 //*
 //* Store the Financial News in the Cache object
 //*
 [WebMethod] public DataSet GetFinancialNews() {
 //If the Cache variable is not set then call the SetFinancialInfo()
 //function to add the Financial News in the Cache variable.
 //Check the cache variable "FinancialData" rather than "FinNews"
 //Since the FinNews cache item depends on the FinancialData cache item.
 if (Context.Cache["FinancialData"] == null)
 SetFinancialInfo();

 //Return the DataSet back to the client
 return (DataSet)Context.Cache["FinNews"];
 }

 private bool SetFinancialInfo() {

Chapter 12

32

 //Create a Dataset to store the financial Data
 DataSet objFinData = new DataSet();

 //Read the Financial Data into the Dataset
 objFinData.ReadXml(Server.MapPath("FinData.xml"));

 //Create a Cache item to store the financial Data. This cache
 //entry will establish the dependency realtionship.
 Context.Cache.Insert("FinancialData", objFinData, new
 CacheDependency(Server.MapPath("FinData.xml")));

 //Create a cache item to store the financial news
 //dependencies XML file. We're storing the Cache
 //Key of the Financial Data in the string array
 //to establish the key based dependency
 String[] StrDepKey = new String[1];
 StrDepKey[0] = "FinancialData";

 //Create a Dataset to store the financial News
 DataSet objFinNews = new DataSet();

 //Read the Financial News into the Dataset
 objFinNews.ReadXml(Server.MapPath("FinNews.xml"));

 //Cache the XML document
 Context.Cache.Insert("FinNews", objFinNews, new CacheDependency(null,
 StrDepKey));

 //return true back to the caller
 return true;
 }
}

We've created a Web Service with two WebMethods GetFinancialData and GetFinancialNews.
The WebMethods depend on the XML files fed by an external source. The private method
SetFinancialInfo creates the cache for the Web Service. The SetFinancialInfo method creates
the key-based cache dependency. We're declaring a DataSet object and reading the FinData.Xml file
into it. Then we're inserting the DataSet into the Cache object.

//Create a Dataset to store the financial Data
DataSet objFinData = new DataSet();

//Read the Financial Data into the Dataset
objFinData.ReadXml(Server.MapPath("FinData.xml"));

Then we create a string array and assign the key of the financial data cache (FinancialData) into the
string array. In the previous examples we've assigned the XML file names into the string array to create
the file-based dependency. Instead of assigning the XML file name, we're assigning the cache key name
into the string array and this will create the key-based dependency.

//Create a cache item to store the financial news
//dependencies XML file. We're storing the Cache
//Key of the Financial Data in the string array
//to establish the key based dependency
String[] StrDepKey = new String[1];

StrDepKey[0] = "FinancialData";

Data Caching

33

Next we create a DataSet and read the FinNews.xml file into it. Then we're inserting the DataSet
into the Cache object and specifying the "FinancialData" cache item as a dependency.

//Cache the XML document
Context.Cache.Insert("FinNews", objFinNews, new CacheDependency(null, StrDepKey));

We're creating a new dependency object and passing the Nothing (null in C#) and the string array to
the constructor. The dependency class constructor supports three overloads. The first overload accepts a
filename as a string, the second overload accepts a string array of filenames and the third overload
accepts an array of filenames and cache keys:

//First Overload
public CacheDependency(string filename);

//Second Overload
public CacheDependency(string[] filenames);

//Third Overload
public CacheDependency(string[] filenames, string[] cachekeys);

We're using the third overload to make the FinNews cache item depend on the FinancialData cache
item. If we build the proxy as usual and fire up our browser with the client,
CacheExample7Client.aspx, then we get the following output:

Chapter 12

34

Manually Removing Items from the Cache Object
A cached item can be removed from the Cache object manually using the Remove method of the
Cache object. The Remove method accepts a key as the parameter and removes the cached item from
the Cache object. For example, if we want to remove the cached item CategoriesDataSet, then we
use the following:

//Remove the item CategoriesDataSet from the Cache
Context.Cache.Remove("CategoriesDataSet");

Automatic Cache Expiration
Cached items can also be removed automatically from the Cache object for several reasons:

❑ Reached the expiration time – when the cached item reaches the expiration time set by the
absolute expiration or sliding expiration then the item will be removed from the cache object's
memory pool.

❑ Dependency change – when the dependency resource (XML file or Cache Key, etc.) assigned
to the cached item changes then the item will be removed from the memory pool.

❑ Underused – when the cached item is underused (when the cache item is not utilized
frequently when compared with others) or unused by the Web Service the cache item will be
removed from the memory automatically.

❑ Server is low on memory – when the server is running low on memory the cached item can be
removed from the Cache object.

When the cache items are removed from the Cache object they follow the cache item priority and
cache item priority decay. The namespace System.Web.Caching exposes two enumerators
CacheItemPriority and CacheItemPriorityDecay to support assigning and reading the priority
of the cache item.

Cache Item Priority
When the web server that hosts the Web Service is running low on memory, it'll try to purge the cached
items to reclaim memory. When the purge process occurs the cache items will be removed from the
cache based on their CacheItemPriority setting.

The CacheItemPriority enumeration has the following values.

Enumeration Member Name Description

Default When we don't assign any priority to the cache item on
insertion the default is used and the value for the cache
item priority is Normal.

High The cache items with High priority will be less likely to
be deleted from the cache memory pool.

AboveNormal The cache items with AboveNormal priority will be less
likely to be deleted before deleting the Normal priority
items.

Data Caching

35

Enumeration Member Name Description

Normal The cache items with Normal priority will be
deleted after the BelowNormal and Low priority
items.

BelowNormal The cache items with BelowNormal priority will be
deleted after the Low priority items.

Low The cache items with Low priority will be the first
ones to be deleted to free the system memory.

NotRemovable The cache items with NotRemoveable priority will
not be deleted from the cache object to reclaim
system memory.

When a cache item is less frequently used by the Web Service, the system will try to downgrade the
cache items decay priority and when it reaches a certain level of decay priority the cache item will be
removed from the memory. When the cache item downgrade occurs it is based on the
CacheItemPriorityDecay enumeration values. The following table shows the values for the
CacheItemPriorityDecay enumeration.

Enumeration Member Name Description

Default When we didn't assign any decay priority to the
cache item upon insertion, the default is used and the
value for the cache item priority is Medium.

Slow When accessed infrequently the cache items with
Slow decay priority will be less likely to be removed
from the cache memory pool.

Medium When accessed infrequently the cache items with
Medium decay priority will be less likely to be
deleted before deleting the Fast decay priority
items.

Fast When accessed infrequently the cache items with
Fast priority will be more likely to be removed.

Never When accessed infrequently the cache items with
Never decay priority will not be removed from the
cache object.

Chapter 12

36

The following figure shows the cache object memory pool:

Cache Object Memory Pool

Decay Priority:

Priority: AboveNormal,
Normal (Default),
BelowNormal

Medium (Default)

Cache
Item

Cache
Item

Priority:
Decay Priority:

Not Removable

Never
Cache
Item

Cache
Item

Priority:
Decay Priority:

High
Slow

Cache
Item

Cache
Item

Let's see how we can set the priority of the cache items. We can use one of the overloads of the Insert
method of the Cache object to insert the CacheItemPriority and CacheItemPriorityDecay.The
following file is CacheExample8.asmx in the code download:

<%@ WebService Language="C#" Class="CacheExample8" %>

using System;
using System.Web.Services;
using System.Web.Caching;

public class CacheExample8 : WebService{
 [WebMethod] public string SetCachePriority() {
 if (Context.Cache["PriData"] == null) {
 Context.Cache.Insert("PriData", "Cached Priority Data", null,
 DateTime.Now.AddMinutes(10), TimeSpan.Zero, CacheItemPriority.Low,
 CacheItemPriorityDecay.Fast, null);
 }
 return Context.Cache["PriData"].ToString();
 }
}

We're using the Insert method of the Cache object to insert the data and we're using absolute time-
based expiration without any dependency. We're also setting the CacheItemPriority as Low and
CacheItemPriorityDecay as Fast. This means the cached item can be removed from the cache
memory pool if it is not used frequently.

Context.Cache.Insert("PriData", "Cached Priority Data", null,
 DateTime.Now.AddMinutes(10), TimeSpan.Zero,
 CacheItemPriority.Low, CacheItemPriorityDecay.Fast,
 null);

TE
AM
FL
Y

Team-Fly®

Data Caching

37

We're setting null (nothing in VB.NET) for the last parameter to disable the cache item callback
functionality when the item is removed from the Cache object.

Using Callback Functionality
When an item in the Cache object is removed the Cache object can notify the Web Service by raising
an event back. This callback functionality is implemented through the CacheItemRemovedCallback
delegate available in the System.Web.Caching namespace.

public delegate void CacheItemRemovedCallback(string key,
 object value, CacheItemRemovedReason reason);

The parameter in the CacheItemRemovedCallback event delegate exposes three parameters. The
first two parameters will inform the application about which cache key was removed from the Cache
object and the value the cached item was holding. The third parameter will inform why the cached item
was removed from the memory as a member of the CacheItemRemovedReason enumeration. The
following table shows all the CacheItemRemovedReason enumeration values.

Enumeration Member Name Description

Removed When we use the Remove method to manually remove an item
from the cache or use the Insert method to insert a new value
to an existing cache item this reason will be used.

Expired When the cache item expires this reason will be used.

DependencyChanged When the dependency object changes this reason will be used.

Underused When the cached item is under-used or unused or the system
removed it from the memory to reclaim memory then this
reason will be used.

Callback event functionality can be extremely useful. For example, we might want to log all the cached
items that are removed so that we can later figure out if too many cached items are being removed due
to the Underused reason, so we know that either our caching practice that we're using is ineffective or
our server is running low on memory and may need upgrading.

We can even use the callback event to recreate the cache if it's not removed because of the Underused
reason. If it is Underused then it could be due to the server running low on memory or that there are
no subscribers for this cache item. If Underused is not the reason then we can recreate the cache item
in the callback event so that it will be read by the next Web Service request, rather than it being
recreated in the next Web Service request, so we can avoid the slow response time we would get if we
had to recreate it.

Let's see an example for this. We'll create a simple Web Service, CacheExample9.asmx, which will cache
a string "Cached for Callback removal" in the key CallBack. In the callback event we'll recreate
the cache with the reason why the cache item was removed from the memory and the timestamp.

<%@ WebService Language="C#" Class="CacheExample9" %>

using System;

Chapter 12

38

using System.Web.Services;
using System.Web.Caching;

public class CacheExample9 : WebService{
 //Declare a static Callback handler
 private static CacheItemRemovedCallback OnCacheItemRemove = null;

 //Callback event handler
 public void CacheItemRemovedCallback(string strCacheKey, Object objCacheObject,
 CacheItemRemovedReason RemovalReason) {
 //String value for recreated Cache
 string strCacheValue = "Cached item removed due to the reason = "
 + RemovalReason.ToString() + ". Recreated at "
 + DateTime.Now.ToString();

 //Recreate the Cache item again with the timestamp
 Context.Cache.Insert("CallBack", strCacheValue, null,
 DateTime.Now.AddMinutes(2), TimeSpan.Zero,
 CacheItemPriority.Default, CacheItemPriorityDecay.Default,
 OnCacheItemRemove);
 }

 [WebMethod] public string ImplementCacheCallBack() {
 OnCacheItemRemove = new
 CacheItemRemovedCallback(this.CacheItemRemovedCallback);

 if (Context.Cache["CallBack"] == null) {
 //Create the cache object with out any dependency,
 //with one minute absolute expiration
 //with no sliding expiration
 //with default value for CacheItemPriority and
 //CacheItemPriorityDecay and on the event of the cache
 //object removal call the event handler OnCacheItemRemove
 Context.Cache.Insert("CallBack", "Cached for Callback removal", null,
 DateTime.Now.AddMinutes(1), TimeSpan.Zero,
 CacheItemPriority.Default, CacheItemPriorityDecay.Default,
 OnCacheItemRemove);
 }
 return Context.Cache["CallBack"].ToString();
 }
}

We now have a simple Web Service that implements one WebMethod (ImplementCacheCallBack)
and one public event handling method (CacheItemRemovedCallback). We have declared a class-
level private static (shared in VB.NET) variable of type CacheItemRemovedCallback and we've
initialized it with null (Nothing in VB.NET).

//Declare a static Callback handler
private static CacheItemRemovedCallback OnCacheItemRemove = null;

Then we've declared a public event handler CacheItemRemovedCallback.

Data Caching

39

//Callback event handler
public void CacheItemRemovedCallback(string strCacheKey, Object objCacheObject,
 CacheItemRemovedReason RemovalReason)

Inside the event handler we're recreating the Cache object with the reason for the cache removal and
the timestamp.

//String value for recreated Cache
string strCacheValue = "Cached item removed due to the reason = " +
 RemovalReason.ToString() + ". Recreated at " + DateTime.Now.ToString();

//Recreate the Cache item again with the timestamp
Context.Cache.Insert("CallBack", strCacheValue, null, DateTime.Now.AddMinutes(2),
 TimeSpan.Zero, CacheItemPriority.Default, CacheItemPriorityDecay.Default,
 OnCacheItemRemove);

In the WebMethod we've assigned a new object of the type of the event handler
(CacheItemRemovedCallback) that we've created and pass the address of the event handler to the
constructor using the AddressOf operator. In C# we're simply passing the name of the event handler.
This is the one major difference between the VB.NET and C# code and how they handle delegates
differently.

OnCacheItemRemove = new CacheItemRemovedCallback(this.CacheItemRemovedCallback);

Then we check if the Cache object is missing. If the object is missing then we add the item to the Cache
object using the CallBack event variable as a parameter.

if (Context.Cache["CallBack"] == null) {
 //Create the cache object with out any dependency,
 //with a minute absolute expiration
 //with no sliding expiration
 //with default value for CacheItemPriority and
 //CacheItemPriorityDecay and on the event of the cache
 //object removal call the event handler OnCacheItemRemove
 Context.Cache.Insert("CallBack", "Cached for Callback removal", null,
 DateTime.Now.AddMinutes(1), TimeSpan.Zero, CacheItemPriority.Default,
 CacheItemPriorityDecay.Default, OnCacheItemRemove);
}

The first time the Web Service is executed the WebMethod will create the cache item.

Chapter 12

40

When the cache expires, due to the time or any other reason the cache item will be recreated by the
CacheItemRemovedCallback event handler:

Caching Performance Counters
The Cache object exposes a few performance counters that can be monitored using the Windows
Performance Monitor utility. This utility can be opened in Windows 2000 by doing the following steps:
Start | Run and typing perfmon.exe. Select System Monitor, right click in the right hand pane and
choose Add Counters. All the caching performance counters are available under the ASP.NET
Applications category.

There are two different sets of performance counters, one for the Cache object and the other for output
caching. Here is a list of available performance counters:

Data Caching

41

Performance Counters For Cache Object

Counter Name Description

Cache Total
Entries

Total number of entries stored in the Cache object including internal
objects cached by the .NET Framework and application-specific objects.

Cache Total Hits Total number of requests served from the Cache object.

Cache Total
Misses

Total number of failed cache requests per application.

Cache Total Hit
Ratio

The ratio of requests served and missed from the Cache object

Cache Total
Turnover Rate

The number of inserts and removals from the Cache object per second.

Cache API Entries The total number of entries in the application cache.

Cache API Hits The total number of hits to the Cache object when using the Cache APIs.

Cache API Misses Total number of failed cache requests when using the Cache APIs per
application.

Cache API Hit
Ratio

The ratio of requests served and missed from the Cache object when
using the Cache APIs.

Cache API
Turnover Rate

The number of inserts and removals from the Cache object per second
when using the Cache API's.

Performance Counters For Output Cache

Counter Name Description

Output Cache
Entries

The total number of entries in the output cache memory pool.

Output Cache Hits Total number of requests served from the output cache.

Output Cache
Misses

The number of requests that failed when accessing the output cache per
application.

Output Cache Hit
Ratio

The ratio of total requests served from the output cache.

Output Cache
Turnover Rate

The number of inserts and removals from the output cache per second.
This is very useful to determine how effective our output cache scheme
is. If the turnover is large, then the cache is not being used effectively.

Chapter 12

42

If we select all the cache and output cache counters in the Add Counters window and click on Add then
we get this simple view of the cache counters in the Performance Monitor:

We can also read these performance counters from any .NET application, including from Web Services.
The .NET Framework exposes a few classes in the System.Diagnostics namespace to read the
performance counters.

We're going to build a simple Web Service that uses the PerformanceCounter class in the
System.Diagnostics namespace to read the cache-specific performance counter values for the
instance "__Total__" and we'll return the value in an array of objects. Here is the code,
CachePerformanceCounter.asmx:

<%@ WebService Language="C#" Class="CachePreformanceCounter" %>

using System;
using System.Web.Services;
using System.Diagnostics;

public class CachePerfCntr {
 public string CounterName;
 public string CounterValue;
}

public class CachePreformanceCounter : WebService{

 //*
 //* Get the Performance counter information for the cache object
 //*
 [WebMethod] public CachePerfCntr[] GetCachePreformanceCounters() {
 //Declare an Object array type of CachePerfCntr

Data Caching

43

 CachePerfCntr[] objProf = new CachePerfCntr[10];

 //Declare an object type of PerformanceCounter
 PerformanceCounter objPC = new PerformanceCounter();

 try {
 //Set the Category type as 'ASP.NET Applications'
 objPC.CategoryName = "ASP.NET Applications";

 //Get Performance counter information for Cache Total Entries
 objPC.CounterName = "Cache Total Entries";
 objPC.InstanceName = "__Total__";
 objProf[0] = new CachePerfCntr();
 objProf[0].CounterName = "Cache Total Entries";
 objProf[0].CounterValue = objPC.NextValue().ToString();

 objPC.CounterName = "Cache Total Hits";
 objPC.InstanceName = "__Total__";
 objProf[1] = new CachePerfCntr();
 objProf[1].CounterName = "Cache Total Hits";
 objProf[1].CounterValue = objPC.NextValue().ToString();

 objPC.CounterName = "Cache Total Misses";
 objPC.InstanceName = "__Total__";
 objProf[2] = new CachePerfCntr();
 objProf[2].CounterName = "Cache Total Misses";
 objProf[2].CounterValue = objPC.NextValue().ToString();

 objPC.CounterName = "Cache Total Hit Ratio";
 objPC.InstanceName = "__Total__";
 objProf[3] = new CachePerfCntr();
 objProf[3].CounterName = "Cache Total Hit Ratio";
 objProf[3].CounterValue = objPC.NextValue().ToString();

 objPC.CounterName = "Cache Total Turnover Rate";
 objPC.InstanceName = "__Total__";
 objProf[4] = new CachePerfCntr();
 objProf[4].CounterName = "Cache Total Turnover Rate";
 objProf[4].CounterValue = objPC.NextValue().ToString();

 objPC.CounterName = "Cache API Entries";
 objPC.InstanceName = "__Total__";
 objProf[5] = new CachePerfCntr();
 objProf[5].CounterName = "Cache API Entries";
 objProf[5].CounterValue = objPC.NextValue().ToString();

 objPC.CounterName = "Cache API Hits";
 objPC.InstanceName = "__Total__";
 objProf[6] = new CachePerfCntr();
 objProf[6].CounterName = "Cache API Hits";
 objProf[6].CounterValue = objPC.NextValue().ToString();

 objPC.CounterName = "Cache API Misses";
 objPC.InstanceName = "__Total__";

Chapter 12

44

 objProf[7] = new CachePerfCntr();
 objProf[7].CounterName = "Cache API Misses";
 objProf[7].CounterValue = objPC.NextValue().ToString();

 objPC.CounterName = "Cache API Hit Ratio";
 objPC.InstanceName = "__Total__";
 objProf[8] = new CachePerfCntr();
 objProf[8].CounterName = "Cache API Hit Ratio";
 objProf[8].CounterValue = objPC.NextValue().ToString();

 objPC.CounterName = "Cache API Turnover Rate";
 objPC.InstanceName = "__Total__";
 objProf[9] = new CachePerfCntr();
 objProf[9].CounterName = "Cache API Turnover Rate";
 objProf[9].CounterValue = objPC.NextValue().ToString();
 }
 catch (Exception Ex) {
 //Handle the error
 }

 return objProf;
 }
}

We declare a custom class with two properties CounterName and CounterValue:

public class CachePerfCntr {
 public string CounterName;
 public string CounterValue;
}

Inside the WebMethod we declare an array of ten objects of the type CachePerfCntr. Then we create
a new object of type PerformanceCounter.

//Declare an Object array type of CachePerfCntr
CachePerfCntr[] objProf = new CachePerfCntr[10];

//Declare an object type of PerformanceCounter
PerformanceCounter objPC = new PerformanceCounter();

Next we use the CategoryName property of the PerformanceCounter counter object name to use
the counters from the category "ASP.NET Applications". We then read all the cache counters one
by one and assign the values to the array of objects.

//Set the Category type as 'ASP.NET Applications'
objPC.CategoryName = "ASP.NET Applications";

//Get Performance counter information for Cache Total Entries
objPC.CounterName = "Cache Total Entries";
objPC.InstanceName = "__Total__";
objProf[0] = new CachePerfCntr();
objProf[0].CounterName = "Cache Total Entries";
objProf[0].CounterValue = objPC.NextValue().ToString();

Data Caching

45

At the end we return the object array back to the client. The following screenshot shows the output of
the Web Service:

Summary
As we learned in this chapter, when it comes to caching we have three options. The first one is output
caching, the next is the Application object and the last one is the Cache object. When using output
caching, the entire output of the Web Service will be cached for the specific time span as defined by the
Web Service. With the Application and Cache objects, we can pretty much cache anything from
simple data types such as integers and strings to complex data types such as an array of objects,
DataSet and so on.

The Cache object supports multiple types of expiration, ranging from absolute expiration, sliding
expiration, file- or directory-based dependency expiration to key-based expiration, which is not
supported by the Application object. We can either use the time-based expiration options or
dependency expiration options or a combination of both with the Cache object.

The Cache object supports manual and automatic removal of cached items, and optionally they can
also raise an event back and inform the application about the removal of the cached item. The removal
of an item from the Cache object is based on its CacheItemPriority and
CacheItemPriorityDecay settings.

Chapter 12

46

Additionally, cache objects expose a number of performance counters that can be used to determine the
effectiveness of the cache scheme used. These performance counters can be read from the Windows
Performance Monitor application or from any .NET application including from Web Services. Here's a
list of the topics we have covered in this chapter:

❑ Output Caching

❑ Data Caching

❑ Dependency Caching

❑ Callback

TE
AM
FL
Y

Team-Fly®

Data Caching

47

Chapter 12

48

Transactions with Web Service

A transaction is simply a group of operations that succeeds or fails as a single unit of work. A developer
uses a transaction to maintain reliable database integrity. For instance, if you are running a credit card
transaction, you want to credit the store and debit the cardholder. If the transaction to debit the cardholder
fails, you will want to roll back the crediting of the store and pass an error to the credit card machine.

Though this is a rather simplistic example, this is a very significant requirement for a system architect.
Having to keep track of the success or failure of a process is just part of building a data driven
application. When we are making many related changes to a database, or updating several databases at
once, we will want to ensure that all of the changes are correctly executed. If any of the changes fail, we
will want to restore the original state of the database tables.

There are two issues we have to handle when providing transactions as part of Web Services. First, we
need to be able to control a transaction as part of a Web Service that we are providing. Since we have
control of the network layer within the ASP.NET application providing the service, we can employ
COM+, as we’ll see. Second, however, we have to look at encapsulating transactions into applications
that consume Web Services. Here we have no control of the network layer. We’ll discuss the Distributed
Transaction Coordination problem later in the chapter.

So, in this chapter, we will cover:

❑ Providing a Web Service that is in itself transactional; and,

❑ Consuming Web Services in a transactional environment

11

Chapter 11

2

Providing a Transactional Web Service
Let’s jump right in and get our feet wet. Our client, a doctor’s office, wants to update a public web site
with the doctor’s availability. The design is simple: provide a form that lists the doctors in the database
and the available status listings. Then allow the user to set the availability of a given doctor. The table
we’ll use to display the availability of the doctors is not important right now, so we’ll skip it. Our form
looks something like this:

This, of course, doesn’t have to be done with a Web Service: we could simply put the whole form on the
same server as the remote database and change the settings there, but it wouldn’t do for our example.
Also, this will be expanded further when we go to update the example for consuming services. So, for
now we’ll say that they want to expose this logic to a number of offices to consume as they wish.

We start out with the now familiar routine of setting up the service. First, we’ll build a SQL Server
database in SQL Server that looks like this, called RemoteStatus:

Log
PK LogID
FK2 StatusID
FK1 TimeChanged

StatusTypes
PK StatusID

Status Type

StatusTypes
PK DoctorID

Status Type
Name

We need to insert some sample data in Doctors and StatusTypes. The log file is empty.

Doctors

DoctorID StatusID Name

1 1 Bill

2 1 Kim

3 1 Dave

Transactions with Web Service

3

StatusTypes

StatusID StatusType

1 Available

2 Not Available

As you can see, we have the added complexity of a log (in the form of the log table) to deal with. That is
our transactional challenge. We update the doctor, then the log. If the doctor fails to update because of
business rules, for instance, then we want the whole transaction rolled back. This is known as a two-
phase commit. If either of the database calls fails, we need to abort the whole transaction.

This concept fits in nicely with several development problems. As we mentioned above, providing two
related banking services without a transaction could be damaging to your bank balance. Even the act of
collecting information can sometimes benefit from a transaction. Sometimes it may be better to abort a
function call than to return incomplete data. Finally, transactions help an architect to define logical units
of work in an application by making functional code more clear.

The .NET Framework provides several ways to do this. Over the course of this chapter we’ll look at all
of them, but we’ll focus on the ASP.NET support for automatic transactions. Automatic participation in
transactions is an added benefit of the object orientation of ASP.NET – where ASP.NET pages can
inherit some of the more advanced functionality of COM+. This is by far the easiest way and has the
added benefit of fitting nicely with the topic of this book.

Essentially, we want the consumer to be able to pass in a DoctorID and a StatusID then update the
Doctors table with this information. Behind the scenes, we want to pass in the DoctorID, StatusID,
and the current time for the log file. If either fails, we want a rollback – pretty straightforward, really.

Obviously, if we were to do this for real we would have to provide a mechanism for the consumer to get the
DoctorID and the StatusID, since there is currently no way for a generic consumer to know what those
values could be. For this example, we are going to hard code that to a local version of the database.

In order to better show the transaction options, we’ll write two private subroutines. One of these subs
will update the Logs table; the other will update the Doctors table. Our new WebMethod will accept
the DoctorID and the StatusID, and run the two subs.

First, let’s finish setting up our
project. You’ll probably need to
start Distributed Transaction
Coordinator on your SQL Server
(if it isn’t already running) – you
can find it under Support
Services in Enterprise Manager.

Chapter 11

4

After completing the database needs, we’ll continue to set up the project in Visual Studio .NET (or can also
use the code that we have provided in the RemoteUpdate folder of the code download for this chapter).

1. Create a new C# Web Service project at http://localhost/RemoteUpdate. Keep the default
name, if you like.

2. Add a reference to System.Data in the References folder

3. Add System.EnterpriseServices and System.Data.SQLClient in the using section.

4. Uncomment the sample code for the WebMethod provided by Microsoft.

5. Set up the transactional support for the WebMethod, as shown below.

Inheriting Support from the WebMethodAttribute
Throughout the .NET documentation, Microsoft recommends that you inherit from WebMethodAttribute
as part of your ASP.NET Web Services, but notes that it is not a required reference. It is inherited by default.
WebMethodAttribute gives you a number of powerful features that are not always necessary, including:

❑ BufferResponse – gives you the ability to buffer the Web Service response.

❑ CacheDuration – gets and sets the length of time the response is held in the cache.

❑ Description – an easy way to set the description in the WSDL file returned by ?wsdl in the
URL. It is used by the default page IIS shows for Web Services, and UDDI.

❑ EnableSession – turns on and off the Session State support for the method.

❑ MessageName – more easy access to the WSDL, setting the name used in the SOAP header.

❑ TransactionOption – turns on automatic transaction support.

So, we have finally found what we are looking for – the TransactionOption. What is great about this
is the ‘automatic’ part. Transaction support in Windows (or any other system) is a complicated task,
requiring Just In Time activation, synchronous method handling, and several other services component
features handled by COM+. Since we don’t have an actual DLL file here, how do we support
transactions? Automatically – thanks to the WebMethodAttribute.

As part of our [WebMethod()] statement, then, we’ll include the TransactionOption attribute, like so:

[WebMethod(TransactionOption=TransactionOption.RequiresNew)]

With this, all of the features we need are enabled automatically for us, added to the configuration of the
Web Service in the compiled MSIL. Even more, there are all of the COM+ style types of transactional
options, including:

❑ Disabled – executes the Web Service without a transaction

❑ NotSupported – executes the Web Service without a transaction

Transactions with Web Service

5

(These two are the same because the TransactionOption values are inherited from the COM+
EnterpriseServices, which has more comprehensive transactional support).

❑ Supported – participates in a transaction, but does not create a new transaction when
invoked

❑ Required – works the same as RequiresNew, since Web Services can’t create a new
transaction. We’ll cover this in the next section.

❑ RequiresNew – the important one – fires a new transaction up when invoked

So, you can see that these look a lot like the attributes in COM+ that tell a consumer how an object is
be treated in a transaction. Strangely, that isn’t really what these attributes are used for in the
WebMethod statement. In this environment, the TransactionOption attribute tells the WebMethod
how it should treat those calls within itself – more or less the opposite of the way COM+ works.

This works exactly how you would imagine it would. If an exception is thrown by any of the code in the
WebMethod, the transaction is automatically aborted. Its exceptions are handled by a try...catch
block, then the transaction is automatically committed unless explicitly aborted by the SetAbort
method. We can access SetAbort from the ContextUtil object, which is in the
EnterpriseServices namespace. We’ll go over that a little later.

Our StatusUpdate WebMethod
So, we will start with the necessary header information in the C# code.

using System.Web.Services;
using System.Data.SqlClient;
using System.EnterpriseServices;

namespace RemoteUpdate

public class RemoteStatusTool : System.Web.Services.WebService
 {

As we mentioned above, we need to import System.Data.SqlClient and
System.EnterpriseServices for the data access and the transaction support, respectively. We’ll set
up a new namespace at RemoteStatusWS, call our class RemoteStatusUpdate, and have the class
inherit from the WebService class so that we have the TransactionOption and other attributes of
WebMethod.

Next, we’ll write our two private Update subroutines, which will be the implementation for our
transaction test:

private void UpdateDoctor (int DoctorID, int StatusID)
 {
 SqlConnection RemoteUpdateConnection;
 SqlCommand UpdateCommand;
 String SqlString;
 //DateTime UpdateTime;

Chapter 11

6

 SqlString = “UPDATE Doctors SET StatusID = “ +
 StatusID + “ WHERE DoctorID = “ + DoctorID;

 //Connect to the DB
 RemoteUpdateConnection = new SqlConnection(
 “Server=localhost;database=RemoteStatus;uid=sa;pwd=;”);
 RemoteUpdateConnection.Open();
 //change the doctor status
 UpdateCommand = new SqlCommand(SqlString, RemoteUpdateConnection);
 UpdateCommand.ExecuteNonQuery();
}

private void InsertLog(int DoctorID, int StatusID)
 {
 //Get our objects
 SqlConnection RemoteUpdateConnection;
 SqlCommand InsertCommand;
 string SqlString;
 DateTime UpdateTime;

 //Get time for the log
 UpdateTime = DateTime.Now;
 SqlString = “INSERT Log (StatusID, DoctorID, TimeChanged) VALUES (“ +
 StatusID + “, “ + DoctorID + “, ‘“ + UpdateTime + “‘)”;

 //Connect to the database
 RemoteUpdateConnection = new SqlConnection(
 “Server=localhost;database=RemoteStatus;uid=sa;pwd=;”);
 RemoteUpdateConnection.Open();
 //Insert the log entry
 InsertCommand = new SqlCommand(SqlString, RemoteUpdateConnection);
 InsertCommand.ExecuteNonQuery();
 }

Both of these subroutines do similar work in the database. After getting the necessary objects to speak to
SQL Server, they get a connection to the server (obviously you would want to make sure that the code
above reflected your actual settings). After opening the connection, we run the SQL statement in the
string variable against the database using ExecuteNonQuery, so that the method call doesn’t try to
return anything from the command. This ADO code isn’t how you would want to write a highly scalable
enterprise application, but it shows the process in a fairly transparent fashion.

Now we need to set up our web method.

[WebMethod(TransactionOption=TransactionOption.RequiresNew)]
 public void UpdateStatus(int DoctorID, int StatusID)
 {
 UpdateDoctor(DoctorID, StatusID);
 InsertLog(DoctorID, StatusID);
 }
 }
}

Transactions with Web Service

7

As we discussed above, we have used the TransactionOption attribute of the WebService and set it
to RequiresNew – really the only useful value of this attribute as it stands. Since the attribute defaults
to Disabled, and that is the only other useful option, we needn’t worry much about the other values.

This method accepts the DoctorID and StatusID from the consumer, only to pass them on to the
subroutines being called within the transaction. Thanks to the TransactionOption attribute, if one of
the methods throws an exception, the entire transaction is scrapped and no data is changed.

The Output of our Service
If you go to your browser to view the service, it looks and acts exactly like any other Web Service, as
we see below.

This flows with the whole Microsoft transactional systems model like we see in Fitch and Mather, in
which Transactions are just something handled by the Distributed Transaction Coordination and the
consumers don’t need to worry about the implementation. In fact, we really didn’t have to worry about
much of anything here in the way of special coding. This is by design.

When Microsoft first started to create enterprise services in 1996 with NT 3.51 and SQL Server 5.5,
they wrapped the complex transactions of the two-phase commit in a SQL Service called the Distributed
Transaction Coordinator. This handled transactions at the stored procedure level and made writing the
related COM objects rather complex. The two-phase commit is a very complex operation as it is, as
shown here.

Chapter 11

8

4. Commands Done

Application
Program

Resource
Manager

Commit
Agent

1. Chose

2. Chosen

3. Initiate Commands

5. Prepare

6. Prepared

7. Commit

8. Commit Recorded

9. Commit

The transaction protocol has two distinct phases – the “Prepare” phase and the “Commit” phase. The
application program chooses a controlling agent – the Commit Agent. The Commit Agent can be one of
the participating resource managers, like COM+, or another resource manager. Here is a look at the
steps they go through.

1. The condition of each resource manager is evaluated

2. Acknowledgement from COM+, in our case

3. The methods each manager will handle are initiated

4. Acknowledgement that they are initiated

5. The application checks to make sure all managers will successfully complete their
function. Sort of a ‘dry run’

6. Acknowledgement that there are no errors

TE
AM
FL
Y

Team-Fly®

Transactions with Web Service

9

7. That condition is reported to COM+

8. Acknowledgement that we can commence with the commit

9. Then the commit is sent and all data is changed.

If any of the participating resource managers fail to commit, then the application must abort the
transaction in all the resource managers.

As part of the Option Pack in NT 4.0’s Option Pack, there is a point-and-click interface for the OLE-
based DTC called the Microsoft Transaction Coordinator. These services are knows as Microsoft
Transaction Services, or MTS. This powerful tool allowed not only the transaction support of DTC, but
also other important enterprise services like connection pooling. Finally, with Windows 2000, COM+
was introduced, adding just-in-time activation and more sophisticated transaction support. The .NET
Enterprise Services we are using in this example are an Interop wrapper around those existing COM+
services.

Does it Really Work?
Let’s see if all of this complex processing really works. In order to do this, we need to throw an error in
one of the methods called by the WebMethod. We’ll do this by manually introducing an error using the
Err object. Right before the InsertCommand.ExecuteNonQuery() method, we add an
Err.Raise() method that sends a test error.

private void InsertLog(int DoctorID, int StatusID)
 {
 //Get our objects
 SqlConnection RemoteUpdateConnection;
 SqlCommand InsertCommand;
 string SqlString;
 DateTime UpdateTime;

 //Get time for the log
 UpdateTime = DateTime.Now;
 SqlString = “INSERT Log (StatusID, DoctorID, TimeChanged) VALUES (“ +
 StatusID + “, “ + DoctorID + “, ‘“ + UpdateTime + “‘)”;

 //Connect to the database
 RemoteUpdateConnection = new SqlConnection(
 “Server=localhost;database=RemoteStatus;uid=sa;pwd=;”);
 RemoteUpdateConnection.Open();
 //Insert the log entry
 InsertCommand = new SqlCommand(SqlString, RemoteUpdateConnection);
 try{}
 finally
 {
 throw new Exception(“This is the test error”);
 }
 InsertCommand.ExecuteNonQuery();
 }

Chapter 11

10

Now if we run the method from the test interface by changing the status of one of the doctors manually,
we get something like this.

System.Web.HttpException: Exception of type System.Web.HttpException was thrown. --->
System.Reflection.TargetInvocationException: Exception has been thrown by the target of an
invocation. ---> System.Exception: This is the test error
 at RemoteUpdate.RemoteStatusTool.UpdateStatus(Int32 DoctorID, Int32 StatusID) in
c:\inetpub\wwwroot\remoteupdate\remotestatustool.asmx.cs:line 66
 at System.Reflection.RuntimeMethodInfo.InternalInvoke(Object obj, BindingFlags invokeAttr,
Binder binder, Object[] parameters, CultureInfo culture, Boolean isBinderDefault, Assembly caller,
Boolean verifyAccess)
 at System.Reflection.RuntimeMethodInfo.InternalInvoke(Object obj, BindingFlags invokeAttr,
Binder binder, Object[] parameters, CultureInfo culture, Boolean verifyAccess)
 at System.Reflection.RuntimeMethodInfo.Invoke(Object obj, BindingFlags invokeAttr, Binder
binder, Object[] parameters, CultureInfo culture)
 at System.Reflection.MethodBase.Invoke(Object obj, Object[] parameters)
 at System.Web.Services.Protocols.LogicalMethodInfo.Invoke(Object target, Object[] values)
 at System.Web.Services.Protocols.WebServiceHandler.Invoke()
 at System.Web.Util.TransactedInvocation.ExecuteTransactedCode()
 at System.Web.Util.Transactions.InvokeTransacted(TransactedCallback callback,
TransactionOption mode, Boolean& transactionAborted)
 at System.Web.Util.Transactions.InvokeTransacted(TransactedCallback callback,
TransactionOption mode)
 at System.Web.Services.Protocols.WebServiceHandler.InvokeTransacted()
 at System.Web.Services.Protocols.WebServiceHandler.CoreProcessRequest()

We don’t need to see the majority of the error, but the bold parts are important. We can see in the first
line that the HttpException (what .NET throws when there is a problem with a Web Service) returns
the code in our Exception statement. In the third line, the Commit phase attempts to run, but we run a
rollback via TransactionAborted in the fourth line. We can see the callback of the UpdateDoctor
subroutine in the fourth and fifth line of the error.

So it works. If we look at the data, there was no line added to the log, and the doctor in question was
not changed. What’s more, we didn’t really write any transaction code to do this – but that isn’t specific
to .NET. COM+ provides automatic transactions as part of the Microsoft Management Console by
allowing the system administrator to set the transaction mode of each object on the actual COM object
itself as it is viewed in the console.

Using EnterpriseServices to ‘Roll Your Own’
In MTS we were required to manually set, complete, or abort transactions in our COM code. In
COM+, we still had this option by instantiating the ObjectContext object of the COM+ Services
Library and using the transaction methods of that class. In .NET, these methods are handled by COM+
Enterprise Services.

In the above code we imported System.EnterpriseServices so when we code the
TransactionOption the IntelliSense works. If you are writing your ASP.NET code by hand, you
don’t need to know this, but Visual Studio .NET gives you the little wavy underline that says there is no
TransactionOption attribute. IIS knows what it is, so we would be OK.

Transactions with Web Service

11

What if we wanted to catch our errors? Some errors are good for business logic purposes. If we are
using structured error handling, which we should be doing, we are better off setting the transaction
modes manually when we can, so that we can handle all of the errors we know could exist. With
System.EnterpriseServices, this becomes a task similar to the original COM coding. Since
ASP.NET is so much better integrated with the API, we have much more control at the IIS level, and
thus within ASP.NET.

System.EnterpriseServices, as we mentioned before, is the namespace that provides much of the
functionality of COM+, only now it is much more programmatically controlled. The namespace
includes several classes that replicate COM+:

❑ ApplicationAccessControlAttribute – sets the security settings for the library or server
container holding the object. Works just like the first step in the Add New COM+ Object
wizard.

❑ ApplicationActivationAttribute – handles the creation property of the assembly,
creator or system controlled.

❑ ContextUtil – this is the method in question, the replacement for ObjectContext.

❑ InterfaceQueueingAttribute – enables MSMQ, which is going to be important for
widely distributed transactions.

❑ JustInTimeActivationAttribute – turns Just In Time Activation (JITA) on and off. This
is handled automatically in the example above.

❑ ObjectPoolingAttribute – as one would imagine, this handles Object Pooling, another
feature of COM+.

❑ SecurityRoleAttribute – the old MTS roles in a tidy object-oriented package, used for
role-based security.

All the old friends are there, just in different clothes. Not only do we have access to the important parts
of manual transaction processing, we have all of the other important features of COM+. The planning
for this toolset isn’t quite finished, but check out the MSDN documentation for a complete listing of
tools in this powerful namespace.

The ContextUtil object is especially important to our cause, as it replaces the ObjectContext
object we used in Visual Basic 6. Along with a number of application-level attributes, which are largely
inherited by various web-savvy namespaces, these methods are allowed:

❑ EnableCommit – turn on object consistency

❑ DisableCommit – turn off object consistency

❑ GetNamedProperty – return a named property of the context

❑ IsCallerInRole – determines if the caller is in the specified role

❑ SetAbort – rolls back the methods encased by the transaction

❑ SetComplete – allows the transaction to complete when asked by the DTC

Chapter 11

12

Putting it to Use
Managing our own transactions works just like in Visual Basic 6 – only now we can handle it with
ASP.NET and any other .NET language codebehind. In VB6 we referenced the COM+ Services
Library in the class. Now, to set up the ContextUtil object, we need to have a design that supports
our manual transactions. We’ll use structured error handling to essentially replicate the automatic error
handling we created above – just for example purposes.

To do this, we encase the method calls in a try...catch block, with the SetAbort method of the
ContextUtil as the code run on the error condition. For this example, we’ll catch the imaginary
NoStatusException, set up elsewhere in our code. We’ll leave writing the exception as an exercise
for the reader.

[WebMethod(TransactionOption=TransactionOption.RequiresNew)]

 public void UpdateStatus(int DoctorID, int StatusID)

 {

 try

 {

 ContextUtil.EnableCommit();

 UpdateDoctor(DoctorID, StatusID);

 InsertLog(DoctorID, StatusID);

 ContextUtil.SetComplete();

 }

 catch (Exception e)

 {

 ContextUtil.SetAbort();

 //We could put logic here to determine

 //how the rollback occurs

 throw e;

 }

 }

class NoStatusException

 {

 //Some code in here

 }

What this allows us to do is trap know user errors, like empty text fields that should be zeros, and insert
a zero, then commit the transaction. Though this isn’t always what we want to do, it is an effective way
to manage transactions in ASP.NET in general, and Web Services in particular.

Consuming Transactional Web Services
There are really two topics here. The first is consuming transactional Web Services, which, it turns out, works
just like consuming any other kind of Web Service. We’ll take a look at that, as well as the implications.

The second is consuming Web Services in a transactional way. This is something of a problem, as we
discussed in the introduction. According to the Microsoft documentation:

HR
Highlight

HR
Highlight

HR
Highlight

Transactions with Web Service

13

Web Service methods can only participate as the root object in a transaction, due to the stateless
nature of the HTTP protocol. Web Service methods can invoke COM objects that participate in the
same transaction as the Web Service method, if the COM object is marked to run within a
transaction in the Component Services administrative tool. If a Web Service method, with a
TransactionOption property of Required or RequiresNew invokes another Web Service

method with a TransactionOption property of Required or RequiresNew, each Web
Service method participates in their own transaction, because a Web Service method can only act as
the root object in a transaction.

What this says is that “if you plan to build an application using a Web Service in a transactional context
with local methods, forget it”. So, according to Microsoft, it doesn’t work. We’ll look at why, and some
possible workarounds, later in the chapter.

Consuming our StatusUpdate WebMethod
To begin, let’s write a little ASP.NET file that consumes our WebMethod from above. This should just
be a quick form, just to test the transactions. Then we have a base to try a few other options. First set up
the project:

❑ Make a replica database on your SQL Server called LocalStatus and copy the contents of
the RemoteStatus database into it via Data Transformation Services.

❑ Create an ASP.NET application called LocalStatus at http://localhost/LocalStatus.

❑ Add a Web Reference to the Web Service created in the previous section, probably
http://localhost/RemoteStatus/RemoteStatusTool.asmx.

❑ Drop the ASP.NET code below into your solution. This is a.aspx in the code download.

We’ll start by referencing the tools we’ll need to consume our Web Service. Your namespace may be
slightly different based on your local machine name and specifics in naming your project. We need the
data tools to fill the Doctor and Status listboxes later.

<%@ Page Language=“c#” Debug=“true” %>
<%@ Import Namespace=“System” %>
<%@ Import Namespace=“System.Data” %>
<%@ Import Namespace=“System.Data.SqlClient” %>

Next, we’ll add the code for the page load event. When the page loads, without a postback, we want it
to fill the listboxes we have below in the HTML section. Again, we have used fairly simple SqlClient
code to do this for example purposes.

<HTML>
 <script language=“c#” runat=“server”>

 private void Page_Load(Object Sender, System.EventArgs E)
 {
 SqlConnection LocalUpdateConnection;
 SqlCommand DoctorsCommand;
 SqlCommand StatusCommand;
 SqlDataReader DoctorsReader;

Chapter 11

14

 SqlDataReader StatusReader;
 string DoctorsSQL;
 string StatusSQL;

 //handle first view

 if (!Page.IsPostBack)
 {
 DoctorsSQL = “SELECT DoctorID, Name FROM Doctors”;
 StatusSQL = “SELECT StatusID, StatusType FROM StatusTypes”;

 //Connect to the database
 LocalUpdateConnection = new SqlConnection(
 “Server=localhost;database=LocalStatus;uid=sa;pwd=;”);
 LocalUpdateConnection.Open();

 DoctorsCommand = new SqlCommand(DoctorsSQL, LocalUpdateConnection);
 DoctorsReader = DoctorsCommand.ExecuteReader();

 //Get the information from the page into the dataconnection
 DoctorsList.DataSource = DoctorsReader;
 DoctorsList.DataTextField = “Name”;
 DoctorsList.DataValueField = “DoctorID”;
 DoctorsList.DataBind();

 DoctorsReader.Close();

 StatusCommand = new SqlCommand(StatusSQL, LocalUpdateConnection);
 StatusReader = StatusCommand.ExecuteReader();

 StatusList.DataSource = StatusReader;
 StatusList.DataTextField = “StatusType”;
 StatusList.DataValueField = “StatusID”;
 StatusList.DataBind();

 StatusReader.Close();
 }
 }

Another subroutine we’ll add is the UpdateStatus sub that will run when the user clicks the button.
This will reference and run the Web Service we added to the Web References folder. To see the C#
code that will be running – essentially the proxy – click Show All Files in the Solution Explorer and
open Web References | localhost | RemoteStatusTools.wsdl | RemoteStatusTools.cs. You can check
out the internals of the Web Service proxy engine, WSDL.exe, in this way.

void UpdateStatus(object sender, EventArgs e)
{
 a.Text = DoctorsList.SelectedIndex.ToString();
}

Finally, we want to add our HTML code at the bottom. This creates the server controls for the listboxes,
and the button, and specifies the code to run for the onClick event.

Transactions with Web Service

15

<HEAD>
 <title></title>
</HEAD>
 <body>

 <form id=“StatusForm” method=“post” runat=“server”>
 <asp:ListBox id=“DoctorsList” runat=“server” />
 <asp:ListBox id=“StatusList” runat=“server” />

 <asp:Button id=“Search”
 runat=“server”
 OnClick=“UpdateStatus”
 Text=“Change Status” />
 </form>
 </body>
</HTML>

Now we have the finished our ASP.NET file, and can take a look using the browser:

When you click the Change Status button, you get a blank page in return, but if you check the remote
database you’ll see that the status of the doctor you selected changed, hopefully. This proved that a Web
Service can be run remotely as the root of a transaction and successfully commit. While this is good
news, and certainly a significant contribution to transactional processing in general, we have yet to
move to the most interesting part.

Transactions Calling Web Services
The ability to call a Web Service in the context of a transaction is, according to Microsoft, not possible.
It will just take a few minutes to change our example above to run a consuming transaction. Let’s see
what actually happens when we give it a try.

First, we need to add some code to update the LocalStatus database. To do this, add a private
subroutine that mimics the changes made by the UpdateDoctors sub in the Web Service codebehind.

Chapter 11

16

void UpdateDoctor(int StatusID, int DoctorID)
{
 SqlConnection RemoteUpdateConnection;
 SqlCommand UpdateCommand;
 string SqlString;
 SqlString = “UPDATE Doctors SET StatusID = “ + StatusID +
 “ WHERE DoctorID = “ + DoctorID;
 RemoteUpdateConnection = new SqlConnection(
 “Server=localhost;database=LocalStatus;uid=sa;pwd=;”);
 RemoteUpdateConnection.Open();
 UpdateCommand = new SqlCommand(SqlString, RemoteUpdateConnection);
 UpdateCommand.ExecuteNonQuery();
 RemoteUpdateConnection.Close();
}

Then we need to add the method call below to the button onClick event, and wrap the two method
calls in a transaction using automatic transaction participation. If this works, it will provide a two-phase
commit or abort if the calls both succeed or if one fails, respectively.

void UpdateStatus(object sender, EventArgs e)
{
 LocalStatus.localhost.RemoteStatusTool RemoteUpdate;
 UpdateDoctor(StatusList.SelectedItem.value,
 DoctorsList.SelectedItem.value);
 RemoteUpdate.UpdateStatus(StatusList.SelectedItem.value,
 DoctorsList.SelectedItem.value);
 }

The bold code is the reference to our new method. Now all we have to do is add automatic transaction
participation to the ASP.NET page – one liner added into the page declaration statements.

<%@ Page Language=“CS” Debug=“true” Transaction=“Required” %>

Then, we are ready to run. Remember to comment out the error code we added to the Web Service, if
you haven’t already; we’ll open it up soon enough. Running this code produces the same results as
above without the transaction. Remember, we are forcing two transactions here – one at the Web
Service local level, and one at the ASP.NET level, with the local method and the Web Service included.

So what’s the big deal? The big deal is that the Web Service is not participating in the transaction.
Throw some error (stop the database for example) and look at the stack trace. There is no top-level
transaction occurring. Why? It’s because we are using a Web Service as something other than the root
of a transaction. The .NET Framework will not let this happen! So, compared to DCOM, we have
uncovered a significant weakness.

Why is This a Problem?
Transactions depend on a set of logical properties called ACID. The term ACID conveys the role
transactions play in mission-critical applications. A term used in the earliest of transaction concept
documents, ACID stands for atomicity, consistency, isolation, and durability. These ensure the kind of
environment leading to the predictable behavior of code, reinforcing the role of transactions as all-or-
none propositions that reduce the management load when there are many variables.

Transactions with Web Service

17

Atomicity defines a transaction that is a unit of work in which a series of operations occur between the
BEGIN TRANSACTION and END TRANSACTION statements of an application. A transaction executes
exactly once and is atomic – all the work is done or none of it is. Operations associated with a
transaction usually share a common intent and are interdependent. By performing only a subset of these
operations, the system could compromise the overall intent of the transaction. Atomicity eliminates the
chance of processing a subset of operations.

A transaction is a unit of integrity because it preserves the consistency of data, transforming one
consistent state of data into another consistent state of data. Consistency requires that data bound by a
transaction be essentially preserved. Some of the responsibility for this belongs to the architect, who
must make sure that all known integrity constraints are enforced by the application. For example, in
developing an application that transfers money, you should avoid arbitrarily moving decimal points
during the transfer.

A transaction is also a unit of isolation – allowing concurrent transactions to behave as though each
were the only transaction running in the system. Isolation requires that each transaction appear to be
the only transaction manipulating the data store, even though other transactions may be running at the
same time. A transaction should never see the intermediate stages of another transaction.

Transactions attain the highest level of isolation when they are serializable. At this level, the results
obtained from a set of concurrent transactions are identical to the results obtained by running each
transaction serially. As a high degree of isolation can limit the number of concurrent transactions, some
applications reduce the isolation level in exchange for better throughput.

A transaction is also a unit of recovery. If a transaction succeeds, the system guarantees that its updates
will persist, even if the computer crashes immediately after the commit. Specialized logging allows the
system’s restart procedure to complete unfinished operations, making the transaction durable.

How Does This all Apply to Web Services?
By definition, Web Services don’t meet the standards of ACID. They are loosely coupled, which goes
against the principles of durability. Also, they are uncontrolled, which runs the risk of altering the
consistency of processing.

Microsoft transaction processors, specifically DTC, depend on knowledge of the underlying network
layer to control the durability of a transaction. Since all network traffic on a Microsoft network is in
constant communication with the operating system, distributed transactions report the durability of the
network to the caller. DTC uses this information to determine if a rollback is necessary. If a network call
has failed, DTC knows it and acts accordingly.

The consistency issue is a bit more ethereal. Though we have the WSDL to define the interface of a
remote service, little of the underlying logic is accessible to the DTC. This is mostly due to the fact that
COM+ has not caught up to the rest of the .NET world (we call this .NOT) and it doesn’t speak WSDL.
Therefore, we cannot be sure, as architects, that the data will be handled in the consistent manner
prescribed by ACID. To use the above example, we don’t really know if the decimal point is being
moved or not.

So for those primary reasons, we cannot include a Web Service in a serviced ASP.NET page without it
running in its own transaction. This is a significant weakness of Web Services in general – not just of the
Microsoft implementation.

Chapter 11

18

What Can We Do About This?
A good question, and a serious topic of debate among those who are making the decisions. All of the
solutions are of the roll-your-own type at this time, however. We’ll look at some of them here, at least in
theory.

The XLang Specification

An XLang service description extends the WDSL of a Web Service by describing the behavioral aspects
of the service. XLang specifies an operation, a single unit of a business transaction, as the root of a
business scenario, and describes the ways this operation fits within the scope of the scenario. For
instance, here is the XLang description of a stock trade, the operation sequence being the focus of the
service description.

<xlang:behavior>
 <xlang:body>
 <xlang:sequence>
 <xlang:action operation=“AskLastTradePrice”
 port=“pGetRequest” activation=“true”/>
 <xlang:action operation=“SendLastTradePrice”
 port=“pSendResponse”/>
 </xlang:sequence>
 </xlang:body>
</xlang:behavior>

This service description sits within the Service section of the WSDL file. It describes a very simple
behavior, in which the sequence in which two asynchronous operations occur in a single trade price
query interaction is defined. This straightforward example assists greatly in the consistency of the
service, since the consuming application now knows in what order the pieces of logic within the service
are to be executed. Since communication of the logic of Web Services is not inherent in the WSDL
specification, XLang goes a long way towards providing the technology needed for true transactional
systems with Web Services.

XLang is a Microsoft specification that has been opened to public commentary. The author, Satish
Thatte, has made the specification available at http://www.gotdotnet.com/team/xml_wsspecs/xlang-
c/default.htm.

BPML

The Business Process Management Language is an abstracted execution model for the modeling of
business processes, similar to XML being the abstracted description model for business data. Described
initially by a large number of business process concerns, BPML was made public in March of 2001.
BPML processes can be described as a specific business process modeling language layered on top of
the extensible BPML XML Schema. BPML represents business processes as the interleaving of control
flow, data flow, and event flow, while adding orthogonal design capabilities for business rules, security
roles, and transaction contexts.

Essentially, the Business Process Management Initiative is attempting to describe the programmers’ responsibility to
atomicity in business process behavior – thus again taking us one step closer to the holy grail of transaction
environments – ACID. The BPML employs a message-based model in which all participants in the process interact
through the exchange of messages, and the process defines the manner in which messages flow between participants, as
well as the information conveyed in each message. This technology could and can be used in private implementations of
transactional messaging protocols like BizTalk. More information about BPML can be found at http://www.bpmi.org.

TE
AM
FL
Y

Team-Fly®

Transactions with Web Service

19

ebXML

Where BPML provides the private implementation of transactional business process messaging, ebXML
is recommending the public implementation of this important service. ebXML is a powerful force, even
being enlisted by RosettaNet as the standard of choice for message delivery.

ebXML is a modular suite of specifications that enables enterprises of any size and in any geographical
location to conduct business over the Internet. Using ebXML, companies now have a standard method
to exchange business messages, conduct trading relationships, communicate data in common terms and
define and register business processes. It utilizes XML in a similar fashion as does XLang to specify
message delivery. Though it is less specific to defining transactions, it is still potentially a powerful
protocol in the e-commerce world of business message delivery. Read more about ebXML at
www.ebXML.org.

The BizTalk Framework

Microsoft has created a platform-specific set of tools in the BizTalk Framework that use the essential
features of Web Services – SOAP headers with BizTalk-only entries and XML bodies– to transport
messages between servers of like technology and rigid standards. Though this is slightly beyond the
scope of this book, it is a consideration when considering the need for transactions in distributed
procedure calls.

BizTalk uses three Microsoft-only standards – the BizTalk Document, BizTags, and the BizTalk
Message – to provide an interdependent messaging standard for the Microsoft world of networks. While
technically platform independent, BizTalk clearly is designed to bring slightly simplified document
transfer to Microsoft shops that wish to escape the world of EDI. This it undeniably does very well.
Though not a real replacement for a Web Service – nor a claimant to that title – BizTalk is a real
consideration when attempting to produce document-handling applications that have need of the two-
phase commit.

But What Can We Really Do About This?
These advanced frameworks and protocol could be the road to the future, but until they are embraced
by our clients and other solution providers, they do us little good. While it is nice to know they exist,
that knowledge still leaves us wondering how to actually implement these cross-service transactions.

We mentioned above that not everything is a Web Service. In many cases, if you are architecting a large
application, one of the many other distributed architectures will do the job for you. Sometimes, it is
better just to rebuild logic, even though it seems that exposing methods via Web Services is the answer.
In some cross-platform situations, CORBA, RMI or DCOM – each with their own transaction
processing – is the best solution. But the question remains – what is the real .NET solution?

A simple answer is .NET Remoting. As a replacement for DCOM, Remoting is a strong contender for
the distributed architecture of an application. In .NET Remoting, objects are passed from one
application to another in a binary bitstream, thus ending the potential for network-level confusion on
the part of the client or consumer. Since you can directly touch the passed object, similar to Java’s Jini
protocol, the transaction can be consummated against a known object in most circumstances.

We won’t get into a technical discussion of Remoting here, since it is a Web Services book, but if
interested, you should check out Microsoft .NET Remoting: A Technical Overview by Piet Obermeyer and
Jonathan Hawkins on the MSDN Library. All of the sample code is in C# and the document is an
excellent introduction to the concepts presented by the Remoting tools in .NET.

Chapter 11

20

SetComplete (Summary)
We have discovered that providing a Web Service with transactional commitment is quite simple in the
ASP.NET scenario, and even can be controlled MTS-like with the new ContextUtil object. Now we
have no excuse not to architect transactional support into our provided Web Services.

Consuming Web Services under the .NET Framework proved to be another hurdle altogether. Although
a small plethora of new protocols exist to ease the ACID support of Web Services, none of them are
quite mature enough to fit within the tightly architected Framework, and consuming services in a
transactional manner is not yet supported. While this leaves us with some pretty basic limitations, new
protocols like the BizTalk framework and XLang promise to bring some hope in the form of a usable
distributed transaction effort.

We all, as developers, know the power of transactional systems. While Web Services are not the
principal means for the creation of scalable and reliable n-tier systems, they do hold a remarkable
potential to change the way businesses do business and computers do computing. The addition of a two-
phase commitment system like automatic transactions for Web Services, as provided by .NET, has the
potential to take Web Services one step closer to Programming Nirvana. In this chapter we have looked
at the following topics:

❑ Building a transactional Web Service

❑ Using EnterpriseServices in a customized solution

❑ The problems associated with consuming transactional Web Services

❑ Possible solutions to these problems

Transactions with Web Service

21

Case Study – Distributed
Processing

Distributed processing is the principle of taking a large processing "job" and breaking it down into many
tiny pieces. A separate computer then processes one or more of those pieces, returning the results to a
central server when it's complete. So, rather than investing in a single, powerful computer to process
data, you can use a collection of less-powerful, yet less expensive computers to do the same job.

19

Chapter 19

2

Internet

Co-ordintaion
Server

Computers on the
network or Internet
(”agents”) connection to a
co-ordintaion server. This
server allocates a unit to an agent and waits for it
to finish processing it.

As an agent processed a unit, it
builds a “result unit”, shown here
as the small cube.

The result units are then sent back
to the server over the Internet/LAN
where they are combined into a
“result set” for analysis.

A large “set” of work is
broken down into a
collection of small
“units”

Agent

Agent

Agent

AgentAgent

The idea behind distributed processing is not new, but the Internet has made distributed processing on a
massive scale possible. The idea behind each of these projects is that you donate processor capacity on
your own computer.

Here are three distributed processing projects that you can get involved in.

❑ SETI@Home, or the "Search for Extraterrestrial Intelligence at Home" is one of a collection of
projects involved in the larger "SETI" initiative. The central principle is that radio telescopes
around the world analyze a vast quantity of data looking for telltale signs that one of the
signals was sent by intelligent life from outside our own solar system. Like most Internet-
centric distributed computing projects, you can download an agent from
http://setiathome.ssl.berkeley.edu/ to get involved.

❑ distributed.net is an organization looking to find volunteers interested in cryptographic and
mathematical research. You can find them at http://www.distributed.net/.

❑ Intel-United Devices Cancer Research Project is a project operated in cooperation between
Intel, United Devices, the National Foundation for Cancer Research, and the Department of
Chemistry at the University of Oxford. They are looking for volunteers to help analyze
interaction between modules and proteins with an aim to finding a way to prevent the cancer
from spreading inside a patient. You can learn more about this project here:
http://members.ud.com/vypc/cancer/

When the computer has some spare capacity, it goes off over the Internet to a central coordination
server where it downloads a work unit containing an amount of data to work on. This processing task
may take a few minutes, several hours or weeks to complete, but the interconnected nature of the
Internet means that you can have hundreds-of-thousands of computers all working on a single project.

Case Study – Distributed Processing

3

In the case of something like the Intel-United Devices Cancer Research Project, the organizations
involved find themselves in control of more processing power than they could ever actually "own"
themselves, because all they're doing is asking people like you or I to donate computing time to the
project. What tends to happen is that we'll donate "idle" computing time. In this way, our computer
works for the project or projects we're interested in whenever we're not actively using it. In my office
here, I have three servers and one main work machine. Each of the servers runs the Intel-United
Devices program constantly, whilst my main work machine is set to run the program at night.

This is a screenshot of the THINK program, which is the code that the Intel-United Devices distributed
application uses to crunch the numbers that analyzes the proteins and molecules. This program runs
inside of an agent developed by United Devices. This agent is designed in such a way that United
Devices can task the agent with different activities depending on their and their users' preferences.

The complexity in building a distributed application tends to be in "coordination" activities, i.e. the
activities involved in sending work to the agent and receiving results from the agents. The three projects
we've seen here predate the existence of Web Services, but Web Services and other features of .NET
make building software that handles these coordination activities essential for distributed processing
very easy. In this case study, we're going to be taking a look at building our own applications.

Even if your organization doesn't directly benefit from analyzing complex chemical interactions with the aim
of designing a new drug, there are still legitimate uses for distributed processing in commercial environments.

The example we're going to be working through here is developing an application that analyzes server
log activity. Imagine you have a large server farm and need to analyze the logs from each of the servers
in the farm. This could be a large job that would take a single powerful computer a long time to do.
Alternatively, it could be a large job that would take the computers on your company LAN less time,
but perhaps more importantly leverages your existing investment in computing hardware.

Chapter 19

4

"WorkSets" and "WorkUnits"
In this case study, we're not going to build too much code. Instead, we're going to concentrate on building a
solution. This means you'll need to download some prepared utilities from the Wrox site at
http://www.wrox.com. For example, rather than expecting you to have a large server farm that generates
gigabytes of log files each month, we'll use a utility to generate fake ones that we can use with the application.

As we saw in the diagram above, we're going to use a server running an ASP.NET Web Service as a
coordination server. The agents running on the LAN or Internet will be able to connect to this Web
Service to get work and report results. This whole thing will back onto a SQL Server database, and
depending on what you have this can either be a full copy of SQL Server 7, SQL Server 2000 or SQL
Server Data Engine. (This last one was previously known as "MSDE" and is sometimes still known as
"MSDE 2000". The name is still in a state of flux!)

We already know that we're going to employ lots of computers on our LAN or on the Internet to do our
work. The software running on each of these computers will be known as an "agent".

The system we build here will be "extensible". By that I mean that although we're going to build it now
to analyze server logs, you'll be able to create new .NET classes that enable it to do other activities.
We'll call each of these classes a "module".

The large job we have to do will be known as a "work set". For example, the 250MB of log data
collected over a week will be known as a "work set".

Each of the smaller jobs that the work set is split into will be known as a "work unit". An agent will
request a work unit, do some processing on it, and return a "result unit". Eventually, these result units
will be combined into a larger "result set".

For testing purposes we're going to build our agent application in such a way that we can start multiple
agents from the same desktop. This will let us make sure that the system we build works properly under
load without having to go away and install .NET and the agent on computers around our LAN.

OK, so let's look at the database structure. We're going to see screen shots of the table definition together
with some sample data, but you won't have this yet. We'll be building the database in a little while.

The "Agents" Table

This table contains a list of the registered agents. Each agent will have a name (this doesn't have to be
unique) and will also maintain a register of the work unit that it's supposed to be working on.

Case Study – Distributed Processing

5

The "Modules" Table

This table contains a list of the modules available for processing. At the moment there's only one –
Distributed.LogAnalyzer – the .NET class that will be used for analyzing Web server logs.

The "WorkSets" Table

This table contains a list of the work sets that are currently being processed by the agents. Each work set is
related to a module. You'll also see that the table keeps track of how many work units are being processed.

The "WorkUnits" Table

This table contains a list of the work units that are currently owned by each work set. You'll notice that
each one contains a filename containing the raw data, a status code and the ID of an agent. (We'll cover
all of this later.)

Chapter 19

6

The Logic
The tricky part of building a distributed processing solution is working out which agent should do
what, and when.

The first thing to consider is when the agent will actually run. If your users are trying to work with the
computer, it might not be such a smart idea to have the agent using up all the processing power chewing
through data. So, you might want to configure agents to run only at night, or when the screensaver is
on. (This issue is partially mitigated by the fact we'll be running the agent on a very low priority
thread – more later.) It's likely that you'll have the agent running all the time, but that the agent will
only be "awake" at certain times.

The second thing to consider is which work unit the agent will be working on. Two things will
determine this – the capability of the agent and the availability of work.

The capability of the agent is down to the modules that are installed. Imagine we have modules
Distributed.LogAnalyzer and Distributed.WordCounter known to the coordination server. For the sake
of this application, we're going to assume that modules have to be physically installed on the agent. If
the agent doesn't have Distributed.WordCounter installed, the agent will obviously not be able to work
on a work set that uses this module. (This is to keep things simple in this example. As modules are
stored in assemblies, the agent could download the assembly from a Web server, install it and have
access to the extended functionality.) Therefore, whenever an agent asks the coordination server for
work, we'll have to provide a list of the modules that are installed on the computer.

When the agent asks the coordination server for work, the server will look through the available work
sets in order from the oldest to the newest, providing that the agent has the module installed that the
work set requires. (The premise being that older work sets have to be completed before new work sets
can be started. If an old work set is no longer required, it should be deleted from the database. The
database is transitory – there's no need to archive old, unanalyzed work data.)

Once a work set has been determined, the next available, unprocessed work unit will be chosen for the
work set. If there are no more unprocessed work units, the first expired work unit will be chosen.

When work units are allocated, they are given an expiry time. If the agent does not return the unit
within that given time, it's fair game for another agent that needs work. The principle here is that if the
agent doesn't return the results for some reason that work unit has to be done by someone else.

As each work unit is completed, the agent will return a matching result unit. This is where,
conceptually, things get a little tricky. Simply, it's logical to assume that each result unit stands alone –
in other words looking at the data in a result unit will yield some meaningful information. By and large
this is not the case. Just as the work set itself stands as an individual unit, typically only the complete
result set will yield the results that explain the entire work set.

Here's an example. If we have 250MB of server logs and split it into 25KB chunks, what we're looking
for is a list of instances that a given page appears. However, by looking at the result unit for that 25KB
chunk, we'll only know how many times a given page appears in that work unit. To understand how
many times a given page appears in the entire work set, we have to look at the entire result set.

Building the Database
To follow along with this exercise, you're going to need a SQL Server database: either a full SQL Server

Case Study – Distributed Processing

7

7/2000 database or a MSDE database.

Create a new database called WroxDistributed. In the download package that accompanies this case
study you'll find a file called DistributedDatabase.sql. Run this file in the usual way.

Creating Sample Data
As we mentioned before, we're going to be using a utility to create fake server logs for use with this
application. You can find the files for this utility in the "Dummy Server Log Builder" folder of the
code download package.

Run the Dummy Server Log Builder utility. It will prompt you for a database connection string, and in
particular remember to change the name of the server ("Data source") from Chimaera to whatever
yours is called:

Make sure the database connection works by pressing the Test button. When you're happy, click
Create. After a few moments, you'll see a message similar to this. The number at the end of the path
(shown here as 25) will very likely be different on your machine:TE

AM
FL
Y

Team-Fly®

Chapter 19

8

Using Windows Explorer, open the folder referenced in the message box. It will contain several
hundred 25KB (or thereabouts) files. Open one of the files with Notepad and you'll notice a bundle of
lines, each one looking similar to this. (I've had to break mine into two lines to suit the book format, but
if you look at the file using Notepad make sure word wrapping is switched off by using the option on the
Format menu.)

2001-08-19 12:27:02 128.106.153.150 GET �
 /coffee.aspx Microsoft-Visual-Studio.NET/7.00.9254 200

The server log format that we're simulating matches the W3C Extended Log File format. IIS uses this
format by default. Each line in the log file represents a request from a browser. Using the logging
options in IIS we can control the information that appears against each entry. Specifically, the utility
uses this format:

❑ Date – the date at which the request was received.

❑ Time – the time at which the request was received.

❑ IP address – the IP address of the browser, proxy or firewall that made the request. (Those of
you who understand the mechanics of TCP/IP may note that the utility sometimes doesn't
generate valid IPs.)

❑ Method – the type of request. (The utility always uses "GET" as the method.)

❑ URI stem – the resource that was requested from the server. (The utility uses one of a possible
twelve ASP.NET pages. On real server logs, you'll see pictures and other resource types here
as well as pages.)

❑ Agent – the user agent that made the request.

❑ Status – the status of the request. (200 means "OK". The utility only generates 200 codes.)

In a real world implementation of the system we're going to see here, we'd expect to have a cluster of
computers in a server farm and each of those computers would generate their own log. Let's say we
have ten computers in the farm and on an average day, each one of those computers creates a 500MB
server log. In total, that's 5GB of logs per day, or 35GB per week. That kind of size is worth distributing
using the techniques we're going to see here. The 15MB work set that our utility creates is just for fun!

IIS can be set to create a new log file each day, so at the end of the week you'd fire off a utility that
created a new work set, as shown here. (You can follow along with your own database, as the utility will
have populated this with data. Again, your results will be similar, so the IDs and the TotalWorkUnits
may well not match these.)

Case Study – Distributed Processing

9

The work set needs a folder on disk in which to save the work units. (We could store this in the
database, but for this example we're going to use disk files.) We go through each of the logs in turn and
generate new work units. We've picked 25KB as the size of a work unit. Each work unit is saved on disk
(as we've already seen) and also saved in the database.

In the WorkUnits table, a Status value of 0 means "unprocessed", 1 means "being processed", and 2 means
"completed". The work set is deemed complete when the Status column for every work unit is set to 2.

Once we get to that point, we can start distributed processing across the agents. Each agent will request
a work unit. We'll give it one back and wait for it to return results.

The Work
So what work does the agent have to do? Well, we want the agent to go through the work unit and
create a list of the number of times a given page is requested each day. It will format the information as
XML, and it will look similar to this:

<Results>
 <Day>
 <Year>2001</Year>
 <Month>8</Month>
 <Day>22</Day>
 <Pages>
 <Page>
 <Name>/coffee.aspx</Name>
 <Hits>27</Hits>
 </Page>
 <Page>
 <Name>/default.aspx</Name>
 <Hits>105</Hits>
 </Page>
 </Pages>
 </Day>
 <Day>
 <Year>2001</Year>
 <Month>8</Month>
 <Day>21</Day>
 <Pages>
 <Page>

Chapter 19

10

 <Name>/coffee.aspx</Name>
 <Hits>99</Hits>
 </Page>
 <Page>
 <Name>/default.aspx</Name>
 <Hits>667</Hits>
 </Page>
 </Pages>
 </Day>
</Results>

As we mentioned before, a result unit only becomes useful when it's aggregated into a larger result set.
However, once the set is complete we should be able to create a report describing the activity per
page per day.

Building the Service
The first part of the problem we should look at is building the service. This is going to be an ASP.NET
Web Service that I'm sure by now you're familiar with, so we'll jump right in.

First off, create a new Visual C# – ASP.NET Web Service project. Call it DistributedCoordinator and
set it to use localhost as the server.

Using Solution Explorer, delete the default Service1.asmx page. Create a new Web service page called
Coordinator.asmx, by right clicking on the project and selecting Add – Add Web Service. Again using
Solution Explorer, right-click on the new page and select Set as Start Page.

The first thing we should do is change the namespace used for the SOAP envelopes from
http://www.tempuri.org/ to something else. Open the code editor for Coordinator.asmx and add this
attribute to the class definition:

[WebService(Namespace="http://www.wrox.com/distributed/")]
public class Coordinator : System.Web.Services.WebService
{

Also, add these namespace import declarations:

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;
using System.Data.SqlClient;
using System.IO;

To communicate with the database server, we need a connection string. Add this member:

Case Study – Distributed Processing

11

[WebService(Namespace="http://www.wrox.com/distributed/")]
public class Coordinator : System.Web.Services.WebService
{

// members...
public string DbString =

"integrated security=sspi;initial catalog=WroxDistributed;data source=Chimaera";

Remember, you'll need to change the database name and server name so that the connection string will
work on your configuration. If you.'re not using integrated security, you'll need to add uid and pwd
parameters to the string

In this project, we're going to make heavy use of stored procedures. Here's the first one called
RegisterAgent:

CREATE PROCEDURE RegisterAgent
(
@name varchar(64)

)
AS
insert into agents (name) values (@name)
return @@identity

Add this method to Coordinator.asmx.cs:

protected int CallRegisterAgent(string dbString, string name)
{
// connect...
SqlConnection connection = new SqlConnection(dbString);
connection.Open();

// command...
SqlCommand command = new SqlCommand("RegisterAgent", connection);
command.CommandType = CommandType.StoredProcedure;

// params...
SqlParameter nameParam =
command.Parameters.Add("@name", SqlDbType.VarChar, 64);
nameParam.Value = name;

// add a return param...
SqlParameter returnValueParam =
command.Parameters.Add("@returnValue", SqlDbType.Int);
returnValueParam.Direction = ParameterDirection.ReturnValue;

// execute...
command.ExecuteNonQuery();

// cleanup...
command.Dispose();
connection.Close();

// return...
return (int)returnValueParam.Value;

}

Chapter 19

12

Copy and paste all of the code out of this window into the Coordinator.asmx.vb code editor. Finally,
add this new method:

// RegisterAgent – register an agent...
[WebMethod()] public int RegisterAgent(string name)
{
// register the agent...
return CallRegisterAgent(DbString, name);

}

Run the project and use the test interface to call the RegisterAgent method.Enter any name you like.
When the method has returned, look in the Agents table and you'll see your new agent.

Building the Agent
Although we're far from finished at the server side, let's turn our attention to building the agent.

As we mentioned before, the agent will be a multipurpose executable that will run on the client continually
and, on occasion, ask the Web Service for some work to do. The agent will follow these steps:

❑ If the agent has not been registered, complete registration.

❑ The agent requests a work unit. The agent is given a work unit ID and the name of the module
that it should use for processing.

❑ The agent separately requests the data that makes up the work unit. (In our case, that's the file
containing the server log fragment.) The coordination server marks the unit as "in progress".

❑ The agent processes the unit.

❑ The agent sends the result unit back to the coordination server. The coordination server marks
the unit as "done".

❑ The agent requests another work unit, and so on.

The reason why we make a separate request to get the data back is because in a lot of cases SOAP will
not be the most appropriate transport medium for passing work units and result units back and forth.
Let's look at why this is now.

In this system, the bottleneck is when the client has to talk to the server. Ideally, we don't want agents
constantly talking to the service, as if we have thousands of agents each needing information from the
server every couple of seconds we're going to lose the advantage that distributed processing gives us –
we'll need to invest in a huge, powerful server to coordinate the agents' activities.

Case Study – Distributed Processing

13

The bigger the work unit, the longer the agent has to work on it and therefore there will be more time
between agent requests on the server. Unless your work unit is a few bytes long, but those few bytes
dictate a great deal of work (for example "evaluate pi to infinity") you're in a place where the bigger the
work unit, the more work that has to be done by the client before the results can be returned. For
example, if it takes two seconds to process a 25KB work unit and four seconds to process a 50KB work
unit, we can assume that a 1MB work unit will take a little under one-and-a-half minutes. If each client
has to wait 90 seconds between requests rather than two seconds, the requests should be more spread
out and the load on the server should be reduced.

However, because SOAP is optimized for method calls not data transfer, moving 1MB SOAP packets
about might not be the most appropriate course of action. Ideally, we would have made this application
so that the work units were transferred via FTP, but the FTP support in .NET at the time of writing is so
dire that we decided to illustrate the technique using SOAP throughout. Nevertheless, the need to
switch SOAP out with another transfer mechanism led us to have the "request work unit" and "get work
unit data" as separate steps.

Creating the Project
In this section, we're going to build one client that can manage several agents. Each agent will be
implemented in a class called AgentView. The view will show a log of activity for each agent, together
with the agent's name and a status bar.

Open a new instance of Visual Studio and create a new Visual C# – Windows Application project. Call
it Agent and save it anywhere that you like. The purpose of all this is to have the agent running in a
separate solution to the server.

We want to create a form that follows a design classic – we want a tree control on the left hand side of
the form and when different items are selected on the tree we want the right hand side of the form to
show us specifics about that item. Follow these instructions carefully.

When Form1 appears, add a new Panel control to the left hand side. Set its Dock property to Left. Don't
worry about the Name property.

Inside the panel, add a TreeView control so that it occupies almost all of the available space. Set its
Name property to treeviewAgents. Set its Anchor property to Top, Bottom, Left, Right. Set its
HideSelection property to False.

Now add a splitter control to the form. It should appear to the right of the panel. Make it about ten
pixels wide.

Next, add another Panel control to the form on the right-hand side of the Splitter control. Set its Name
property to panelView and its Dock property to Fill.

You'll now have something like this. If you run the project you'll be able to grab hold of the splitter to
change the width of the tree control.

Chapter 19

14

Creating "AgentView"
Using Solution Explorer, create a new User Control. Call it AgentView.

When the Designer appears, add these controls:

Set these properties:

Control Name Properties

First label: Name labelAgentName

Text (agent name)

Anchor Top, Left, Right

Second label: Name labelStatus

Text Waiting…

Anchor Top, Left, Right

Font Bold: True

Progress bar: Name barStatus

Case Study – Distributed Processing

15

Control Name Properties

Anchor Top, Right

Text box: Name textLog

Multiline True

WordWrap False

ScrollBars Both

Anchor

Text

Top, Bottom, Left, Right

Clear this property

Third label: Name labelWebServiceUrl

Text (Web Service url)

Anchor Bottom, Left, Right

Next, add a new class to the project called Configuration. Configuration objects will be used to
tell each AgentView who they are and what they're supposed to be doing. When the name of the agent
is set by a method called SetAgentDetails of AgentView that we're yet to build, we'll load a new
Configuration object from disk by using System.Xml.Serialization.XmlSerializer.Add this
code to Configuration:

using System;
using System.IO;
using System.Xml.Serialization;

namespace Agent
{
public class Configuration
{
// members...
public int AgentId;
[XmlIgnore()] public string Filename;

We need a shared method on Configuration called Load. This will take a filename and attempt to
de-serialize a Configuration object from the file that it references. If no configuration can be loaded
(either because the file doesn't exist or some de-serialization problem occurs), we'll create a new blank
Configuration object and return that to the caller.

 // Load – load a configuration file...
public static Configuration Load(string filename)
{
// try and load the file...
Configuration newConfig = null;
FileStream stream = null;
try
{
// open the file...
stream = new FileStream(filename, FileMode.Open);

Chapter 19

16

// create a serializer...
XmlSerializer serializer =

new XmlSerializer(typeof(Configuration));
newConfig = (Configuration)serializer.Deserialize(stream);
}
catch
{
}
finally
{
// close the file...
if(stream != null)
stream.Close();

}

// do we have one?
if(newConfig == null)
newConfig = new Configuration();

// store the filename...
newConfig.Filename = filename;

// return what we got...
return newConfig;

}

When we create an AgentView object, we'll supply them with a name and an instance number starting
at 1. This will prompt the agent to load the configuration file and start working.

Open the code editor for AgentView and add these members:

public class AgentView : System.Windows.Forms.UserControl
{
// members...
private string _agentName;
private int _agentInstance;
private Configuration _configuration;

Next, add these properties:

// Configuration property...
public Configuration Configuration
{
get
{
return _configuration;
}

}

// AgentName property...
public string AgentName
{
get
{
return _agentName;
}

}

Case Study – Distributed Processing

17

// AgentInstance property...
public int AgentInstance
{
get
{
return _agentInstance;
}

}

We also need a method that will be used to get the name and instance of the agent and also prompt the
configuration to be loaded. Add this code:

// SetAgentDetails – set the details for the agent...
public void SetAgentDetails(string agentName, int agentInstance)
{
// set the details...
_agentName = agentName;
_agentInstance = agentInstance;

// formulate a filename...
string filename = Form1.DataPath + "\\" +
_agentName + "." + _agentInstance + ".config";

// load the configuration...
_configuration = Configuration.Load(filename);

}

You'll notice there that DataPath has not been defined as a property of Form1. Open the code editor
for Form1. First of all, add this namespace import declaration and the _dataPath member:

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.IO;

namespace Agent
{
public class Form1 : System.Windows.Forms.Form
{
// members...
private static string _dataPath;

Then, add this property:

// DataPath property...
public static string DataPath
{
get
{
// do we have one?
if(_dataPath == "")
{
// get the executable path...

TE
AM
FL
Y

Team-Fly®

Chapter 19

18

FileInfo fileInfo =
new FileInfo(Application.ExecutablePath);

// get a new folder by going down the tree
// and up one...
dataPath = fileInfo.Directory.Parent.FullName +

"\\Data";

// create the new folder...
DirectoryInfo folderInfo =

new DirectoryInfo(_dataPath);
if(folderInfo.Exists == false)
folderInfo.Create();

}

// return it...
return _dataPath;
}

}

What we want to do with DataPath is, if our application is running from this executable:

c:\Wrox WorkSet\Agent\bin\Agent.exe

…then we want configuration files to be stored in this folder:

c:\Wrox WorkSet\Agent\Data

The property also checks to make sure that the folder exists and, if it doesn't, creates it.

Before we move on, add this overridden implementation of ToString to AgentView:

// ToString...
public override string ToString()
{
return AgentName + "." + AgentInstance;

}

Creating "AgentViewCollection"
As ultimately we're going to be working with more than one agent view, we need to be able to hold a
list of them in a collection. We'll do this by creating a new class called AgentViewCollection and
inheriting from System.Collections.CollectionBase. We'll then provide strongly typed
implementations of Add, Remove and Item.This is a .NET "best practice" that makes it easier to
manage lists of AgentView objects.

First of all, add a new class called AgentViewCollection. Add this code to make it inherit from
CollectionBase:

 public class AgentViewCollection : System.Collections.CollectionBase
{
…

}

Case Study – Distributed Processing

19

Then, add these two methods and this indexer:

// Add – add a view...
public void Add(AgentView view)
{
List.Add(view);

}

// Remove – remove a view...
public void Remove(AgentView view)
{
List.Remove(view);

}

// Item property...
public AgentView this[int index]
{
get
{
return (AgentView)List[index];
}
set
{
List[index] = value;
}

}

That's all! Now we have a strongly typed collection that we can use to hold a list of agent view objects.

Creating Agents
Now we need a way to create agents. What we'll do is add a top-level item to the tree control and give
this the intelligence to create agents. (The motivation for doing this will become clear when we come to
create a number of agents.)

Add a new class called AgentListNode. Add this code to make it inherit from
Windows.Forms.TreeNode:

public class AgentListNode : System.Windows.Forms.TreeNode
{

We'll also need another class that inherits from System.Windows.Forms.TreeNode that will
reference a specific AgentView instance. Create a new class called AgentNode and add this code:

 public class AgentNode : System.Windows.Forms.TreeNode
{
// members...
public AgentView AgentView;

public AgentNode(string agentName, int agentInstance)
{
// create a new view...
this.AgentView = new AgentView();
this.AgentView.SetAgentDetails(agentName, agentInstance);

Chapter 19

20

// set our text...
this.Text = this.AgentView.ToString();

}
}

As you can see here, whenever we create a new instance of an AgentNode, we'll provide a name and an
instance to the constructor. The constructor will then create a new AgentView object and call
SetAgentDetails passing in the name and the instance of the agent.

The AgentListNode class will be responsible by creating new AgentNode objects and by proxy creating
new AgentView objects. This will be done through two versions of an Add method, which we'll now
implement.In an ideal world, we want to be able to add a specific number agents with a single call, hence the
second version of Add. The first version simply calls the second version with a parameter of 1.

First of all, add this version of Add to AgentListNode:

 public void Add()
{
Add(1);

}

Then, add this method:

 public void Add(int numAgentsToAdd)
{
// loop...
for(int index = 0; index < numAgentsToAdd; index++)
{
// choose the name and the instance...
string agentName = this.Text;
int agentInstance = this.Nodes.Count;

// create a new agent node...
AgentNode newNode = new AgentNode(agentName, agentInstance);

// add the node...
this.Nodes.Add(newNode);
}

// make sure we are expanded...
this.Expand();

}

The alternate version of Add takes an integer that dictates how many new instances to create. The first
few times we run this application we'll use 1.

The name of the new agent is based on the name of this node itself. The instance is based on the total
number of nodes already added to the list of child nodes that AgentListNode knows about. In the first
instance, this will be 0, then 1 and so on. Once the node is created, and therefore the AgentView has
been created in the constructor of AgentNode, we add the node to the list of child nodes. Finally we
make sure that we are expanded.

Case Study – Distributed Processing

21

Now, open the code editor for Form1. Add this member:

 public class Form1 : System.Windows.Forms.Form
 {
 // members...
 private static string _dataPath;
 private AgentListNode _agentListNode;

Then, add this code to the constructor for the form.

public Form1()
{
//
// Required for Windows Form Designer support
//
InitializeComponent();

// create a new agents node...
_agentListNode = new AgentListNode();

// set the name...
_agentListNode.Text = "Chimaera";

// add the node...
treeviewAgents.Nodes.Add(_agentListNode);

// create a single agent...
_agentListNode.Add();

}

Try running the project now and you should see that a single agent called Chimaera.0 is created. You
can use whatever name you like here, but I've used Chimaera.

Showing the "AgentView"
That goes to prove a lot, but we can't actually see the agent view. To fix this we need to listen for
selection changes on the tree control and display the control in the right-hand panel on the form.

If the program is running, close it. Open the Designer for Form1 and double-click on the tree control.
This will usefully create an event handler for AfterSelect, which is exactly what we want. As part of
the arguments for this event we'll be given a TreeNode object that represents the new selection. All we
have to do is cast this to an AgentNode object and use the AgentView member of that object to extract
the corresponding view. We can then add this view to the controls list of the panel on the right hand
side to display the agent. Add this code:

Chapter 19

22

private void treeviewAgents_AfterSelect(object sender,
System.Windows.Forms.TreeViewEventArgs e)

{
// clear the current control...
panelView.Controls.Clear();

// have we selected an agent view?
try
{

AgentNode agentNode = (AgentNode)e.Node;

// ok, we have it, so add it...
panelView.Controls.Add(agentNode.AgentView);
agentNode.AgentView.Dock = DockStyle.Fill;
}
catch
{
}

}

Now run the project and you'll be able to display the view by clicking on Chimaera.0:

Of course, we haven't written any code to update the view, so we'll do that now.

If the program it running, close it and open the code editor for AgentView. Find the
SetAgentDetails method and add this code:

 // SetAgentDetails – set the details for the agent...
public void SetAgentDetails(string agentName, int agentInstance)
{
// set the details...
_agentName = agentName;
_agentInstance = agentInstance;

// formulate a filename...
string filename = Form1.DataPath + "\\" + _agentName +
"." + _agentInstance + ".config";

// load the configuration...
_configuration = Configuration.Load(filename);

Case Study – Distributed Processing

23

// update the display...
labelAgentName.Text = this.ToString();
labelWebServiceUrl.Text = Form1.WebServiceUrl;

}

Next, open the code editor for Form1 and add this member:

public class Form1 : System.Windows.Forms.Form
{
// members...
private static string _dataPath;
private AgentListNode _agentListNode;
public static string WebServiceUrl =

"http://localhost/DistributedCoordinator/Coordinator.asmx";

Run the project now and the agent name and URL of the Web Service should be displayed.

Registering the Agent
We're now at a point where we can ask AgentView to start work. All of the work that the agent has to
perform will be done in a separate thread. We'll use the classes defined in System.Threading to do this.

First of all, open the code editor for AgentView and add this namespace import declaration:

using System;
using System.Collections;
using System.ComponentModel;
using System.Drawing;
using System.Data;
using System.Windows.Forms;
using System.Threading;

Next, add these members:

public class AgentView : System.Windows.Forms.UserControl
{
// members...
private string _agentName;
private int _agentInstance;
private Configuration _configuration;
private Thread _thread;
private bool _isCancelled = false;

To start the thread, we'll add a SpinUp method. (ThreadEntryPoint is undefined at the moment –
we'll build it in a little while.)

// SpinUp - start the thread...
public void SpinUp()
{
// running?
if(_thread == null)
{

Chapter 19

24

// create the thread and start it...
_thread =
new Thread(new ThreadStart(this.ThreadEntryPoint));

_thread.Start();
}
else
throw new Exception("Thread is already running.");

}

We'll also need a corresponding SpinDown method.

// SpinDown - stop the thread...
public void SpinDown()
{
// running?
if(_thread != null)
{
// stop it...
_thread.Abort();
_thread.Join();
_thread = null;
}

}

Whenever the agent has anything to report to the user, it will use a property we need to build called
Status. This will change the value displayed by labelStatus and also add a line of text to textLog.
Add this property to AgentView:

// Status property...
public string Status
{
get
{
return labelStatus.Text;
}
set
{
// set the text...
labelStatus.Text = value;

// update the log...
if(value != "")
{
textLog.Text = DateTime.Now.ToLongTimeString() +
": " + value + "\r\n" + textLog.Text;

}
}

}

You've probably guessed that we'll need a reference to the Web Service sooner or later, so we'll do this
now. Using Solution Explorer, add a Web Reference to the project that points to the
Coordinator.asmx Web Service that we built previously. When the reference has been added,
rename it from localhost (or whatever your server name is) to Coordination.

Case Study – Distributed Processing

25

Finally we can build the ThreadEntryPoint method. This method will coordinate all of the work of
the agent, but specifically we want to be able to call into the Web Service's RegisterAgent method if
we detect that we don't have an agent ID. We'll build in the remainder of the functionality later. Add
this method to AgentView:

// ThreadEntryPoint – start work...
private void ThreadEntryPoint()
{
// tell the user...
Status = "Thread started";

// connect to the service...
Coordination.Coordinator service = new Coordination.Coordinator();

// set the url for the service...
service.Url = Form1.WebServiceUrl;

// do we have an agent ID?
if(Configuration.AgentId == 0)
{
// tell the user...
Status = "Registering agent '" + this.ToString() + "'...";

// get the id...
Configuration.AgentId =

service.RegisterAgent(this.ToString());
}

// tell the user...
Status = "Agent has an ID of " + Configuration.AgentId;

// tell the user...
Status = "Thread finished";

}

At the moment, we haven't called the SpinUp method so the agent will not be called. Add this code to
the existing SetAgentDetails method:

Chapter 19

26

// SetAgentDetails – set the details for the agent...
public void SetAgentDetails(string agentName, int agentInstance)
{
// set the details...
_agentName = agentName;
_agentInstance = agentInstance;

// formulate a filename...
string filename = Form1.DataPath + "\\" + _agentName +

"." + _agentInstance + ".config";

// load the configuration...
_configuration = Configuration.Load(filename);

// update the display...
labelAgentName.Text = this.ToString();
labelWebServiceUrl.Text = Form1.WebServiceUrl;

// spin up...
SpinUp();

}

Run the project and you should find that the agent registers itself:

If you peek into the Agents table, you'll see an entry for the new agent.

Case Study – Distributed Processing

27

Saving the Agent ID
If you run the client again, you'll notice that another agent gets added to the database.

This isn't ideal as there's no reason why we need to create a new agent each time the agent runs. We can
solve this by saving the Configuration object for the agent.

When we loaded the Configuration object using the shared Load method, we stored the filename in
the Filename public member. All we have to do is build a Save method that uses XmlSerializer to
serialize an instance of the object to that file.

Open the code editor for Configuration and add this method:

// Save – save the configuration file...
public void Save()
{
// save it...
FileStream stream = new FileStream(Filename, FileMode.Create);
XmlSerializer serializer = new XmlSerializer(this.GetType());
serializer.Serialize(stream, this);
stream.Close();

}

Now open AgentView and add this call to the ThreadEntryPoint function:

// ThreadEntryPoint – start work...
private void ThreadEntryPoint()
{
// tell the user...
Status = "Thread started";

// connect to the service...
Coordination.Coordinator service = new Coordination.Coordinator();

// set the url for the service...
service.Url = Form1.WebServiceUrl;

// do we have an agent ID?
if(Configuration.AgentId == 0)
{
// tell the user...
Status = "Registering agent '" + this.ToString() + "'...";

TE
AM
FL
Y

Team-Fly®

Chapter 19

28

// get the id...
Configuration.AgentId =

service.RegisterAgent(this.ToString());

// save...
Configuration.Save();
}

// tell the user...
Status = "Agent has an ID of " + Configuration.AgentId;

// tell the user...
Status = "Thread finished";

}

Run the project and a new agent will be registered. However, if you look in the Data folder (remember,
this is a sibling of the bin folder that Visual Studio creates the project executables in), you'll see a
.config file matching the agent name.

Now run the agent again and you should find that the agent will use the old agent ID and not re-register
itself. At this point we'll have some invalid data in the database – feel free to remove the orphaned
agents if you want, but there's no harm in leaving them.

Case Study – Distributed Processing

29

Creating "Distributed.LogAnalyzer"
If you look in the Modules table, you'll notice that we've referred to a class called
Distributed.LogAnalyzer.

This is the class that will process the work unit once it's been downloaded and we need to build this
class now. However, there's a slight wrinkle.

As we mentioned before we want our client application to be able to handle more than one distributed
processing task. Even though in this exercise we're building the system exclusively to analyze server log
fragments, we might later on want to use the system to perform a different kind of processing.

Each of the modules will be derived from a class we'll build in a separate class library. This class will be
called ProcModule. (Short for "ProcessingModule". This is a great example of programmer laziness
– "ProcessingModule" takes so long to type!) These modules will communicate with the AgentView
through an interface called IAgent, also defined in the new class library.

From the Visual Studio menu, select File – Add Project – New Project. Create a new Visual C# – Class
Library project and call it Distributed.

When the project has been created, delete Class1 and create a new class called ProcModule.
(Deleting and creating a new class tends to be less work than renaming an existing class.) Add this code
to the new class:

// ProcessWorkUnit - called when a work unit needs to be processed...
public virtual void ProcessWorkUnit(IAgent agent)
{
}

Then, create a new class called IAgent also in the Distributed project. Change the class definition to
an interface definition and add this code:

public interface IAgent
{
// ui calls...
string Status
{
get;
set;

}
int BarMinimum
{
get;
set;

}
int BarMaximum
{
get;

Chapter 19

30

set;
}
int BarValue
{
get;
set;

}
void IncrementBar();

// work calls...
int AgentId
{
get;

}
string AgentName
{
get;

}
int WorkSetId
{
get;

}
int WorkUnitId
{
get;

}
string WorkUnitFilename
{
get;

}
string ResultUnitFilename
{
get;

}

To access these classes from within the Agent project, you'll need to add a reference to the
Distributed project. Using Solution Explorer, right-click on the References object underneath the
Agent project and select Add Reference. Change to the Projects tab, highlight Distributed and click
Select to and add a reference to the Distributed project.

Case Study – Distributed Processing

31

IAgent provides a number of methods and properties that allow the module to communicate with the agent
that created it.Open the code editor for AgentView and add a reference to the Distributed project.

using System;
using System.Collections;
using System.ComponentModel;
using System.Drawing;
using System.Data;
using System.Windows.Forms;
using System.Threading;
using Distributed;

Also, make the class implement IAgent.

public class AgentView : System.Windows.Forms.UserControl, IAgent
{

The Status and AgentName properties defined in IAgent technically already have an
implementation within AgentView. We need to wire the existing Status property into the IAgent
implementation. Find the Status property and add the Implements call, like this:

 ' AgentName property...
 Public ReadOnly Property AgentName() As String _
 Implements Distributed.IAgent.AgentName
 Get
 Return _agentName

Chapter 19

32

 End Get
 End Property

Add this method to defer the AgentId property to the matching property of the Configuration object:

public int AgentId
{
get
{
return Configuration.AgentId;
}

}

The three properties and one method related to the progress bar simply defer their values to the
barStatus control:

public int BarMaximum
{
get
{
return barStatus.Maximum;
}
set
{
barStatus.Maximum = value;
}

}

public int BarMinimum
{
get
{
return barStatus.Minimum;
}
set
{
barStatus.Minimum = value;
}

}

public int BarValue
{
get
{
return barStatus.Value;
}
set
{
barStatus.Value = value;
}

}

public void IncrementBar()
{
BarValue++;

}

Case Study – Distributed Processing

33

The remaining four properties refer to the actual work unit that the module is destined to process. We'll
need private members for these, which will be filled when we ask the coordination server for the work.

public class AgentView : System.Windows.Forms.UserControl, IAgent
{
// members...
private string _agentName;
private int _agentInstance;
private Configuration _configuration;
private Thread _thread;
private bool _isCancelled = false;
private int _workSetId;
private int _workUnitId;
private string _workUnitFilename;
private string _resultUnitFilename;

Then we need to return these values back:

public int WorkSetId
{
get
{
return _workSetId;
}

}

public int WorkUnitId
{
get
{
return _workUnitId;
}

}

public string WorkUnitFilename
{
get
{
return _workUnitFilename;
}

}

public string ResultUnitFilename
{
get
{
return _resultUnitFilename;
}

}

Creating "Distributed.LogAnalyzer"
Using Solution Explorer, create a new class called LogAnalyzer in the Distributed project. This
new class will have a full name of Distributed.LogAnalyzer, which fits in with the name we're
trying to get.

Chapter 19

34

When the code editor for the new class appears, add this code:

 public class LogAnalyzer : ProcModule
{
public override void ProcessWorkUnit(IAgent agent)
{
// tell the user...
agent.Status = "Processor started";

// we'll write code here later on...

// tell the user...
agent.Status = "Processor finished";

}
}

When the client starts, it will scan all of the assemblies installed in the directory it's installed in looking
for types that are derived from Distributed.ProcModule. Once it finds one, it will create an
instance of it and add it to a collection for later use by the agent code. For this to work, we need to get
both the Agent and Distributed projects to compile into the same folder on our disk.

Using Solution Explorer, right-click on the Agent project and select Properties. Using the list on the
left, expand Configuration Properties and select Build. Set the Output Path to c:\Wrox
WorkSets\Agent\bin. (You don't have to use this folder, but if you use a different one, remember to use
the folder used here when you change the same Output Path property for the Distributed project.)

Case Study – Distributed Processing

35

Now, click OK and open the same dialog for the Distributed project. Change the Output Path value
to the same folder name.

Click OK. The projects should build as normal, but if you look in the output folder you'll find
both assemblies.

Finding "ProcModules"
Now we need to provide a way for the client to scan through the assemblies installed in the folder and
for the client to hold a collection of appropriate objects in a collection.

In the Distributed project, create a new class called ProcModuleCollection. Inherit this class
from CollectionBase and add the standard Add, Remove and Item members.

public class ProcModuleCollection : System.Collections.CollectionBase
{
// Add - add a module...
public void Add(ProcModule module)
{
List.Add(module);

}

// Remove - remove a module...
public void Remove(ProcModule module)
{
List.Remove(module);

}

// Item...
public ProcModule this[int index]
{
get
{
return (ProcModule)List[index];
}
set
{
List[index] = value;
}

}
}

The classes that we need to scan assemblies and read metadata are included in the System.Reflection
namespace. We'll also need System.IO. Add these namespace import declarations:

Chapter 19

36

using System;
using System.IO;
using System.Reflection;

To scan the folder, we'll need two methods. The first, ScanFolder, accepts a folder as input and looks
through each of the files looking for DLL files. The second, ScanAssembly, accepts the path of an assembly
as input and looks through each of the types defined therein for ones derived from ProcModule.

The implementation of ScanFolder is quite straightforward and uses the
System.IO.DirectoryInfo and System.IO.FolderInfo classes to look for all of the files in the
given folder. Any files with an extension of .dll are loaded using the shared LoadFrom method of
System.Runtime.Assembly and passed over to ScanAssembly for further processing.

 // ScanFolder – look through a folder for assemblies...
public void ScanFolder(string folderName)
{
// get the folder...
DirectoryInfo folder = new DirectoryInfo(folderName);

// go through each file...
foreach(FileInfo file in folder.GetFiles())
{
// do we have a dll?
if(String.Compare(file.Extension, ".dll", true) == 0)
{
// load the assembly...
Assembly testAssembly = null;
try
{
testAssembly = Assembly.LoadFrom(file.FullName);

// try it...
ScanAssembly(testAssembly);
}
catch
{
}

}
}

}

Once we have an assembly, we can use GetTypes to return a collection of System.Type objects, each
one representing a class in the assembly. The BaseType property of System.Type tells us what type
the class is derived from. As our processor class might be derived from another class derived from
ProcModule, we have to walk up the BaseType tree. If we find a type that appears to derive from
ProcModule, we create an instance of it and add it to the collection.

// ScanAssembly – look through the types in the assembly...
public void ScanAssembly(Assembly testAssembly)
{
// loop the types...
foreach(Type type in testAssembly.GetTypes())
{
// is it derived?
bool valid = false;

Case Study – Distributed Processing

37

Type baseType = type.BaseType;
while(baseType != null)
{
// match?
if(baseType == typeof(ProcModule))
{
valid = true;
break;
}

// next...
baseType = baseType.BaseType;

}

// is this type valid?
if(valid == true)
{
try
{
ProcModule instance =
Activator.CreateInstance(type);

// add it...
Add(instance);
}
catch
{
}

}
}

}

This scanning process has to happen once whenever the client is first started. Likewise, Form1 will hold
a ProcModuleCollection object as a shared field for all of the AgentView classes to use. Add this
member to Form1:

public class Form1 : System.Windows.Forms.Form
{
// members...
private static string _dataPath;
private AgentListNode _agentListNode;
public static string WebServiceUrl =
"http://localhost/DistributedCoordinator/Coordinator.asmx";

public static Distributed.ProcModuleCollection Modules =
new Distributed.ProcModuleCollection();

Next, add this code to the constructor for Form1:

public Form1()
{
//
// Required for Windows Form Designer support
//
InitializeComponent();

// scan the modules...
FileInfo info = new FileInfo(Application.ExecutablePath);

TE
AM
FL
Y

Team-Fly®

Chapter 19

38

Modules.ScanFolder(info.DirectoryName);
MessageBox.Show(Modules.Count.ToString());

// create a new agents node...
_agentListNode = new AgentListNode();

// set the name...
_agentListNode.Text = "Chimaera";

// add the node...
treeviewAgents.Nodes.Add(_agentListNode);

// create a single agent...
_agentListNode.Add();

}

Run the project and you'll see a basic debugging message box stating the number of ProcModule
objects contained in the Modules collection.

Close the client and remove the line of code that displays message box – we'll assume that the loaded
module is indeed Distributed.LogAnalyzer.

Requesting a Work Unit
We can now move on to the task of getting an agent to request a work unit. To do this, we need to pass
a list of the modules that we know about to the coordination Web Service. The service will look at the
work sets that are still being processed and find out which ones the agent is capable of doing. When the
service finds a work unit, it will return a structure containing the work unit ID, the work set ID and the
name of the module. When we ask the service for a work unit we'll also pass in the ID of the agent.

The algorithm we're going to follow when requesting work units will look like this:

❑ Older work units will be assumed to have precedence. As we're using identity fields in the
WorkSet table, we'll assume that the lower the ID, the older the work set. Therefore, by
selecting out work sets in ascending ID order, we'll get them in age order. We'll also assume
that a work set is unfinished when the WorkUnitsCompleted value is less than
TotalWorkUnits.

❑ For each work set we'll check the module ID. If the agent doesn't support the module, we'll
move on to the next one.

❑ If the agent does support the module, we'll go through the work units for the module, again in
ascending ID order. We'll look for ones with a Status code of 0, "unprocessed" in other
words. If we find one, we allocate the work unit to the agent.

❑ If we don't find one, we look for work units with a Status code of 1 that have expired. If we
find one, we'll allocate that work unit to the agent.

Case Study – Distributed Processing

39

❑ If there are no work units remaining, we'll assume that no work is outstanding on that work set
and we'll try and find another work set.

❑ If no work units can be found, we'll assume there's nothing for the agent to do.In our
implementation the agent will stop at this point, but in a production environment you'd most
likely want to get the agent to wait for a period of time before trying again.

Implementing "RequestWorkUnit"
Open the DistributedCoordinator Web Service project and using Solution Explorer create a new
class called WorkRequest. Replace the default class definition with this code that defines a structure

public struct WorkRequest
{
// members...
public int WorkSetId;
public int WorkUnitId;
public string ModuleName;
}

Add these methods to Coordination.asmx.cs:

protected DataSet CallGetAllModules(string dbString)
{
// connect...
SqlConnection connection = new SqlConnection(dbString);
connection.Open();

// create a command...
SqlCommand command = new SqlCommand("GetAllModules", connection);
command.CommandType = CommandType.StoredProcedure;

// extract the dataset...
SqlDataAdapter adapter = new SqlDataAdapter(command);
DataSet dataSet = new DataSet();
adapter.Fill(dataSet);
adapter.Dispose();

// cleanup...
command.Dispose();
connection.Close();

// return...
return dataSet;

}

protected DataSet CallGetIncompleteWorkSets(string dbString)
{
// connect...
SqlConnection connection = new SqlConnection(dbString);
connection.Open();

// create a command...
SqlCommand command =
new SqlCommand("GetIncompleteWorkSets", connection);

Chapter 19

40

command.CommandType = CommandType.StoredProcedure;

// extract the dataset...
SqlDataAdapter adapter = new SqlDataAdapter(command);
DataSet dataSet = new DataSet();
adapter.Fill(dataSet);
adapter.Dispose();

// cleanup...
command.Dispose();
connection.Close();

// return...
return dataSet;

}

protected int CallGetNextWorkUnitForWorkSet(string dbString,
int workSetId)

{
// connect...
SqlConnection connection = new SqlConnection(dbString);
connection.Open();

// create a command...
SqlCommand command =
new SqlCommand("GetNextWorkUnitForWorkSet", connection);
command.CommandType = CommandType.StoredProcedure;

// params...
SqlParameter workSetIdParam =
command.Parameters.Add("@workSetId", SqlDbType.Int);
workSetIdParam.Value = workSetId;

// add a return param...
SqlParameter returnValueParam =
command.Parameters.Add("@returnValue", SqlDbType.Int);
returnValueParam.Direction = ParameterDirection.ReturnValue;

// execute...
command.ExecuteNonQuery();

// cleanup...
command.Dispose();
connection.Close();

// return...
return returnValueParam.Value;

}

protected void CallAssignWorkUnit(string dbString, int agentId,
int workUnitId)

{
// connection...
SqlConnection connection = new SqlConnection(dbString);
connection.Open();

// create a command...
SqlCommand command = new SqlCommand("AssignWorkUnit", connection);

Case Study – Distributed Processing

41

command.CommandType = CommandType.StoredProcedure;

// params...
SqlParameter agentIdParam =
command.Parameters.Add("@agentId", SqlDbType.Int);

agentIdParam.Value = agentId;
SqlParameter workUnitIdParam =
command.Parameters.Add("@workUnitId", SqlDbType.Int);

workUnitIdParam.Value = workUnitId;

// execute...
command.ExecuteNonQuery();

// cleanup...
command.Dispose();
connection.Close();

}

The GetAllModules stored procedure looks like this:

CREATE PROCEDURE GetAllModules AS
 select ModuleId, Name from Modules order by name

No problems there – all we're doing is selecting the contents of the Modules table.

The GetIncompleteWorkSets stored procedure looks like this:

CREATE PROCEDURE GetIncompleteWorkSets
AS
 select WorkSetId from worksets where workunitsprocessed < totalworkunits
 order by worksetid

This stored procedure selects out the IDs of all the work sets where WorkUnitsProcessed is less than
TotalWorkUnits. The IDs are returned in order so that the older work sets are processed before the
newer work sets.

The GetNextWorkUnitForWorkSet stored procedure looks like this:

CREATE PROCEDURE GetNextWorkUnitForWorkSet
(
 @workSetId int
)
 AS

 /* try and select the next available with a status of 0 */
 declare @workUnitId int
 select top 1 @workUnitId=WorkUnitId from WorkUnits
 where worksetid=@worksetid and status=0 order by workunitid asc

 /* did we get anything? */
 if @@rowcount = 0
 begin

Chapter 19

42

 /* get an expired one... */
 select @workunitid=workunitid from workunits where agentid in (
 select top 1 agents.agentid from agents
 inner join workunits on agents.currentworkunitid =
 workunits.workunitid
 where getdate() > workunitexpires and worksetid=@worksetid
) order by workunitid

 end

 /* return the id... */
 return @workunitid

This is a relatively complex stored procedure, but most of the magic that allocates work units to agents
happens here. First of all, the first work unit with a status of 0 is found. If there isn't one, (they've all
been processed ("2") or they're being processed ("1")) then we find the next work unit from an agent
that's expired. We're not too worried about what happens when an agent returns work that's been
allocated to another agent – we'll handle this later.

Finally, AssignWorkUnit looks like this:

CREATE PROCEDURE AssignWorkUnit
(
 @agentId int,
 @workUnitId int = -1
)
as
 /* is the agent already marked as doing a unit? */
 declare @currentUnit int
 select @currentunit=currentworkunitid from agents where agentid=@agentid
 if @currentunit <> 0
 begin
 update workunits set agentid=null, status=0
 where workunitid=@currentunit
 end

 /* update agents... */
 update agents set lastrequest=getdate(),
 currentworkunitid=@workunitid,
 workunitexpires=getdate()+1 where agentid=@agentid

 /* update workunits... */
 update workunits set status=1, agentid=@agentid where workunitid=@workunitid

What we're doing first of all is looking to see if the agent is already assigned a work unit. If the agent is
assigned a unit, we can assume that if it's asking again it needs to put the old work unit back into the
pool. This will happen if the agent is closed while it is processing a work unit.

We then update Agents to store the agent's new work unit ID and pick an expiry time. We're choosing
an expiry time 24 hours after allocation. (Hence the +1.)

We then update WorkUnits, changing the Status to 1 and assigning the agent ID.

Case Study – Distributed Processing

43

Now that we've created methods for handling those four stored procedures, we'll look at the method.
Create this method header in Coordination.asmx.cs:

[WebMethod()] public WorkRequest RequestWorkUnit(int agentId,
string[] moduleNames)

{

We need to store the request in a new WorkRequest structure.

// create somewhere to store the request...

 WorkRequest request = new WorkRequest();

We then load all of the modules from the database. There should only be a few, so there's no problem
in loading them here – although you might want to consider caching this list.

 // load all of the modules...
DataSet modules = CallGetAllModules(DbString);

We then select out all of the incomplete work sets and loop through them, one by one.

// load all of the incomplete worksets...
DataSet incompleteWorkSets = CallGetIncompleteWorkSets(DbString);

// go through the work sets one by one...
foreach(DataRow workSetRow in incompleteWorkSets.Tables[0].Rows)
{

As a parameter to this method, we've been given an array containing the names of all of the modules
that the client understands in moduleNames. What we have to do is, per work set, look at the module
ID. We then look through the IDs stored in the modules DataSet looking for one that matches the
module of the work set that we're currently looking at. If we find a match there, we look through
moduleNames to make sure that the name of the module exists in the array; hence the client
understands the module.

// do we have the module...
string moduleToUse = "";
foreach(DataRow moduleRow in modules.Tables[0].Rows)
{
// is this the one we want?
if(workSetRow["ModuleId"] == moduleRow["ModuleId"])
{
// does the name exist in the array...
foreach(string moduleName in moduleNames)
{
if(string.Compare(moduleName,
moduleRow["Name"].ToString(), true) == 0)
{
// the agent does have the module!
oduleToUse = moduleName;
break;
}

}

// stop...

Chapter 19

44

break;
}

}

If the client is able to process the work unit, we ask the database to return a work unit.

// does the agent have the module?
if(moduleToUse != "")
{
// try and get a work unit...
int workUnitId =
CallGetNextWorkUnitForWorkSet(DbString,
(int)workSetRow["WorkSetId"]);

If we get one, then great! We can populate request and assign the work unit to the agent. Importantly,
we use Exit For to drop out of the loop that's scanning through all of the incomplete work sets. That
way, if there were no work units available for this work set, we'd automatically drop through and try
working with the next incomplete work set.

if(workUnitId != 0)
{

// ok, we now need a work unit for that module...
request.WorkSetId = (int)workSetRow["WorkSetId"];
request.WorkUnitId = workUnitId;
request.ModuleName = moduleToUse;

// now, assign this work unit to this agent...
CallAssignWorkUnit(DbString, agentId,
request.WorkUnitId);

// stop looking...
break;
}

Finally, we return the request. If WorkUnitId is 0, the agent should assume that there's nothing for it to
do, otherwise it should create an instance of the required module and start work.

' return the request...
Return request

}

To make these new methods available to our agent, re-build the Coordination project.

Calling "RequestWorkUnit"
To call RequestWorkUnit, we need to tweak our ProcModuleCollection object so that it's capable
of returning an array of strings – each item in the array representing one of the classes inherits from
ProcModule that the client knows about.

Flip back to the Distributed project and add this method to ProcModuleCollection:

// GetNames – return an array of names...
public string[] GetNames()
{

Case Study – Distributed Processing

45

// create a new array...
string[] names = new string[this.Count];

// loop...
int index = 0;
foreach(ProcModule procModule in this.InnerList)
{
names[index] = procModule.ToString();
index++;
}

// return it...
return names;

}

Using Solution Explorer, right-click on the Coordination Web Service under the Agent project and
select Update Web Reference. This will allow you to call the server's RequestWorkUnit method.

Open the code editor for AgentView and find the ThreadEntryPoint method. Add this code that
will call RequestWorkUnit on the server.

// ThreadEntryPoint – start work...
private void ThreadEntryPoint()
{
// tell the user...
Status = "Thread started";

// connect to the service...
Coordination.Coordinator service = new Coordination.Coordinator();

// set the url for the service...
service.Url = Form1.WebServiceUrl;

// do we have an agent ID?
if(Configuration.AgentId == 0)
{
// tell the user...
Status = "Registering agent '" + this.ToString() + "'...";

// get the id...
Configuration.AgentId =
service.RegisterAgent(this.ToString());

// save...
Configuration.Save();
}

// tell the user...
Status = "Agent has an ID of " + Configuration.AgentId;

// request a work unit...
Coordination.WorkRequest request =
service.RequestWorkUnit(Configuration.AgentId,
Form1.Modules.GetNames());

// did we get one?
if(request.WorkUnitId != 0)
{

Chapter 19

46

// tell the user...
Status = "Processing work unit " +
request.WorkUnitId +" with module " +
request.ModuleName;

}
else
{
// tell the user...
Status = "The agent was given nothing to do.";
}

// tell the user...
Status = "Thread finished";

}

Run the project. If you look at the view for Chimaera.0, you'll notice that we were given a work unit:

Look in the WorkUnits table and you'll notice that the unit has been assigned to an agent:

Case Study – Distributed Processing

47

The Agents table also reports the activity of the agent:

Finally, you'll see that the WorkSets table indicates that one of the units is out being processed:

Processing the Work
Although we can allocate a work unit to an agent, we haven't yet provided a way to download the data
behind the work unit from the server. We'll create a new method called GetWorkData to the agent.

If and when we decide to use FTP to transfer work and result data between
client and server, it's this method that we'd need to replace.

Add these methods to Coordination.asmx.cs:

protected int CallGetAgentForWorkUnit(string dbString, int workUnitId)
{
// connect...
SqlConnection connection = new SqlConnection(dbString);
connection.Open();

// create a command...
SqlCommand command = new SqlCommand("GetAgentForWorkUnit",

connection);
command.CommandType = CommandType.StoredProcedure;

// params...
SqlParameter workUnitIdParam =
command.Parameters.Add("@workUnitId", SqlDbType.Int);
workUnitIdParam.Value = workUnitId;

TE
AM
FL
Y

Team-Fly®

Chapter 19

48

// add a return param...
SqlParameter returnValueParam =
command.Parameters.Add("@returnValue", SqlDbType.Int);
returnValueParam.Direction = ParameterDirection.ReturnValue;

// execute...
command.ExecuteNonQuery();

// cleanup...
command.Dispose();
connection.Close();

// return...
return (int)returnValueParam.Value;

}

protected string CallGetFilenameForWorkUnit(string dbString,
int workUnitId)

{
// connect...
SqlConnection connection = new SqlConnection(dbString);
connection.Open();

// create a command...
SqlCommand command =
new SqlCommand("GetFilenameForWorkUnit", connection);

command.CommandType = CommandType.StoredProcedure;

// params...
SqlParameter workUnitIdParam =
command.Parameters.Add("@workUnitId", SqlDbType.Int);
workUnitIdParam.Value = workUnitId;
SqlParameter filenameParam =
command.Parameters.Add("@filename", SqlDbType.VarChar, 255);
filenameParam.Direction = ParameterDirection.Output;

// execute...
command.ExecuteNonQuery();

// cleanup...
command.Dispose();
connection.Close();

// return...
return (string)filenameParam.Value;

}

The code for GetAgentForWorkUnit looks like this:

CREATE PROCEDURE GetAgentForWorkUnit
(
 @workUnitId int
)
as
 declare @agentid int
 select @agentid=agentid from workunits where workunitid=@workunitid
 return @agentid

Case Study – Distributed Processing

49

The code for GetFilenameForWorkUnit looks like this:

CREATE PROCEDURE GetFilenameForWorkUnit
(
 @workUnitId int,
 @filename varchar(255) out
)
 AS
 select @filename=filename from workunits where workunitid=@workunitid

Now, add this new method to Coordination.asmx.vb:

[WebMethod()] public string GetWorkData(int agentId, int workUnitId)
{
// does the agent own the work unit?
int assignedAgentId =
CallGetAgentForWorkUnit(DbString, workUnitId);

// match?
string data = "";
if(assignedAgentId == agentId)
{
//get the filename
string filename =
CallGetFilenameForWorkUnit(DbString, workUnitId);

// read it all...
FileStream stream = new FileStream(filename, FileMode.Open);
StreamReader reader = new StreamReader(stream);
data = reader.ReadToEnd();
reader.Close();
stream.Close();
}
else
{
// throw an exception...
throw new
Exception("Agent is not allocated this work unit");

}

// return the data...
return data;

}

Build the project. You can test this new method by running the project and selecting the GetWorkData
method from the list.

You'll notice in this method that we've asked for both an agent ID and a work unit ID. This is a simple
security measure to deter would-be-crackers from attempting to download the entire work set by repeatedly
calling this method providing incremental work unit IDs. This is an essential precaution when working with
Web Services – make sure that you only return data that the client is allowed to have.

Open the Agent project and find AgentView. Using Solution Explorer, right-click the Coordination
Web Service and select Update Web Reference. GetWorkData will now become available.

Chapter 19

50

Next, find the ThreadEntryPoint method and add this code. (I've omitted some code for brevity.)

// request a work unit...
Coordination.WorkRequest request =
service.RequestWorkUnit(Configuration.AgentId,
Form1.Modules.GetNames());

// did we get one?
if(request.WorkUnitId != 0)
{
// tell the user...
Status = "Processing work unit " +
request.WorkUnitId +" with module " +
request.ModuleName;

// we need to download the work from the server...
string data =
service.GetWorkData(Configuration.AgentId,
request.WorkUnitId);

// get filenames...
_workUnitFilename = Form1.DataPath + "\\" +
this.ToString() + "." +
request.WorkUnitId.ToString() + ".unit";

_resultUnitFilename = Form1.DataPath + "\\" +
this.ToString() + "." + request.WorkUnitId.ToString()
+ ".result";

// create the file...
FileInfo info = new FileInfo(_workUnitFilename);
if(info.Exists == true)
info.Delete();

FileStream stream =
new FileStream(_workUnitFilename, FileMode.Create);

StreamWriter writer = new StreamWriter(stream);
writer.Write(data);

writer.Close();
stream.Close();
Status = "Work data saved to: " + _workUnitFilename;
Status = "Results will be saved to: " + _resultUnitFilename;

// find the module...
ProcModule procModule =

Form1.Modules.Find(request.ModuleName);
if(procModule != null)
{
// call it...
procModule.ProcessWorkUnit(this);

}
}
else
{
// tell the user...
Status = "The agent was given nothing to do.";
}

The first thing we're doing there is making up two filenames. These will be based on the format
AgentName.WorkUnitId.unit and AgentName.WorkUnitId.result. Once we have the
filenames, we create a new .unit file and save the data.

Case Study – Distributed Processing

51

The Find method on ProcModuleCollection is yet to be built, but you can probably guess here that
it is used to look through the modules for ones with a given name. When it finds it, it calls
ProcessWorkUnit passing over a reference to the current AgentView instance. As AgentView
implements IAgent, the processor will be able to talk back to the client.

Before we can run the project we need to add that Find method. Open the code editor for
ProcModuleCollection and add this code:

// Find – find a module with the given name...
public ProcModule Find(string searchFor)
{
// loop...
foreach(ProcModule procModule in this.InnerList)
{
if(string.Compare(procModule.ToString(), searchFor, true)

== 0)
return procModule;

}
return null;

}

Run the project and the log will report that a new work unit has been allocated and that the processor
has been called. (Remember, the Processor finished and Processor started messages are sent from
within the processor. We did this when we first created LogAnalyzer.)

In addition, if you look in the Data folder, you'll see the .unit file. Its contents will match the
equivalent data file held on the server – although in this case the server is the same computer! Now that
we have downloaded the data, we're ready to process it and return the results.

Chapter 19

52

Returning Result Units
To process the results, we need to load the data contained within the .unit file and create a new
.result file. We'll need to add some code to LogAnalyzer, which we can find in the client-side
Distributed project.

What we're trying to do is get LogAnalyzer to produce an XML file that fits this format:

<Results>
 <Day>
 <Year>2001</Year>
 <Month>8</Month>
 <Day>22</Day>
 <Pages>
 <Page>
 <Name>/coffee.aspx</Name>
 <Hits>27</Hits>
 </Page>
 <Page>
 <Name>/default.aspx</Name>
 <Hits>105</Hits>
 </Page>
 </Pages>
 </Day>
 <Day>
 <Year>2001</Year>
 <Month>8</Month>
 <Day>21</Day>
 <Pages>
 <Page>
 <Name>/coffee.aspx</Name>
 <Hits>99</Hits>
 </Page>
 <Page>
 <Name>/default.aspx</Name>
 <Hits>667</Hits>
 </Page>
 </Pages>
 </Day>
</Results>

One easy way to do this is to build two classes that represent the day (Day) and the page (Page) and an
additional two classes that hold a collection of Day objects and Page objects. If we play our cards right,
we can use System.Xml.Serialization.XmlSerializer to take these objects that we build and
spit out XML that we can save into our .result file.

First off, let's create our Page class. Create a new class and add this code to the Distributed project:

public class Page
{
// members...
public string Name;
public int Hits;

Case Study – Distributed Processing

53

public Page()
{
}

public Page(string name)
{
this.Name = name;

}
}

Now, create a new class called Day and add this code:

[Serializable()] public class Day
{
// members...
public int Year;
public int Month;
public int DayDay;
public PageCollection Pages = new PageCollection();

public Day()
{
}

public Day(DateTime newDate) : this(newDate.Year, newDate.Month, newDate.Day)
{
}

public Day(int newYear, int newMonth, int newDay)
{
Year = newYear;
Month = newMonth;
DayDay = newDay;

}
}

To hold a collection of Page objects, we'll create a new PageCollection class and inherit it from
System.Collections.CollectionBase. Create a new class and add this code:

public class PageCollection : System.Collections.CollectionBase
{
public void Add(Page newPage)
{
List.Add(newPage);

}

public void Remove(Page oldPage)
{
List.Remove(oldPage);

}

public Page this[int index]
{
get
{
return (Page)List[index];

Chapter 19

54

}
set
{
List[index] = value;
}

}

// Find – find a page...
public Page Find(string name)
{
foreach(Page page in this.InnerList)
{
if(string.Compare(page.Name, name, true) == 0)
return page;

}
return null;

}
}

When we process the .unit file, we'll need to find a Page object matching a particular name. The
Find method provides that functionality.

We also need a class to hold a collection of Day objects. Because the top-level tag in our XML file
should be called Results, rather than calling our new collection DayCollection as .NET guidelines
suggest, we'll call it Results. That way when XmlSerializer spits out our XML, the top-level tag
will be called Results and not DayCollection.

using System;
using System.IO;
using System.Xml.Serialization;

namespace Distributed
{
public class Results : System.Collections.CollectionBase
{
public void Add(Day newDay)
{
List.Add(newDay);

}

public void Remove(Day oldDay)
{
List.Remove(oldDay);

}

public Day this[int index]
{
get
{
return (Day)List[index];
}
set
{
List[index] = value;
}

}
}

}

Case Study – Distributed Processing

55

This class will also need a Find method:

// Find - find a day...
public Day Find(DateTime findDate)
{
return Find(findDate.Year, findDate.Month, findDay.Day);

}

public Day Find(int findYear, int findMonth, int findDay)
{
// loop...
foreach(Day day in this.InnerList)
{
// compare?
if(day.Year == findYear && day.Month == findMonth

&& day.DayDay == findDay)
return day;

}
return null;

}

It will also need a Save method that uses XmlSerializer:

// Save – save the results to a file...
public void Save(string filename)
{
// create the file...
FileStream stream = new FileStream(filename, FileMode.Create);

// serialize it...
XmlSerializer serializer = new XmlSerializer(this.GetType());
serializer.Serialize(stream, this);

// close...
stream.Close();

}

Now we can process the file. Open the code editor for LogAnalyzer and add this namespace import
declaration for System.IO to the top of the listing:

using System;
using System.IO;
using System.Collections;

We'll add some code to the ProcessWorkUnit method that we started earlier, specifically to add useful
code instead of the "We'll add code here later" comment.

public override void ProcessWorkUnit(IAgent agent)
{
// tell the user...
agent.Status = "Processor started";

Firstly, we'll open up the .unit file and store each line separately in an array. We'll then loop through
the array in the second phase. We could process the file in a single loop, but this method provides us
with the number of entries in the file and allows us to display a progress bar tracking the process.

Chapter 19

56

// load up the file...
agent.Status = "Loading work unit from file...";
FileStream stream =
new FileStream(agent.WorkUnitFilename, FileMode.Open);
StreamReader reader = new StreamReader(stream);

// read each line in turn and hold it in an array...
ArrayList entries = new ArrayList();
string entry = "";
while(true)
{
// get the string...
entry = reader.ReadLine();
if(entry = "")
break;

// add it...
entries.Add(entry);
}

// close the file...
reader.Close();
stream.Close();

We're going to store the results in a new Results object:

// create a new results object...
Results results = new Results();

We can now walk through each line. We configure the progress bar that we can access through IAgent
with the minimum, maximum and current values.

// now we can process each line...
agent.Status = "Processing " & entries.Count & " entries...";
agent.BarMinimum = 0;
agent.BarMaximum = entries.Count;
agent.BarValue = 0;
foreach(string workEntry in entries)
{

Each line represents a request for a resource from the Web server. Each part of that request is separated
with a space, so we use Split to create an array of fields from the entry.

// split it into fields...
string[] fields = workEntry.Split(' ');

The date is always in yyyy-mm-dd format, so breaking it up is quite easy. We can create a new
System.DateTime object from the values we get.

// work out the date...
int theYear = int.Parse(fields[0].Substring(0, 4));
int theMonth = int.Parse(fields[0].Substring(5, 2));
int theDay = int.Parse(fields[0].Substring(8, 2));
DateTime entryDate = new DateTime(theYear, theMonth,

theDay);

Case Study – Distributed Processing

57

The other field we need is the page that was requested. This is held in the fifth element of the array.

// get the other info...
string entryPage = fields[4];

We then ask the results collection to find a Day object for the date that we're working with. If we
don't have one, we create a new one and add it to the collection.

// find the date...
Day day = results.Find(entryDate);
if(day == null)
{
day = new Day(entryDate);
results.Add(day);

}

Once we have a day we can do the same trick – we use the Pages property to access a
PageCollection collection and then attempt to find an existing Page object that represents the page.
(In our Find method we've done a case-insensitive search for the name. On Windows, files are case
insensitive so hello.DAT is the same as HeLLo.dAt. This is not the case on UNIX systems; so if you're
adapting this to work on that platform, don't do a case-insensitive comparison!)

// find the page...
Page page = day.Pages.Find(entryPage);
if(page == null)
{
page = new Page(entryPage);
day.Pages.Add(page);

}

Eventually we'll have a Page object that belongs to the correct Day object. We increase the hits.

// increment the hit...
page.Hits += 1;

We then move the progress bar…

 // next...
agent.IncrementBar();

Finally, we wait for 1/10th of a second. This is to slow down the process so we can see what's going on
when debugging! Obviously in a production system we wouldn't want to do this.

// fake longer work...
System.Threading.Thread.Sleep(100);
}

Finally we can save the results.

// save...
results.Save(agent.ResultUnitFilename);

 // tell the user...
agent.Status = "Processor finished";

}

TE
AM
FL
Y

Team-Fly®

Chapter 19

58

Run the project. The agent will process the work unit and you'll find the .result file in the c:\Wrox
WorkSets\Agent\Data folder.

Open the file using Internet Explorer and you'll see some XML that matches the format defined before.
(Ignore the xmlns:xsi attribute on the Results tag. It's something XmlSerializer needs, but not
something that should bother us.)

<?xml version="1.0"?>
<Results xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <Day>
 <Year>2001</Year>
 <Month>8</Month>
 <Day>17</Day>
 <Pages>
 <Page>
 <Name>/error.aspx</Name>
 <Hits>4</Hits>
 </Page>
 <Page>
 <Name>/coffee.aspx</Name>
 <Hits>5</Hits>
 </Page>
 <Page>
 <Name>/services.aspx</Name>
 <Hits>3</Hits>
 </Page>
 ...

Returning Results
Processing the results on the server is just half the battle. We need to pass the results back from the
client to the server if we want to analyze the data!

We'll rely on the AgentView itself to pass the data back. After calling ProcessWorkUnit, it will look
to see if the new .result file has been created and, if it has, it will read the contents and then call
another method on the Web Service to pass the data back.

First of all, we need to add the method to the Web Service. Open the DistributedCoordinator project.

The SetWorkData method is pretty similar to GetWorkData. As before, the first thing we do is check the
assigned agent ID against the agent ID that's giving back the result data. This time, however, we don't want to
throw an exception if the IDs do not match, as we'll assume that what's happened is the work unit has been
assigned to another client because the original client took too long sending the results.

Case Study – Distributed Processing

59

 [WebMethod()] public void SetWorkData(int agentId, int workUnitId,
string data)

{
// does the agent match?
int assignedAgentId = CallGetAgentForWorkUnit(DbString,

workUnitId);
if(assignedAgentId == agentId)
{

If we're OK, we get the filename back for the work unit and replace the .unit extension with a
.result extension.

// get the filename...
string filename =
CallGetFilenameForWorkUnit(connection, workUnitId);

filename = filename.Replace(".unit", ".result");

Next we create a new file and save the contents of data passed through the data parameter into that file.

 // save it...
FileStream stream = new FileStream(filename,

FileMode.Create);
StreamWriter writer = new StreamWriter(stream);
writer.Write(data);
writer.Close();
stream.Close();

Finally we need to complete the MarkWorkUnitAsCompleted stored procedure. You'll need to use
SprocCaller to create the method to call the procedure, and we'll take a look at its code in a moment.

 // mark it as done...
CallMarkWorkUnitAsCompleted(DbString, workUnitId);
}

 }

Build the project now, but before we go back to the client let's take a look at the SQL source for
MarkWorkUnitAsCompleted.

CREATE PROCEDURE MarkWorkUnitAsCompleted
(
 @workUnitId int
)
AS
 /* reset the work unit... */
 update workunits set agentid=null, status=2 where workunitid=@workunitid

 /* reset the agent(s)... */
 update agents set currentworkunitid=null, workunitexpires=null
 where currentworkunitid=@workunitid

The procedure is pretty straightforward. The first thing we do is update WorkUnits so that the current
work unit is marked as completed and the agent ID removed. Finally we update Agents to "disconnect"
any agents that are registered as working with the work unit ID.

Chapter 19

60

Here's the code to access it:

protected void CallMarkWorkUnitAsCompleted(string dbString,
int workUnitId)

{
// connect...
SqlConnection connection = new SqlConnection(dbString);
connection.Open();

// create a command...
SqlCommand command =
new SqlCommand("MarkWorkUnitAsCompleted", connection);

command.CommandType = CommandType.StoredProcedure;

// params...
SqlParameter workUnitIdParam =
command.Parameters.Add("@workUnitId", SqlDbType.Int);

workUnitIdParam.Value = workUnitId;

// execute...
command.ExecuteNonQuery();
connection.Close();

// cleanup...
command.Dispose();

}

Let's turn our attention to the client. Firstly, using Solution Explorer update the Coordination Web
reference. This will make the SetWorkData available to us.

Find the ThreadEntryPoint method on AgentView. Make this change to the code: (we've omitted
quite a lot of the code for brevity.)

// create the file...
FileInfo info = new FileInfo(_workUnitFilename);
if(info.Exists == true)
info.Delete();

FileStream stream = new FileStream(_workUnitFilename, FileMode.Create);
StreamWriter writer = new StreamWriter(stream);
writer.Write(data);
writer.Close();

stream.Close();
Status = "Work data saved to: " + _workUnitFilename;
Status = "Results will be saved to: " + _resultUnitFilename;

// find the module...
ProcModule procModule = Form1.Modules.Find(request.ModuleName);
if(procModule != null)
{
// call it...
procModule.ProcessWorkUnit(this);

// ok, open the unit...
FileInfo resultInfo = new FileInfo(_resultUnitFilename);
if(resultInfo.Exists == true)
{
// load the data...

Case Study – Distributed Processing

61

FileStream resultStream = new FileStream(_resultUnitFilename, FileMode.Open);
StreamReader reader = new StreamReader(resultStream);
string resultData = reader.ReadToEnd();
reader.Close();
resultStream.Close();

// set the unit back...
service.SetWorkData(Configuration.AgentId,
request.WorkUnitId, resultData);

}
}

Now run up the client and wait for the work unit to be completed.

This time we need to look for the .result file not in the c:\Wrox WorkSets\Agent\Data folder,
but rather in the folder assigned to the work set itself. Remember, the .result file will not be named
after the work unit ID as it was on the client. (In the last run reported in the screenshot above, I was
given a work unit with an ID of 3544.) Instead it will be named as an ordinal of the work unit. Mine
happens to be 17. Use the Search functionality in Windows Explorer to find the .result file.

If you open the file you'll find it contains the same data as the one created by LogAnalyzer.

Chapter 19

62

Repeating Work
At the moment, whenever we finish a work unit we stop working. Ideally, once we've finished a unit we
should go back and get another one. We designed the "run once, then stop" functionality into the agent
to make debugging easier, but now that it looks like we've got the basics down, we should be able to
loop through many work units.

All we need to do is create an infinite loop around the AgentView code that requests a work unit and
processes it. Find the ThreadEntryPoint method and add this code. (Obviously, I've omitted some
code for brevity.)

// do we have an agent ID?
if(Configuration.AgentId == 0)
{
// tell the user...
Status = "Registering agent '" + this.ToString() + "'...";

// get the id...
Configuration.AgentId =
service.RegisterAgent(this.ToString());

// save...
Configuration.Save();
}

// tell the user...
Status = "Agent has an ID of " + Configuration.AgentId;

// loop endlessly...
while(_isCancelled == false)
{
// request a work unit...
Coordination.WorkRequest request =
service.RequestWorkUnit(Configuration.AgentId,
Form1.Modules.GetNames());

Then, towards the bottom of the code we need to end the loop. We also need to drop out of the loop if
we ask for a work unit ID and get 0 back as we can assume that either a) there's nothing for us to do any
more or b) something has done horribly wrong.

 // set the unit back...
service.SetWorkData(Configuration.AgentId,
request.WorkUnitId, resultData);

}
}

}
else
{
// tell the user...
Status = "The agent was given nothing to do.";
break;

}
}

// tell the user...
Status = "Thread finished";

}

Case Study – Distributed Processing

63

Run the agent now and you'll find that it works through work units ad infinitum! However, you'll notice
that when you close the client window the program keeps running and the only way to stop it is to select
Debug – Stop Debugging from the Visual Studio.NET menu. That's because the program will only end
automatically if the startup object on the primary thread is closed and there are no other threads
running. What we need to do is stop all of the AgentView threads when the window closes.

Spinning Down the Threads
We are already storing a list of active AgentView objects in the Nodes collection of the TreeView
control. Each one is held in an AgentListNode object, so logic suggests that when our window closes
we need to loop through each of these nodes and call the SpinDown method on the AgentView.

Open the code editor for Form1 and create a new handler for the Closed event. Add this code:

 protected override void OnClosed(EventArgs e)
{
_agentListNode.StopAll();

}

Of course, there is no StopAll method at this point, so we'll need to build one. Add this code to
AgentListNode:

 // StopAll – stop all of the agents...
public void StopAll()
{
// loop...
foreach(AgentNode node in Nodes)
node.AgentView.SpinDown();

}

If we loop at the SpinDown method in AgentView you'll notice that it calls Abort on the
System.Threading.Thread object that we created when we first spun-up the thread:

// SpinDown - stop the thread...
public void SpinDown()
{
// running?
if(_thread != null)
{
// stop it...
_thread.Abort();
_thread.Join();
_thread = null;
}

}

This is a relatively brutal method of stopping a thread that causes a
System.Threading.ThreadAbortException to be called. As we haven't any exception handling at
all at this point, we'd better do so now otherwise we'll crash when the agent has finished.

Open the code editor for AgentView and add this code to the start of ThreadEntryPoint.

// ThreadEntryPoint – start work...
private void ThreadEntryPoint()

Chapter 19

64

{
// tell the user...
Status = "Thread started";

try
{
// connect to the service...
Coordination.Coordinator service =

new Coordination.Coordinator();

Then, at the bottom of the method add this code:

 else
{
// tell the user...
Status = "The agent was given nothing to do.";
break;
}

}
}
catch(System.Threading.ThreadAbortException ex)
{
status = "Thread was asked to finish";
}
catch(Exception ex)
{
status = "An unhandled exception occured: " & ex.Message);
}

// tell the user...
Status = "Thread finished";

}

You'll notice there that we're catching two separate kinds of exception. ThreadAbortException will
be thrown when we call the Thread.Abort method, so we display a status message and do nothing
else. In this case, any work unit that's outstanding will be forgotten. We'll have to wait for another client
to eventually pick up the work unit in order to get the results back. This is just one approach – you
might want to build in a method for restarting an assigned work unit when the client is started up again.

Any other kind of exception will be indicative of a problem, such as the Web Service becoming
unreachable, or something goes wrong with the files, etc. In this case we're not going to do anything
clever – instead we're just going to display a message containing the exception and give up.

In a production system you'd want to look at handling these exceptions in a smarter manner. For example, if
the Web Service became unreachable, you'd want to back off for a few minutes and then try again. If one of
the files couldn't be opened, you'd want to ask the user to correct the problem and so on.

But now we're at a point where although the AgentView continually loops through work units, if we
close the agent window the client process does stop properly.

Case Study – Distributed Processing

65

Load Testing
A distributed processing system that only has a single agent can, quite fairly, be described as useless. In
this section we'll take a look at how to have a number of agents running simultaneously.

We've already built our client application so that it can automatically spin up a number of agents. This
saves us from having to install the client on many computers around our network or the Internet to see
if the logic of what we've done holds. Let's make our client start up 32 individual agents.

Open the code editor for AgentListNode and change the first version of the Add method so that it
creates 32 agents instead of one.

public void Add()
{
Add(32);

}

Run the project and you'll find that 32 agents are created. However, if you look you'll notice that some
of them have reported an exception.

What has happened here is that two agents have effectively been allocated the same work unit. When
Chimaera.14 requests the data for the work unit, the coordination service assumes that the agent is
improperly trying to get the data for a unit that hasn't been allocated to it. As all of the agents start
more-or-less simultaneously, there is a run on the Web Service where RequestWorkUnit is called by
many separate incoming connections, again more-or-less simultaneously.

This causes a synchronization problem. What's happening is that an agent is coming in and being assigned a
work unit. However, before that work unit is marked as "assigned" (before it has its Status column changed
to 1), another call to RequestWorkUnit has come into the server and it's looked through the available work
units for ones with a status of 0 and allocated the same work unit to another client.

What we need to do is synchronize access to anything that requires access to the Status column. The
two methods that do this are RequestWorkUnit and SetWorkData. In effect what we need to do is
alter the Web Service implementation so that although the other methods will be able to handle
multiple synchronous calls, these two will be handled asynchronously.

Chapter 19

66

A System.Threading.ReaderWriterLock is what we need to use here. This will allow us to
separate off portions of RequestWorkUnit and SetWorkData so that only a single thread can access it
at any given moment. As each multiple simultaneous call will be handled on a separate thread, this is
exactly what we need. However, as each thread creates a new instance of the Coordinator class itself,
we need to make sure that the same instance of ReaderWriterLock is available to all of them by
making the member shared.

Open the code editor for the Coordination Web Service and add this member:

[WebService(Namespace="http://www.wrox.com/distributed/")]
public class Coordinator : System.Web.Services.WebService
{
// members...
ReaderWriterLock _statusLock = new ReaderWriterLock();
public string DbString =
"integrated security=sspi;initial catalog=Distributed;data source=Chimaera";

When using a ReaderWriterLock in this way, it's absolutely essential that every time we acquire the
lock we must release the lock when we have finished. This means a call to AcquireWriterLock at the
top of the method and a call to ReleaseWriterLock at the bottom. However, if an exception occurs
anywhere in-between, the method will return immediately and ReleaseWriterLock will not get
called. The result: no thread will ever be able to access the method again causing the entire system to
grind to a halt. What we need to do is catch any exceptions that occur, release the lock and then re-
throw the exception again so that the client can deal with it.

Make this change to the top of RequestWorkUnit. You'll need to move the request declaration
outside of the Try…Catch block.

 [WebMethod()] public WorkRequest RequestWorkUnit(int agentId,
string[] moduleNames)

{
// create somewhere to store the request...
WorkRequest request = new WorkRequest();
Exception caughtException = null;
_statusLock.AcquireWriterLock(-1);

// try...
try
{
// load all of the modules...
DataSet modules = CallGetAllModules(DbString);

Then, add this code to the bottom of the method:

 }
}
catch(Exception ex)
{
caughtException = ex;
}

// unlock...
_statusLock.ReleaseWriterLock();

Case Study – Distributed Processing

67

// throw?
if(caughtException != null)
throw caughtException;

// return...
return request;

}

We need to do more or less the same thing to SetWorkData. Make these changes to the code:

[WebMethod()] public void SetWorkData(int agentId, int workUnitId, string data)
{
// set up the call...
Exception caughtException = null;
_statusLock.AcquireWriterLock(-1);

// try...
try
{
// does the agent match?
int assignedAgentId = CallGetAgentForWorkUnit(DbString, workUnitId);
if(assignedAgentId == agentId)
{
// get the filename...
string filename = CallGetFilenameForWorkUnit(DbString, workUnitId);
filename = filename.Replace(".unit", ".result");

// save it...
FileStream stream = new FileStream(filename, FileMode.Create);
StreamWriter writer = new StreamWriter(stream);
writer.Write(data);
writer.Close();
stream.Close();

// mark it as done...
CallMarkWorkUnitAsCompleted(DbString, workUnitId);

}
}
catch(Exception ex)
{
caughtException = ex;
}

// unlock...
_statusLock.ReleaseWriterLock();

// throw...
if(caughtException != null)
throw caughtException;

}

Now run the agent again and you'll discover that none of the agents are reporting the "agent not
assigned work unit" exception.

TE
AM
FL
Y

Team-Fly®

Chapter 19

68

Testing
It's worth testing the entire process a couple of times to make sure everything works OK, and there are no
unexpected surprises. If you do create a few new work sets, remove the Threading.Thread.Sleep call
from LogAnalyzer. This will greatly speed up the process of running through a complete work set end-to-
end and also has the advantage that the load on the Web Service is increased which gives a more realistic
impression of what would happen should you have thousands of clients running on the network.

What you can see in this screenshot is four work sets in total, the first three of which have been completed.

Analyzing Results
So far in this case study we've illustrated the key concepts involved in building a distributed application.
What we have is a client application into which you can "plug in" new processing modules to support
your distributed processing needs. The client we've built can also simulate many different network
clients running simultaneously.

What we haven't looked at is how to analyze the results when all of the units have been processed. We
won't be looking at this here because it's a fairly artificial problem.

As we mentioned before, in order to analyze the results we typically need to get all of the related
information together before we can draw meaningful conclusions. We'll need to gather all of the results
before we can process the data.

In some cases you'll find it useful to split the work set up into smaller work sets first. So, if you have to
analyze server logs for a year, you might break the logs into separate sets, one set per month. That way
if you collect all the results for May you can analyze that while you're waiting for June to come in.

Case Study – Distributed Processing

69

Summary
In this case study we took a detailed look into the world of distributed processing, specifically how to
achieve the aims of distributed processing by using a Web Service. After running through the basics of
the process and introducing the concepts of sets and units, we took a look at building a database
structure that could hold the state of the system while processing was going on.

We then built the agent and service together, adding functionality to each until eventually we had a
fully functional client that could request work units, process the data, and return those units back to the
client. We built the client in such a way that new processing modules could be plugged in order to get
the system to do different things, depending on the needs of the business. We didn't look at how to
process the entire result set once processing had been completed, as this was a fairly academic
discussion. However, we did show how we could collect a large set of XML documents that should be
fairly trivial to import into an analysis application for reporting.

Chapter 19

70

.NET My Services (Hailstorm)

The .NET My Services project is still in its infancy, but all the signs indicate that, in a few years time,
.NET My Services may well be the backbone to literally thousands of applications available over the
Internet. It's the kind of technology that we will look back on in 10 years time and say to colleagues, "I
was there in the early days".

During this chapter, we will cover what is already tending to be a moving target. We'll discuss some of
the basic ideas behind .NET My Services, and why we need to keep a close eye on this technology. We
will also examine some practical scenarios about how it can help us develop applications faster, and
with more robustness. Undoubtedly, some of what we discuss within this chapter will be improved upon
and finalized when the completed version becomes available. However, we hope to give an exciting
insight into how web services could look and how they will change the way we develop in the future.

Unfortunately, what we won't be able to cover within this document is a technical insight into .NET My
Services. Currently, information is simply too sketchy to document, and it is more advantageous to give
a greater insight into the aim and global repercussions of .NET My Services, allowing you to see how it
will affect the very nature of how we think about application development.

"Hailstorm is a key .NET milestone to delivery on the Microsoft mission to empower
people through great software, any time, any place and on any device." Bill Gates
March 19 2001, Redmond, WA

A

Appendix A

2

Over the next 12 months, as more of us come to view VS.NET as stable, and potentially our primary
development platform, we will start to look for methods of making money out of what could be a very
lucrative industry.

Microsoft's determination in becoming the force behind web service development for the near future
has made it consider the commercial options for web services at a very early stage in its history.

One of the ideas to come out of the Microsoft think-tank was originally codenamed 'Hailstorm', but is
now known as .NET My Services. The concept of .NET My Services is to solve two basic problems with
today's development practice:

❑ Personal information needs to be controlled by people ("user-centric"), not companies.

❑ Individuals need information to be available to any device and any operating system

The .NET My Services project allows personal (or company) information to be held centrally on the
Internet, and be updated and changed using a series of web services. Yourself, or others that you give
authorization to, such as your local gas company, or even your Bank Manager, can then easily access
personal information from any application that supports the SOAP protocol.

Having been developed as a web service, .NET My Services will then also be freely available across
many usually disparate operating system platforms, such as WAP phones, PalmsOS, Windows PCs, or
even a corporate mainframe running operating systems such as Linux and Unix.

The key to this versatility is the SOAP messaging protocol and the fact that for the first time we have a
basic agreement to support this protocol from many different (usually in competition) software vendors,
who agree that the adoption of the SOAP protocol will serve to greatly benefit computer software
development as a whole over the foreseeable future.

Below are listed some of the commitments to integrate web service technology announced by
different vendors:

Company Description

Apache Produced Apache SOAP a SOAP web services server.

Borland Producing support for web services under Linux. Producing support for
web services under Delphi 6 (reportedly a 4 million user base).

BEA Web Logic server SOAP, ebXML, and UDDI support.

Bowstreet Business Web Factory

Hewlett Packard e-Speak, web services and e-services tools.

IBM Produced Web Sphere – a SOAP web services server.

Macintosh Apple has added SOAP support to its new Mac OS X operating system
for Apple Script to enable communication across a network, so the user
can send Apple Script events from one Mac OS X system to another.

.NET My Services (Hailstorm)

3

Company Description

Microsoft ASP.NET is expected out in the last quarter of 2001, or first quarter of
2002. Fully web services orientated, it is expected to replace Visual Basic
over the next 5 years (reportedly a 6 million user base). Release of a suite
of servers that are web services based. .NET My Services is Microsoft's
movement into web service development based around .NET Passport
(over 160 million registered users) technology.

Oracle Web Service portal

Rational Software Web Services tools

SilverStream eXtend web services environment.

Sun Web Service enabling their Java programming language.

The Building Blocks
.NET My Services web services are built around Microsoft's .NET platform and have been designed to
be released in building blocks. This section will describe these building blocks and give a fuller
understanding of the implications of each expected release.

.NET My Services is not solely restricted to Microsoft building blocks; because of its reliance on web
services it has been designed to be extended by other third party companies, though the information
concerning how extensions are performed is currently extremely sketchy. However, lately some
movement is being seen by Microsoft in alleviating the mistrust and privacy concerns of many
corporations in adopting Microsoft technologies, by announcing that they intend to base the next
version of MS Passport on a technology called Kerberos and are encouraging others to do the same.

The adoption of the Kerberos security standard will mean that many different companies with their own
password authentication scheme (such as AOL) would all be able to interchange information with each
other because of everybody's reliance on the same basic technology. For the person in the street this
would simply mean being able to log into AOL and Microsoft (and many more web sites and
applications) using the same username and password.

Building Block 1 - Security
The first staged release for .NET My Services is in the guise of MS Passport, the basis behind the entire
security system for .NET My Services. MS Passport has in fact been around for a number of years now,
and boasts an incredible 160 million users. It also has that feel good factor of using a tried and tested
technology. However, the difference between the MS Passport and the .NET My Services version of MS
Passport (now called .NET Passport), is that the latter can be accessed using (yes, you guessed it) a web
service.

.NET Passport paves the way forward for functionality to be added to this basic model, as and when it
becomes available. .NET Passport allows an individual to have what is termed roaming security, the
ability to use a sign in name (usually your email address) and password to login to any web site or
application that uses the .NET Passport web service.

Appendix A

4

.NET Passport works like a wrapper around the main .NET My Services services, by allowing a user to
logon and validate their access remotely using .NET My Services. Windows XP already has the ability
to validate through Passport as the user logs in to his or her computer in the morning; similar to a how a
primary domain server validates user access. This, however, is one of the first in many such applications
that are expected to adopt .NET Passport for securing their application or service.

Building Block 2 - Essentials
The first of the additional feature releases (due to be launched October 2001) will take a number of
the processes we perform every day (for example, emailing, storing addresses, saving files), and
publish them as web services. This release can be seen as the basic infrastructure of how .NET My
Services operates.

It's important to remember that, as with all web services, .NET My Services is simply the functionality
(business) layer provided to other client applications. The expectation is that other products such as
Word, Excel, Visual Studio, and .NET will need to be changed to incorporate web service technology.

Operation of .NET My Services
Let's have a look at how .NET My Services will operate using these two basic building blocks.

Currently when we use an email program such as Outlook, we are able to save often-used or
important addresses into the dedicated Outlook Address book for later retrieval. This information is
held locally on our computer, and is not shared with other applications. The .NET My Services
version of Outlook, instead of using a locally stored address book, will use .NET My Services to store
our address information in a centralized storage area on the Internet, which is accessible using the
SOAP messaging protocol.

Now our information is not solely restricted for use within Outlook, this information can be retrieved by
any application or operating system that understands SOAP messages.

4

Address
Book

My Services

SOAP messages

Outlook

.NET My Services (Hailstorm)

5

One use for this could be the ability to recall someone's phone number using a WAP mobile phone,
using the same address book as our computer at work. In addition, we will be able to use the same
address information whether we are abroad, or in the country we originally created our addresses.

The expectation is that the adoption of .NET My Services will not stop with Microsoft products such as
Word and Office; the intention is for .NET My Services to become an open standard, able to be
incorporated within any or all development applications from many different vendors.

Once .NET My Services technology is embedded within additional applications or web sites, then the
user of those applications gains the advantage of being able to store their personal (or corporate)
information in .NET My Services, but use many different devices to access/update that information.
There is the additional advantage of being able to share and revoke access to that information with
others, placing the user firmly in control of their own personal information.

One example of authorization is that of using directory enquiries to ask for a person's phone number.
The operator then tells the caller that information over the phone. However, if they had previously
given directory enquiries access to their personal address book, they can also update the caller's
personal information. So next time they use Outlook or their WAP phone, that address information has
been updated and is immediately available.

This ability to make personal data available to any device is fundamental to how .NET My Services is
constructed. It is also apparent that without the onset of a globally accepted standard such Web Services
and SOAP, this type of widespread compatibility would not be possible.

Below is a list of the services that are intended to be released with the Essentials building block:

Name Description Use

myProfile Name, nickname, special
dates, picture. Electronic
and geographic address
for an identity

Personal information. myProfile has a
synchronization feature that can
update the myContacts information
for other users.

myContacts Electronic
relationships/address
book

Use to store contact information for
others, for example entering a number
on a WAP phone can make it instantly
available from within Outlook on the
user's PC at work. Synchronized with
others' myProfile information.

myCategories Categorization of
information.

Used by many services within My
Service to categorize data/information
into known data types or groups.

myLocation Electronic and
geographical location
and rendezvous'

The user's current location. There is
also some talk about being able to
pinpoint people electronically,
depending on what device they are
using.

Table continued on following page

Appendix A

6

Name Description Use

myPresence Online information Contains the user's current online
information. Thought to be an extension
of the MSN messenger service, but
described as a web service.

myLists Generic list creation and
maintenance.

Uses the myCategories service to
actually create meaningful lists of
information, such as friends, families
etc. This service, however, simply
controls the addition, deletion,
updating and retrieval of lists.

myNotification Rule based alerts and
notification

myInbox Inbox items like e-mail
and voice mail, including
existing mail systems

Email and voice mail from any device,
such as WAP, PC, Mainframe, PDA.

myCalendar Time and task
management

Also known as scheduler. Can be
updated by other companies to notify
the user of events about which they
may be interested.

myDocuments Raw document storage Document storage similar to files and
directories.

myApplicationSettings Application settings Change an application's colors,
capabilities, and options. Can mix
capabilities, for example, ABC software
can use options from XYZ software.
Can also control basic settings such as
desktop color, allowing the user to log
onto different machines (in different
countries) and retain desktop settings.

myFavoriteWebSites Favorite URLs and other
Web identifiers

Keep track of favorite web sites, but
recall this information for use on any
device, not just internet explorer.

myWallet Receipts, payment
instruments, coupons and
other transaction records

Store credit card details allow suppliers
to debit the user's card. Automatically
tracks credit card transactions.

myDevices Device settings,
capabilities

The devices the user wants to be able
to use these services on. Also their
capabilities and options.

myServices Services provided for an
identity

Allows the user to disable/enable
access to certain .NET My Services
services.

.NET My Services (Hailstorm)

7

These services form the basic model for .NET My Services. However, the intention is that developers
will have the ability to extend the basic .NET My Services infrastructure and list of services, allowing
third party software to be incorporated within the .NET My Services infrastructure.

.NET My Services puts people in control of their own data. Individuals will be able to update a central
federated and secure database containing their personal information using any of the above web
services, therefore making sure that the information contained about them is always accurate.

Advantages and Disadvantages
We've listed below an easy-to-read summary of some of the statements that developers and customers
are making about .NET My Services:

DEVELOPER – Advantages:

❑ Faster development timescales

❑ Little or no unit testing of the .NET My Services area of an application, improving quality

❑ Allows the developer to concentrate on advanced features, improving overall ability

❑ Easier payment using .NET My Services

❑ Customers who are knowledgeable about .NET My Services will see the company is a
preferred supplier

❑ Always certain of up-to-date information about a user

DEVELOPER – Disadvantages

❑ Reliance on the technical abilities of another company

❑ Continuous ongoing costs may cost more than original development expenditure

❑ If .NET My Services does not succeed then there is no guarantee it will continue as a service

CUSTOMER – Advantages

❑ Only need to enter information once (see disadvantages below for opposite of this)

❑ Personal/private information is held by a single company

❑ The company holding the information has licensed companies to join .NET My Services

❑ Control over who has access to personal information

❑ The information is always correct because the user can keep it up-to-date

❑ Information is hosted away from the user's desktop, thereby allowing disaster recovery

CUSTOMER – Disadvantages

❑ Not everyone will adopt .NET My Services technology. May be inconsistently used across sites

❑ Concerns about misuse of information

TE
AM
FL
Y

Team-Fly®

Appendix A

8

User Centric Instead of Device Centric
Today nearly all our development is based around capturing information from a user. However, in
nearly all circumstances another web site or supplier has already captured that same information. We all
personally have vast amounts of data held about us sitting in applications, databases, and cookies
throughout the world – most of it out of date and inaccurate.

The reason that information has always been held on separate machines or databases, is that many have
found it technically challenging for disparate systems to communicate with each other, for example,
Windows talking to Unix or Unix to a Wap phone.

With the onset of SOAP Web Service technologies, we have broken those boundaries and now are not
constrained by physical limitations of having to get the user to retype information as they progress
between different web sites or applications. A user can now actually choose to bring that information
with them, giving them what is effectively a global identity.

As described previously, the .NET My Services project (using web service technology) is based around the
idea of having a central knowledge store of information, which contains information related to a user, like
an Internet personal identity. Behind that identity, users can gain access to their personal information.

Microsoft in fact has taken the idea of the Internet as a country, and the user as a registered person
within that country further, by issuing what they aptly name 'passports' to all registered users. These
passports simply contain security information to allow an individual to access his or her address, name,
credit card details, diary, schedule, or notes.

Using this passport technology (.NET Passport), and a global identity places the user firmly in control of
their own data, with the ability to authorize or revoke access to any companies or individuals.

Millions can't be Wrong
Whether .NET My Services will be accepted as a development platform, only time will really tell.
However, it seems that of all the companies capable of introducing this global strategy, Microsoft are
certainly one of the few capable of making it succeed.

For example, Microsoft has a huge potential customer base it can draw upon. Let's look at the figures:

❑ 230 million users of MSN

❑ 160 million users of Passport

❑ 70 million users of Hotmail

❑ 40 million users of MSN Messenger

❑ 4.5 million MSN users are also paying customers

❑ 400 million Windows users

Unique users visiting per month:

❑ 38 million for MSN

❑ 28 million for Microsoft

.NET My Services (Hailstorm)

9

❑ 19 million for Passport

❑ 18 million for Hotmail

There's no doubt that with this type of backing Microsoft are capable of affecting public world opinion.
Therefore, once .NET My Services is released (early 2002), expect to see a definite strategy for guiding
users to demanding .NET My Services in applications from other suppliers. This sort of campaign with
this sort of user base is almost guaranteed to succeed.

Scenarios
In this section, we'll look at a specific scenario in which .NET My Services could effectively change the
way we think about development over the next 10 years. This scenario is a little fanciful, but is intended
to provoke thought. For the sake of this example, we will assume that web services are widespread, and
that many companies have adopted the .NET My Services technology:

Booking That Holiday
Ever sat down and regretted booking that holiday? They say that booking a holiday is one of the most
stressful situations we experience. The one reason we hate the booking procedure is that in many cases
there are so many people to notify, and so many things to consider. Currently the procedure for
booking a holiday abroad goes something like this:

Without .NET My Services:

1. Go to travel agent (shopping mall or web site) and get a quote on a holiday

2. Go to another travel agent, give them the same information and get another quote

3. Decide on where we want to go based on price and flying times

4. Let the newsagent know that we don't want papers delivered

5. Pay for our holiday by entering our credit card details, name, and address

6. Go to the airport and give our details to the check in desk

7. Get on plane

8. Arrive at destination and get a bus to resort

The above is simply an example summary of some the tasks we need to do – in reality there is much
more. The result of the above scenario is:

❑ The first travel agent has our personal details (we can expect to be targeted in a direct
mail campaign)

❑ The second travel agent has our personal details (we can expect to be targeted in a direct
mail campaign)

Appendix A

10

❑ The newsagent has our name and address on file

❑ The airport have a record of us flying on that day along with our name and address

❑ We've spent hours form filling, repeating the same information

❑ We couldn't find a taxi at the airport

Now lets see how .NET My Services can take the hard work out of holidaying:

With .NET My Services

1. Go to a travel agent and grant them access to our .NET My Services passport

2. They instantly know our personal address, including any personal travel preferences.

3. Travel agent creates quote and leaves the details in our personal area inside .NET
My Services

4. Go to another travel agent and ask them for a better quote

5. Travel agent reads the travel information from our personal area in .NET My Services

6. We decide on the travel agent to use based on price and flying times

7. Newsagent notified by an entry being placed in their myInbox

8. The travel agent simply needs our authorization to debit our account, no form filling

9. Our personal schedule is updated with airport flying times

10. .NET My Services automatically sends us information about buses at the destination
airport

11.No form filling at airport – the check in desk already have details as they've been
granted access

12.Go to airport and get on plane

13.We read and reply to our email on the flight, which has onboard PDA devices.

The result of the above with .NET My Services scenario is:

❑ We can immediately deny access to the first travel agent

❑ We can put a notification in to remind us to deny access to the second travel agent in 2 months

❑ The newsagent uses the access they've been granted to get our address and details

❑ We put a notification in to remind us to deny access to airport in, say, 6 months

❑ Much less time spent form filling and worrying whether we've remembered everything

.NET My Services (Hailstorm)

11

The above scenario using current web service techniques is not technically difficult, the only limitation
is that all these industries must be able to talk to each other, and this is where .NET My Services and
Web Services connectivity starts to work effectively.

User Acceptance of .NET My Services
We are all a little fickle when it comes to being classified as a user. As developers we jump up and down
insisting that our privacy is being invaded, and why should one company have so much power. But in
reality, when we browse around the Internet as users, we don't take the same attitude. It seems that as
developers we have concerns over privacy, but as users we're quite likely to give our credit card or
personal address details to any web site that looks professional enough to accept them.

With this alternating mindset we seem to have, it occurs to me that no matter what our opinions are as
developers, the requirement for .NET My Services is going to be championed by users. Once the
benefit of sharing data between applications and web sites becomes clear and has been shown to work,
then we'll all expect developers to adopt this new technology, and in many cases users may even start to
pick and choose applications depending on their support of the .NET My Services service.

Software as a Service
.NET My Services is an interesting proposition. However, it seems that all public discussion is currently
concerned with the technology and its use, rather than how Microsoft will make it commercially viable.
There is no doubt that .NET My Services is a significant departure for Microsoft away from software
development tools. They have now finally adopted (with .NET My Services) a subscription based
business model, championing the idea of software as a service.

Therefore, it's not unrealistic to expect that sometime Microsoft will attempt to produce an income from
.NET My Services. In fact, Microsoft has already outlined this broadly in their statement that they want
.NET My Services to reflect more traditional models of charging. Therefore, instead of (as with many
dotcoms) attempting to make money from advertising, Microsoft intends to charge the user an amount
for using the .NET My Services service. Little information has arisen in discussions and statements from
Microsoft indicating what the costs will be; some however have speculated the possibility of charging a
nominal annual fee for its use.

The movement away from dotcom strategies to charging the user for use of a service is a welcome
change to normal advertising revenues, which may in fact slow down the growth of .NET My Services
but also give Microsoft a steady and solid additional income.

There is, however, no information about incorporating .NET My Services in other products and it
seems that for Microsoft to get developers to utilize the .NET My Services service they will need to offer
some kind of incentive for introducing an additional fee-paying user community.

One thing that is certain is that Passport looks like remaining a free service for individual use, but with
the ability for users to adopt .NET My Services type services as and if they require. However it should
be noted that companies using Passport on their site or within their application might need to pay a
licensing fee.

Interestingly, all discussions around charging are targeting users and not machines. This is likely to
make the stock market happy, as they've been on at Microsoft for years to adopt a "subscription-based
revenue" instead of a "product-based revenue". The likelihood is that many other software producers
will follow suit.

Appendix A

12

It seems that this movement toward User Licensing for using products will mark a huge change to how
products are sold and distributed worldwide. It also meets the enormous problem of software security
and software piracy, which reportedly costs billions in lost revenue. People will be less likely to copy
CDs when they realize that it's registered for their use, and potentially traceable.

Subscription based software may also mark the end for free email and free internet services, a business
model that was full of promise but consistently failed to accomplish anything. Traditional models are
based more closely on charging the individual or company who is actually benefiting from that service.

Who is Going to Use .NET My Services?
So far, technical details on .NET My Services have been very sketchy, and in the most part non-
existent, so very few companies have had the opportunity to use its services, apart from the following
pre-release partners who are showcasing .NET My Services on behalf of Microsoft:

❑ American Express

❑ ClickCommerce

❑ EBay

❑ Expedia

❑ Groove Networks

Microsoft have released the following list of products which are expected to contain .NET My
Services support:

❑ bCentral

❑ MSN

❑ Office

❑ PocketPC

❑ Stinger

❑ Visual Studio

❑ .NET

❑ Windows CE

❑ Windows XP

❑ X Box

❑ Microsoft Reader for eBooks

Judging by the above list, and also by the number of users that will be introduced to .NET My Services,
Microsoft is very, very serious about .NET My Services succeeding.

.NET My Services (Hailstorm)

13

Stateful Information and .NET My Services
Cookies are a technology that created a considerable amount of controversy in the early years of the
Internet, some of which continues today. Originally designed to keep stateful information to save
users/customers having to type in information every time they visited a web site, it quickly became
obvious that it could also be used to keep track of a customer's purchasing habits. Suppliers can then use
this information to target an individual when he or she returns to a web site, making sure that that the
supplier only displays what they think the user will find interesting.

Cookies are probably the single most controversial technical standard on the Internet. Not surprisingly,
as users we don't like people knowing what we've bought, or where we like browsing – many see it as an
invasion of privacy. In the future, we may look back at cookies fondly, as now the super-cookie is here
in the form of .NET My Services.

One considerable limitation of cookies has always been its localization; it is restricted to collecting
information for a specific web site domain. In many cases, this has been a welcome limitation and many
developers acknowledge that the user can at least control cookies on his or her local computer by
simply deleting a file to remove them.

With the onset of .NET My Services, there is no longer a need for holding personal information in
cookies, as stateful information can now be held within .NET My Services. This movement clearly has
repercussions about user privacy.

Knows

how much money you have what books you like where you like to fly to

KnowsKnows

yourbank.com booksforsale.com airlinetickets.com

.NET My Services

Because .NET My Services now contains information concerning all our browsing and purchasing
habits, it could become the single most important database storage device in the world. This vast
repository contains information across so many different industries that we could accurately foretell
marketing trends for 100's of millions of users.

"On each landing, opposite the lift-shaft, the poster with the enormous face gazed
from the wall. It was one of those pictures that are contrived so that the eyes follow
you about when you move. BIG BROTHER IS WATCHING YOU, the caption
beneath it ran." 1984 by George Orwell

Appendix A

14

George Orwell's famous book "1984" vividly paints a picture of individuals being watched from every
corner. In reality, being tracked and watched while browsing the Internet is certainly happening now.
But what .NET My Services offers us is greater flexibility and control, rather than the gray oppressive
face of Big Brother.

Take for instance the scenario of walking down to your local .NET My Services shopping mall. The
sales people in each shop you go into know you by name; they know what style of clothes you wear,
and what your favorite colors are. Although this may seem a little spooky, realistically this could save us
time, and could make shopping a more interesting proposition.

eTerrorism and .NET My Services Security
Up until now, people have been steadfast in their demand for secure information, privacy, and control. .NET
My Services actually allows users to share their personal information with who they want, but can also revoke
that permission if necessary. This is a response to the misuse of personal information in the industry today,
where web sites seem to believe that once they have someone's personal information, that person is fair game
to be targeted in email and advertising campaigns. The introduction of .NET My Services will bring the
privacy debate to the forefront, and finally place users in control of their information.

.NET My Services undoubtedly brings with it a certain amount of risk. No longer will a hacker be trying
to perpetrate access to a company hosting 1000's of credit card details. The risk is that .NET My
Services could in fact inadvertently allow access to millions of people's personal details.

eTerrorism doesn't take its toll in lives, but in corporate and individuals bank balances. Many people
are now attuned to the eccentricities of the money markets, and the saying, "The USA catches a cold
and the whole world sneezes" has never been so true.

So it's imperative that .NET My Services gets the recipe between fast user response and integrated high
level user protection right the first time. Though there is a justification in expanding the .NET My Services
project with new features by request from users, the security features will not allow any such freedom.

Verisign and Microsoft are currently working on the XKMS standard, a method of securing XML traffic
between two points.

The XKMS standard is a joint effort by Verisign and Microsoft to adapt digital certificates to work with
XML applications. XKMS is a similar (some would say the same) technology to SSL but has been
specially designed for XML traffic. The reason for adopting a different standard to point-to-point digital
certificates is that it Microsoft wants web services and .NET My Services to be used using secure
connections with as many different platforms as possible, however although SOAP can be supported by
any operating system, understanding digital certificates is not quite as simple.

The below diagram describes the flow of traffic from a WAP Phone (doesn't understand certificates) to
the .NET My Services (does understand certificates) web service using the XKMS security feature:

.NET My Services (Hailstorm)

15

Trusted

Connection

Secure
Connection

WAP Phone

Trusted Server .NET My Services

WAP Phone

XKMS gets around the security issues of platforms that do not understand digital certificates by
operating through a trusted server. In the above case, all communications between the WAP Phone and
the Trusted Server are guaranteed and already validated using the Trusted Server's own security
technology. The trusted server simply handles all SOAP request messages to run a web service such as
.NET My Services; making sure that the end-to-end transmission of XML traffic uses digital certificates
(Kerberos authentication).

Concerns About .NET My Services
.NET My Services is already starting to drive controversy about Microsoft's intentions to control public
demand and consumers' personal information. There is, as we are all probably aware, a consensus of mistrust
about Microsoft's direction and use of technology to guide public demand for its own personal gain.
What we must all understand is that – with the onset of web services and the industry-changing
implications of what it proposes – if Microsoft doesn't create a .NET My Services then some other
corporation will. Whether we like it or not, the global strategy of creating name and address storage that
millions can use is too exciting for any forward-thinking corporation and its shareholders to ignore.

Developers at first may be reluctant to incorporate someone else's technology into applications that they
would, in many cases, have developed themselves. Microsoft has certainly got its work cut out for it, as
it appears that they are reducing the work that a consultant/contractor may be asked to do.

Nevertheless, the opportunity for developers to gain access to a substantial user base will far outweigh
any concerns many of us may have, and within the next 5-10 years, we may in fact see the industry
sectioned into those who do and those who don't support .NET My Services.

Security and performance will undoubtedly be key issues for developers and customers, and Microsoft's
technical ability will undoubtedly be pushed like never before. Earlier this year we all read about the
MS Passport failure, which understandably caused major concern among partners and customers. These
sorts of outages cannot happen when you have hundreds of millions of customers all waiting to retrieve
their personal information.

It all points to the fact that Microsoft must get the security and performance issues solved prior to the
wave of public use that is expected to confront us all over the next few years. With a project of this size
they'll have one chance to get it right, before public opinion turns against the whole idea.

Appendix A

16

Summary
In this chapter we discussed:

❑ How .NET My Services will affect they way we develop in the future

❑ How the current market is positioned to accept this emerging technology

❑ Security features of .NET My Services

❑ Size of the potential market for web service functionality similar to .NET My Services

❑ Advantages and disadvantages of .NET My Services

As developers, many of us will be drawn towards developing our own versions of .NET My Services.
It's a ritual we've almost all experienced with the start of a new contract, when we're desperate to start
coding. But we should, in fact, consider adopting .NET My Services now – it has the potential to free us
to work on more exciting developments – rather than (as some do), regarding it as an evil that will
decimate the contracting market.

Once you've made a decision to use .NET My Services, it's probably going to be a decision for life, a
little like choosing a programming language. Within time, it may be that we will see .NET My Services
as an extension of basic development language, something that we can't do without.

It could be that, as operating systems, especially Windows XP, start to use .NET My Web Services and
allow millions of users to share information between home, office, and WAP phones, that customers will
start to see .NET My Services as a preferred feature that some will insist upon. Public opinion has the
unexpected ability to change without anybody noticing, sometimes overnight, and we must be prepared.

.NET My Services (Hailstorm)

17

TE
AM
FL
Y

Team-Fly®

Appendix A

18

IE5 Web Service Behavior

New to Internet Explorer 5.0, "behaviors" provide a way to attach client-side functionality to elements
in a web page, using STYLE attributes or declarations. The major benefit of behaviors is that we can
define these features apart from the actual web page, in an .HTC (HTML Component) file. Separating
the HTC scripts from the presentation HTML simplifies sharing and managing the behavior functions.
Multiple behaviors may also be applied to a single element, a big improvement over DHTML's
limitations. Providing the developer with the ability to define properties, methods, and events to attach
to various HTML elements makes behaviors a valuable part of the developer's toolbox.

It's important to note that behaviors currently apply to the Internet Explorer browser only.

Generally, Web Services are thought of as server-centric, meaning that integrating functionality from
various services takes place before a web page is fully rendered to the client. While this is often true, it
is not always the case. With Web Service behaviors, the Web Service calling and processing logic is
offloaded to the client (the browser), implemented in an HTML Component.

HTML Components (.HTCs)
HTML Components (.HTCs) provide a powerful way to implement behaviors in simple DHTML script,
using your choice of VBScript or JScript. While ActiveX controls provide similar functionality, they
must be downloaded to the page separately and must be installed before use. On the other hand, HTCs
are simply text, and are downloaded with the source page. Even better, HTCs give the developer the
same ability to define true component characteristics, complete with properties, methods, and events, as
well as providing the ability to receive notifications. For security reasons, HTCs must reside on the
same server that serves the HTML that calls it.

B

Appendix B

2

The basic HTC file is made of up of a script that implements a specific behavior, within <PUBLIC:HTC> tags:

<PUBLIC:HTC>
 <PUBLIC:ATTACH EVENT="eventname" FOR="object" [| "object" ...]
 HANDLER="handlername" URN="URN" />
 <SCRIPT LANGUAGE="VBScript">
 ' VBScript code
 </SCRIPT>
</PUBLIC:HTC>

The <PUBLIC:ATTACH> HTC tag makes the connection between the HTML tag and the event to which
you are defining behavior. To force a certain subroutine to execute when the source tag fires an event,
the HANDLER attribute is used. A good example is changing a style when the mouse moves over the
source element on the web page. We'll change its color to blue in this example (bluetext.htc).

<PUBLIC:HTC>
 <PUBLIC:ATTACH EVENT="onmouseover" HANDLER="Blue" />
 <SCRIPT LANGUAGE="VBScript">
 Sub Blue
 style.color = "blue"
 End Sub

 </SCRIPT>
</PUBLIC:HTC>

We've attached the onmouseover event in the HTML page source to the Blue VBScript subroutine in the
HTC. While we could have used the FOR attribute to specifically attach the handler to a single element, by
leaving the FOR attribute out, we've made this script accessible to multiple elements. The key to making it all
work is to tell the browser (IE5+) which behavior to use. To apply this behavior to a <P>, use this syntax:

<HTML>
<BODY>
<STYLE>
<!--
 @media all
 {
 .hover { behavior:url(bluetext.htc) }
 }
-->
</STYLE>

<P CLASS="hover">Hover over for blue.</P>
</BODY>
</HTML>

The @media rule specifies where the output is designated, with the choices being screen, print, and
all. We've then attached the HTC to the hover class, then applied this class to our <P>.

Another great feature of the HTC is that it can expose properties, methods, and events, just as other
components. State is also maintained, so variables can be retained between calls. Let's extend the HTC
functionality to return the text to its original color when the mouse leaves the tag area. We'll be
replacing our existing VBScript HTC with the following JScript (note the use of PUBLIC:COMPONENT):

IE5 Web Service Behavior

3

<PUBLIC:COMPONENT>
 <PUBLIC:ATTACH event="onmouseover" handler="Blue" />
 <PUBLIC:ATTACH event="onmouseout" handler="NotBlue" />
 <SCRIPT>
 var originalColor;

 function Blue() {
 originalColor = style.color;
 style.color = "blue";
 }

 function NotBlue() {
 style.color = originalColor;
 }

 </SCRIPT>
</PUBLIC:COMPONENT>

When the onmouseover event fires, the behavior causes Blue to execute. The variable
originalColor stores the color property of the event source. Upon the onmouseout event firing the
value in originalColor is placed back into the color property of the same event source. This simple
HTC gives us plenty of room to try various style changes.

Accessing Web Services with IE5 Behaviors
Microsoft has developed an HTC that allows us to access Web Services from within a web page in IE5.
This script, webservice.htc, makes implementing this remote functionality from the client (the
browser) very simple. The greatest advantage to calling a Web Service using the behavior HTC is data
retrieval without requiring a page refresh. We won't worry ourselves with the details of this HTC, as its
contents are fairly extensive, but we'll examine a few practical uses of the Web Service behavior.

The great thing about using the Web Service behavior is that we need not involve ourselves with the
details of SOAP or any other elements of the data transfer. All the effort involved with parsing the XML
is done behind the scenes in the browser. No page refresh or navigation occurs, keeping network
activity to a minimum.

While element behaviors were introduced in Internet Explorer 5.5, the Web Service behavior is an
attached behavior, providing compatibility starting with version 5.0. Attached behaviors modify the
behavior of an existing page element, while element behaviors define actual custom tags that can be
placed within a web page.

You can download webservice.htc and read Microsoft's documentation on Web
Service behaviors at:

http://msdn.microsoft.com/workshop/author/webservice/webservice.asp.

When we need to call a Web Service, we must ensure it is from within our own web domain (such as
"wrox.com"). This can severely limit the functions we'd like to utilize, of course, since Web Services are
meant to provide unbounded access to functions anywhere. I'm sure after giving it a little thought you'll
understand why this security is in place: it prevents unauthorized use of other domains' Web Services.

Appendix B

4

The way around this limitation is to have the web server on our web domain request data from other
web servers. Wrapping a Web Service call on our web server with another Web Service will provide us
with the remote functionality we need.

Retrieving Values from GetAppSettings
A simple illustration of the use of Web Service behaviors is retrieving a string from the configuration, as
GetAppSettings (from Chapters 2 and 3) did. At the end of Chapter 3, we added a second parameter to the
method called delay, which allows us to specify the number of milliseconds to wait before returning a result.

Building a simple web page, getappsettings.asp in the AppSettings folder of the
download for this appendix, we will create a form that allows us to enter a key. When the request
button is pressed, the Web Service will be called using the behavior. Simply drop the AppSettings
folder of the code download into your wwwroot, make the AppSettings folder into an application
directory in IIS, and request the getappsettings.asp page in your browser:

<html>
<script language="JavaScript">
var iCallID;

function init()
{

divsvcGetAppSettings.useService("http://localhost/AppSettings/appservice.asmx?WSDL
 ","GetAppSettings");
}

function evtAppSettings()
{
 // Error condition on this call
 if ((event.result.error) && (iCallID==event.result.id))
 {
 // Retrieve error properties
 var vCode = event.result.errorDetail.code;
 var vString = event.result.errorDetail.string;
 var vRaw = event.result.errorDetail.raw;

 // Would add a switch{} to handle various vCode's
 }
 // No error, confirm this is our call that is being returned
 else if ((!event.result.error) && (iCallID == event.result.id))
 {
 if (event.result.value == "") {
 // Display a default value, background of yellow
 lblResult.innerText = "No Value";
 lblResult.style.backgroundColor = "#FFFF99";
 }
 else
 {
 // Display the returned value, background of aqua
 lblResult.innerText = event.result.value;
 lblResult.style.backgroundColor = "#99FFFF";
 }
 }
 else
 {

IE5 Web Service Behavior

5

 // This result was fired by something other than our request
 }
}
</script>
<body onload="init()">
<div id="divsvcGetAppSettings"
 style="display:none;behavior:url(webservice.htc)"
 onresult="evtAppSettings()"></div>
<form name="Form1" id="Form1">
Key <input type="text" name="key" value="" size="25">
<input type="button"
 value="Get Value"
 onclick="javascript:iCallID =
 divsvcGetAppSettings.GetAppSettings.callService
 ('GetAppSettings',document.Form1.key.value, 500);">
</form>
<div id="lblResult"></div>
</body>
</html>

By globally declaring a call ID, we will be able to recognize the Web Service call when it returns results.
This is most important when multiple calls to the same Web Service occur on a page.

var iCallID;

Our init() routine is called using the onload event. Using the DivSvcGetAppSettings <DIV> as
our Web Service gateway, we tell it the location of the WSDL that defines the Web Service, as well as
the name of the method to use (GetAppSettings). Applying the styles to the <DIV> allows us to
prevent it from taking up any physical space on the page, as well as to attach it to the webservice.htc
component. Lastly, using the onresult attribute, we assign the evtAppSettings() function to be the
destination when the Web Service completes and returns a value.

function init()
{

divsvcGetAppSettings.useService("http://localhost/AppSettings/appservice.asmx?WSDL
 ","GetAppSettings");
}

...

<body onload="init()">
<div id="DivSvcGetAppSettings"
 style="display:none;behavior:url(webservice.htc)"
 onresult="evtAppSettings()"></div>

We have also defined a label where we will place our results when the Web Service completes:

<div id="lblResult"></div>

When the Get Value button is pressed, the behavior is called, placing the ID of the call into iCallID.
Notice that we're passing the value of the key input field, and 500, which specifies a half-second delay.

Appendix B

6

<input type="button"
 value="Get Value"
 onclick="javascript:iCallID =
 DivSvcGetAppSettings.GetAppSettings.callService
 ('GetAppSettings',document.Form1.key.value, 500);">

Once the Web Service completes, evtAppSettings on our web page is called. First, we check whether the
ID of the result matches the one we're waiting for (iCallID), plus whether an error has been returned.

function evtAppSettings()
{
 // Error condition on this call
 if ((event.result.error) && (iCallID==event.result.id))
 {
 // Retrieve error properties
 var vCode = event.result.errorDetail.code;
 var vString = event.result.errorDetail.string;
 var vRaw = event.result.errorDetail.raw;

 // Would add a switch{} to handle various vCode's
 }

Next, if no error is returned and the ID matches iCallID, we process the results. If an empty value is
returned, we respond with "No Value" and set the background of our receiving <DIV> to yellow (#FFFF99).

 // No error, confirm this is our call that is being returned
 else if ((!event.result.error) && (iCallID == event.result.id))
 {
 if (event.result.value == "") {
 // Display a default value, background of yellow
 lblResult.innerText = "No Value";
 lblResult.style.backgroundColor = "#FFFF99";
 }
 else
 {
 // Display the returned value, background of aqua
 lblResult.innerText = event.result.value;
 lblResult.style.backgroundColor = "#99FFFF";
 }
 }

The last case is that the call ID does not match the one returned. If this happens, we'll simply ignore it.

 else
 {
 // This result was fired by something other than our request
 }
}

IE5 Web Service Behavior

7

Taking a look at this page in action:

Entering "connectstring" and press the Get Value button:

If we enter a key that doesn't exist, the results appear like this:

Appendix B

8

Sample Hotel Reservation Page
We can also demonstrate the use of the Web Service behavior on a page that simulates placing a hotel
reservation. Keeping it simple, we'll create a short Web Service that returns whether a reservation is
available or not, by saying if the reservation is made more than thirty days in advance, it is always
available. Otherwise, we'll deny the reservation. If only it worked this way in real life!

The code for our Reservation Web Service, IsAvailable.asmx, can be found in the Reservation
folder of the download, which should be put into your wwwroot and made into an application in IIS:

<WebMethod()> _
Public Function IsAvailable(ByVal dtStart As String,
 ByVal dtEnd As String) As String
 If Not Microsoft.VisualBasic.Information.IsDate(dtStart) Or _
 Not Microsoft.VisualBasic.Information.IsDate(dtEnd) Then
 Return "Please enter two valid dates."
 End If

 Dim Diff As Integer = DateDiff(DateInterval.Day, CDate(dtStart),
 CDate(dtEnd))

 If Diff = 0 Then
 Return "ERROR: Dates are the same."
 ElseIf Diff < 0 Then
 Return "ERROR: Departure must be after the arrival."
 Else
 If DateDiff(DateInterval.Day, System.DateTime.Now(), _
 CDate(dtStart)) < 30 Then
 Return "Sorry, the hotel is booked."
 Else
 Return "Congratulations! Your room is now booked for " & _
 Diff & " night(s)."
 End If
 End If
End Function

After performing a few sanity checks (like checking for valid dates and correct order of
arrival/departure), we hope to return a message congratulating the user for finding a room. Here's the
code we use on our web page, Hotel.htm, which calls the Web Service behavior.

<html>
<script language="JavaScript">
var iCallID;
var iCallID2;

function init()
{
DivSvcIsAvailable.useService("http://localhost/Reservation/IsAvailable.asmx?WSDL",
 "IsAvailable");
}

function evtIsAvailable()
{
 if((event.result.error)&&(iCallID==event.result.id))

IE5 Web Service Behavior

9

 {
 window.alert(event.result.errorDetail.code);
 window.alert(event.result.errorDetail.string);
 window.alert(event.result.errorDetail.raw);

 }

 else if((!event.result.error) && (iCallID == event.result.id))
 {
 lblResult.innerText = event.result.value;
 lblResult.style.backgroundColor = "#99FFFF";
 }
 else //REWORD:
 {
 alert("Something else fired the event!");
 }
}
</script>
 <body onload="init()">
 <div id="DivSvcIsAvailable"
 style="behavior:url(webservice.htc)"
 onresult="evtIsAvailable()"
 style="display:none;">
 </div>
 <table width="100%" cellspacing="0" cellpadding="0" border="0">
 <tr>
 <td colspan="3" align="center">

 </td>
 </tr>
 <tr>
 <td width="23%">

 </td>
 <td width="54%">
 <form name="Form1" id="Form1">
 <table width="100%" cellspacing="0" cellpadding="0" border="1">
 <tr>
 <td width="100%">
 <table width="100%" cellspacing="0" cellpadding="0">
 <tr>
 <td align="center" colspan="2">
 <i>Check Availability</i>
 </td>
 </tr>
 <tr bgcolor="#FFFFEE">
 <td>
 Arrival Date:
 </td>
 <td>
 <input type="text" name="arrival">
 </td>
 </tr>
 <tr bgcolor="#FFFFDD">
 <td>
 Departure Date:
 </td>
 <td>
 <input type="text" name="departure">
 </td>

TE
AM
FL
Y

Team-Fly®

Appendix B

10

 </tr>
 <tr bgcolor="#FFFFCC">
 <td align="center" colspan="2">
 <input type="button"
 value="Check"
onclick="javascript:iCallID=DivSvcIsAvailable.IsAvailable.callService('IsAvailable
',document.Form1.arrival.value, document.Form1.departure.value);"
 id="button1"
 name="button1">
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </form>
 <div align="center"
style="font-family:Tahoma;font-size:8pt;font-bold:True;background-color:#FFFF99;"
 id="lblResult">
 </div>
 </td>
 <td align="center" width="23%">

 </td>
 </tr>
 </table>
 </body>
 <script language="JavaScript">
 </script>
</html>

After entering some sample data into our hotel page, our results will look like this:

IE5 Web Service Behavior

11

Entering dates out of order produces this result:

Entering dates less than 30 days from now but in the correct order also produces an error:

Appendix B

12

Summary
Internet Explorer 5 behaviors give us a way to reuse client-side code, apart from the presentation
portion, in a way that is both simple and efficient, as we saw in our Sunset Hotel example. Using HTC
files, behaviors are defined as components, and in our examples they attached themselves to various
events that would be fired from tags to which the behavior is applied. Behaviors can range from
minimal features, such as changing a font style, to extensive component definitions complete with
properties and events.

The Web Service behavior, in particular, illustrates the potential of IE behaviors like nothing else. Not
only can we retrieve data using this behavior, we can do all this without requiring a page refresh or other
less-desirable work. With the proliferation of Internet Explorer and the new-found power of client-
accessible Web Services, the Web Service-integrated web pages will become increasingly prevalent.

IE5 Web Service Behavior

13

Appendix B

14

	1. Web Services

	Component Based Distributed Computing and Web
Services
	Why Web Services?
	What are Web Services?

	2. Building ASP.NET Web Services
	9. Asynchronous Programming
	An Asynchronous Method Call Using a Callback

	8. Design Criteria
	7. Web Service Discovery
	6. Custom SOAP Techniques
	5. Standard Wire Formats and Data
Types
	4. Web Service Description
Language
	10. Managing State
	18. Case Study – Passport-Style
Authentication Service
	17. Case Study – BizTalk
	16. Web Services in Your Business
	15. Exposing Data Through Web
Services
	14. SOAP Security
	Custom SOAP Header

	13. Authentication
	12. Data Caching
	11. Transactions with Web Service
	Using EnterpriseServices to ‘Roll Your Own’

	19. Case Study – Distributed
Processing
	A. .NET My Services (Hailstorm)
	B. IE5 Web Service Behavior

